首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
滴灌专用肥中磷素在3种土壤—棉花系统中的运移   总被引:1,自引:0,他引:1  
基于同位素示踪技术,将32P标记的滴灌专用肥滴入3种不同类型的土壤,应用储磷屏扫描影像技术研究磷素在土壤中的运移情况,同时应用超低本底闪烁仪测定土壤和棉株32 P放射性活度。结果表明,各处理磷素在3种土壤中的运移距离均在10cm以内。灰漠土+滴灌专用肥处理的运移距离高于其他处理,并且施用滴灌专用肥后的运移距离为灰漠土(8.49cm)>草甸土(5.48cm)>红壤(3.65cm)。滴灌专用肥在不同土壤中的运移距离存在显著差异;棉株对磷素的吸收情况在不同土壤中也存在显著差异;棉株和土壤速效磷中32P放射性活度占总标记量的比例在各处理间存在显著差异。从运移距离、棉株生长等方面看,滴灌专用肥并不适合在红壤中施用,在新疆两种石灰性土壤中的施用也有差异,灰漠土中植物吸收的32 P放射性活度明显高于草甸土,而草甸土速效磷中32P放射性活度又明显高于灰漠土,两种土壤植物吸收的32 P放射性活度比例与土壤速效磷中残留的32P放射性活度比例之和相差不大。从植物对磷素的吸收而言,灰漠土中施用滴灌专用肥明显好于草甸土,这可能是由于草甸土本身的养分指标高于灰漠土,施用同样量的滴灌专用肥可能对作物的吸收以及土壤养分的转化产生影响,所以建议在新疆各类型土壤中施用滴灌专用肥前先测定土壤的基本理化指标,再根据实际情况施用各种肥料。  相似文献   

2.
滴灌施肥对棉花产量性状的影响   总被引:3,自引:0,他引:3  
以棉花为试验材料,分析了稀穴密株种植条件下,氮、磷、钾元素随滴灌水在土壤中的运移规律。结果表明,随滴灌水施肥时,磷、钾元素在土壤中的运移规律基本相似,主要富集于土壤表层,肥料利用率较低;而氮素随滴灌水在土壤中的流动性较强,能够随水运移到棉花根系集中层。所以说,随滴灌水施肥是提高氮素肥料利用率的有效途径之一,而磷素、钾素肥料则不适于随滴灌施用。  相似文献   

3.
氮磷钾在滴灌棉田土壤中的移动性研究   总被引:3,自引:1,他引:2  
在滴灌条件下,采用分层取样分析的方法研究施基肥与未施基肥情况下,氮、磷、钾在土壤剖面上的移动情况.结果表明,在试验条件下,氮在土壤中的垂直移动距离可以超过40 cm,磷的移动距离在10 cm以内,钾的移动距离在30 cm以内.受作物根系生长的影响,土壤剖面中氮的变化比较复杂,尤其是施用基肥以后,而磷、钾的移动相对比较稳定,基肥施用与否对磷钾的移动性没有太大影响.由于磷在土壤中的移动性较差,因此,建议在滴灌施肥中,应该以氮、钾为主,磷肥依然应该采用深施为好.  相似文献   

4.
酸性液体滴灌专用肥的肥效研究   总被引:1,自引:0,他引:1  
酸性液体滴灌专用肥是根据滴灌系统和滴灌棉花需肥特点而研制开发的新型复合肥。试验表明 :液体滴灌专用肥随水滴施可显著提高棉花单铃重、单株铃数和产量。随水施用液体滴灌专用肥可不同程度提高肥料利用率 ,氮肥利用率较常规施肥提高 5 .8~ 2 0 .3个百分点 ,磷肥利用率提高 3.6~ 12 .8个百分点。液体滴灌专用肥全部追施与基肥 +尿素追施相比 ,增产籽棉 35kg/ 6 6 7m2 ,增产率 13.31% ,施肥成本减少 12 .3元 / 6 6 7m2 ,净增产值 112元 / 6 6 7m2 。  相似文献   

5.
膜下滴灌和地下滴灌棉田土壤NH4+-N空间分布特征研究   总被引:4,自引:3,他引:1  
以田间试验为基础,从时间、垂直和水平空间分布的角度对膜下滴灌、地下滴灌棉田土壤铵态氮含量进行了分析.结果表明,两种不同节水灌溉方式下,棉田土壤铵态氮含量随生育期的变化特征、垂直分布特征和水平分布特征均有异同点.0~5 cm土层铵态氮含量最高,35~55 cm含量普遍较低.水平方向土壤铵态氮随滴灌水扩散,分布在离滴灌带40 cm左右.  相似文献   

6.
<正>1膜下滴灌有利于节水由于滴水强度小于土壤的入渗速度,因此土壤不会板结形成径流,使土壤中有限的水分循环于土壤与地膜之间,减少作物的棵间蒸发。膜下滴灌的平均用水量是传统灌溉方式的12%,是喷灌的50%,是一般滴灌的70%。2膜下灌溉有利于提高肥料利用率肥料利用滴灌随水滴到作物根系土壤中,大大提高肥料利用率。并可做到适时适量,对作物生长极为有利,大大提高肥料利用率。3膜下滴灌有利于节约农药  相似文献   

7.
为研究滴灌棉田土壤速效养分的分布特征,对棉花整个生育期的土壤养分状况进行分析,揭示滴灌棉田土壤速效养分的分布特征及对产量及其构成因素的影响。结果表明:高产田、中产田、低产田3个处理土壤碱解氮的变化趋势相同,随深度增加均呈下降的趋势,40~60cm土层的碱解氮质量分数的曲线较为平缓,3个处理0~60cm垂直变异随生育期的推进呈先增大后减小的趋势,由于棉株从苗期进入蕾期对氮素的需求量较大,碱解氮质量分数会急剧降低;而进入铃期到吐絮期后,棉花对氮的需求量逐渐减少,其质量分数又有所回升。各处理土壤速效磷质量分数的时空变化趋势基本一致,均表现先上升后下降的趋势。滴灌棉田棉花的磷素需求量在出苗后1~40d逐渐减小,土壤速效磷质量分数呈上升趋势;40d后,棉花进入蕾期,棉株对磷素的吸收量增大,土壤速效磷质量分数明显降低,盛花期后开始回升,直至吐絮期开始平缓下降至稳定;各处理土壤速效钾质量分数随生育期的变化表现为较平缓的趋势。  相似文献   

8.
为探讨甘蔗地下滴灌条件下甘蔗根系和土壤碱解氮、速效磷和速效钾的空间分布规律,从垂直和水平方向上进行分层取样测定.结果表明:垂直方向上,根重和土壤碱解氮、速效磷和速效钾的含量都呈现出随土层深度的增加而下降的趋势;0~15cm土层其含量显著高于30~60 cm土层,0~30 cm土层含量也都始终保持在较高水平;水平方向上,甘蔗根系主要分布在15~30cm处,距离滴灌带0~15 cm处土壤碱解氮、速效磷和速效钾含量都较高,各速效养分含量明显降低,随后较缓增加.  相似文献   

9.
滴灌施肥条件下土壤水分和速效磷的分布规律   总被引:4,自引:0,他引:4  
将一定量的肥料KH2PO4溶于灌水,配制成速效磷(P2O5)含量为87 mg/L的溶液进行滴灌施肥试验,研究滴头流量分别为2,4,6 L/h、灌水施肥量分别为8,16,24 L时,水分和速效磷在土娄土中的运移分布规律。结果表明,灌水施肥量为8 L时,随滴头流量增大,滴头周围地表积水区半径增大,水分径向运移距离增大,纵向入渗水量减小;当滴头流量为2 L/h时,随灌水施肥量增大,水分径向和纵向运移距离均增大,径向运移距离增大幅度较纵向明显。速效磷在土壤中的迁移聚集机制为“对流主导、对流-吸附控制”型;速效磷含量随土层深度增大逐渐减小,随径向距离增大呈先逐渐减小再增大趋势,在滴头处及湿润锋附近速效磷含量相对较高;随滴头流量增大,速效磷在土壤中的纵向运移距离减小,滴头径向距离为0~30 cm时,0~2.5 cm土层速效磷含量增大,10~25 cm土层速效磷含量减小;随灌水施肥量增大,速效磷径向运移距离增加,滴头径向距离为0~30 cm、深度为0~25 cm土层速效磷含量增大。供试地区采用滴灌施肥方式补施磷肥,滴头流量以2 L/h为宜,灌水施肥量控制在8 L左右、滴头间距60 cm左右较为合理。  相似文献   

10.
滴灌春麦水肥一体化肥效试验研究   总被引:3,自引:1,他引:2  
[目的]研究春麦在滴灌条件下的水肥利用情况,为滴灌春麦科学施肥提供技术支撑.[方法]通过大田试验,采用“3414”试验方案研究随水施肥对肥料利用率及小麦经济、生物产量的影响.[结果]滴灌春麦至开花期对氮、磷、钾肥吸收量已达全生育期的78.1;、82.14;和84.9;;施用等量氮、磷、钾肥(N240P52.5K375),滴灌施肥较常规施肥氮、钾利用率分别提高了4.7;和3.2;,但磷素差异不大.单一肥料氮肥的作用最大,其次是磷肥;随施氮量的增加,小麦产量得到提高,但过多施入氮肥产量反而下降;氮肥农学效率和偏生产力则随氮肥增加呈递减趋势.[结论]春麦采用水肥滴灌模式可提高肥料利用率并增加小麦产量.  相似文献   

11.
日光温室蔬菜滴灌灌溉配套技术   总被引:2,自引:0,他引:2  
研究了滴灌灌水与现行常规技术的不适应性,提出了“栽前造墒、浇足定植水;使用完全腐熟的有机肥作基肥,忌用半熟或生粪,基肥中的化肥以钙、镁、磷、生物肥为主,易溶性化肥以随水滴灌为主;挖定植沟,深施基肥,双高垅定植,膜下灌水;室温25℃以上放风;病虫害以防为主”等与滴灌相配套的技术。  相似文献   

12.
日光大棚滴灌节水技术   总被引:1,自引:0,他引:1  
<正>滴灌是利用地面灌溉设备,通过滴头把清水一滴滴均匀地渗入作物根系的高效节水技术。日光大棚运用滴灌节水技术能够改善作物生长环境,达到节本增效的目的。  相似文献   

13.
大棚蔬菜滴灌试验与耗水量估算   总被引:3,自引:0,他引:3  
通过大棚条件下的滴灌灌水试验,对黄瓜,茄子的需水量,需水规律及其土壤水分状况对蔬菜生长和产量的影响进行了研究。结果表明:无论从产量还是植物株的生态考查结果来看。适宜土壤水环境对促进蔬菜生产发育有利,其中以土壤含水量达到85%左右时开始灌水至田持水量的产量最高,耗水量也最多。蔬菜的耗水量与水面蒸发力关系密切,苗期耗水量低于同期水面蒸发力,其它生育期高于同期水面蒸发力,在计算灌溉水量时,灌溉指标用土壤水分胁迫指标比用土壤水分亏缺量更能反映与作物缺水的关系。  相似文献   

14.
膜下滴灌是将地膜栽培技术与滴灌技术有机结合,即在滴灌带或滴灌毛管上覆盖一层地膜.具有节约用水,提高肥效,保持良好的土壤理化性状,提高棚内气温和地温,降低空气相对湿度,减少病虫害,增产增收等优点.  相似文献   

15.
和平牧场膜下滴灌技术及效果初探   总被引:1,自引:0,他引:1  
黑龙江省和平牧场地处黑龙江省西部松嫩平原大庆市境内,属北寒温带大陆性气候,冬寒夏热,春季干旱多风,常十年九旱。因此,寻求高效的农业节水灌溉模式是牧场经济发展的必由之路。2006年,在总局、分局的大力支持下,和平牧场积极探索,大胆尝试,进行了66.6hm^2的膜下滴灌试验,种植烤烟13.3hm^2、黏玉米33.3hm^2、红辣椒20hm^2。经过一年的探索实践,取得了初步成效。  相似文献   

16.
膜下滴灌棉田土壤磷钾养分空间分布特征   总被引:4,自引:0,他引:4  
通过对膜下滴灌棉田土壤速效磷钾养分时空分布研究,结果是棉花滴灌水前0~20 cm土层水平方向速效磷钾含量变化波动幅度较大,20~60 cm土层变化幅度较小。滴水后表层土壤速效磷含量变化波动逐渐变小,速效钾含量变化幅度且较大;0~60 cm土层土壤速效磷钾含量自表层垂直向下的分布特点分别是:磷素为10~20 cm>0~10 cm>20~40 cm>40~60 cm,钾素为0~10 cm>40~60 cm>10~20 cm>20~40 cm;随时间变化特点是:耕层土壤速效磷钾含量从苗期开始均上升,到盛蕾期达最大值,盛蕾期后基本呈直线缓慢递减,不同的是棉花吐絮后土壤速效钾含量回升较快。  相似文献   

17.
【目的】明确等灌溉量膜下滴灌与细流沟灌对玉米生长、产量及水分利用效率的影响。【方法】以郑单958为研究对象,于2015—2021年进行田间试验,通过管式水分仪测定窄行、根区和宽行下0—50 cm土层水分含量,研究膜下滴灌与细流沟灌对土壤水分分布状况及其对玉米株高、叶面积指数、叶绿素含量、生物量、产量、水分利用效率等的影响。【结果】膜下滴灌优先补充窄行和根区的土壤水分,而细流沟灌优先补充宽行表层的土壤水分。而玉米耗水主要集中在0—30 cm土层范围内,膜下滴灌的窄行和根区0—30 cm土层水分含量均高于细流沟灌;随着土层深度增加灌溉对土壤含水量的影响减小,40—50 cm土层水分动态受灌溉方式影响较小。膜下滴灌较细流沟灌可显著促进玉米在开花期和成熟期的生长,提高叶面积指数。开花期膜下滴灌玉米的株高和叶面积指数较细流沟灌平均增加4.3%和8.3%,成熟期平均增加4.9%和15.1%。开花期和成熟期玉米总生物量均为膜下滴灌>细流沟灌处理,开花期增加12.2%,成熟期增加11.5%。膜下滴灌处理的玉米干物质转移量、干物质转移率和干物质转移量对籽粒贡献率均显著高于细流沟灌处理,分别增加17...  相似文献   

18.
微咸水滴灌条件下氮素在红枣根区的分布特征研究   总被引:3,自引:0,他引:3  
在不同的微咸水滴灌条件下,对红枣根区氮素分布特征进行研究,结果表明:在加密监测阶段碱解氮和硝态氮的总体分布都随着土壤深度的增加而减少。这与淡水滴灌的土壤中的氮素分布具有一致性;相同时间和相同深度的土壤中,碱解氮含量随微咸水矿化度的增大而增大;硝态氮的含量先是随矿化度的增加而减少,随后又表现为随矿化度的增加而增大。常规监测时对氮素的水平分布情况分析表明,碱解氮的分布随取样距离的增加而增大,硝态氮整体上却呈现相反的规律,同时相同点位的土壤中碱解氮随微咸水的矿化度的增加而增加,硝态氮却呈现了先小后大的情况。矿化度的差异影响着氮素在土壤水平和垂直方向分布和运移,需进一步对其运移特征和作用机理进行试验和探索。  相似文献   

19.
为了优化张家口坝上地区滴灌条件下大白菜的氮磷钾施肥量与施肥比例,采用对比试验设计,以传统施肥为对照,研究了配方施肥对大白菜产量和品质以及大白菜收获后土壤氮磷钾养分含量和电导率的影响。结果表明:与传统施肥相比,采用配方施肥能够促进植物对养分的吸收利用,全株N、P2O5、K2O吸收量增幅分别为11.81%、42.67%和30.37%;明显提升大白菜品质,净菜的可溶性固形物、可溶性糖含量分别提高14.47%和38.85%,硝酸盐含量降低45.10%;增加净菜产量10 545.00 kg/hm2,增产率9.14%;大白菜收获后0~40 cm土层的土壤肥力水平高于定植前,其中,硝态氮含量降低,速效磷和速效钾含量升高。本研究条件下,春季大白菜配方施肥的N、P2O5、K2O投入量优化比例为1:0.44:0.93。  相似文献   

20.
本文利用正交试验方法,研究了滴灌灌水量和灌水周期对温室新几内亚凤仙生长的影响,初步得出了温室中新几内亚凤仙生长的最佳灌水量和灌水周期.试验表明,灌水量和灌水周期以及它们的交互作用对新几内亚凤仙生长的影响主次和程度,因新几内亚凤仙生长阶段的不同而不同,因此灌水量和灌水周期应根据生长阶段和生产实际情况的不同分别确定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号