首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
[目的]比较不同酿酒酵母菌利用荔枝渣产酒精发酵性能,筛选出适合在荔枝渣培养基中发酵的最佳菌种。[方法]研究了5株酿酒酵母菌在荔枝渣培养基中的生长情况,测定了其在荔枝渣培养基中的失重量、产酒精能力和残糖含量。[结果]在最适生长温度为36℃,pH值为3.5的条件下,安琪耐高温高活性酿酒酵母发酵产酒精能力强。[结论]安琪耐高温高活性酿酒酵母在该条件下发酵综合性能最好。  相似文献   

2.
阿维菌渣的生物改性方法及再利用研究   总被引:1,自引:1,他引:0  
刘小朋  凌爽  刘忠艳  马兰 《安徽农业科学》2010,38(30):16924-16925
[目的]研究阿维菌渣的生物改性方法及再利用。[方法]以阿维菌渣为原料,对其进行微生物发酵,以制成不同形态的阿维菌素发酵培养基中的营养成分产品,并将该产品代替常规的酵母膏或酵母粉以研究其在阿维菌素发酵中的应用。[结果]阿维菌渣经微生物发酵后,制成了液态、膏状及粉状的营养成分产品;将其替代阿维菌素发酵中的常规酵母膏或酵母粉后,液态、膏状及粉状营养成分产品比常规酵母膏或酵母粉的化学效价分别提高了3%以上、5%左右及3%左右。[结论]该研究为解决阿维菌渣的环境污染和资源浪费提供了理论依据。  相似文献   

3.
郭磊  茶滕娇  杨国娟 《安徽农业科学》2010,38(1):332-333,344
[目的]为国内青梅果果酒的生产和青梅资源的开发利用提供技术支持。[方法]以产自云南的青梅果实为原料制作发酵型青梅果酒,通过分析原汁含量、糖度、酵母接种量和pH值对青梅果酒品质的影响研究了其生产工艺。[结果]青梅皮渣的脱臭效果最好,脱臭后的青梅酒无刺激性气味、有果香而不苦。发酵阶段的最优生产工艺:原汁含量为50%,发酵初始糖度为23%,初始酸度(pH值)为3.3,酒用酵母的接种量为1.5‰。各因素对试验结果的影响:原汁含量〉初始糖度〉酵母接种量〉初始酸度。发酵原酒和浸泡原酒比例为7:3时,产品的风味特征比较理想。产品的可溶性固形物含量、pH值、酒精度、菌落总数、致病菌数等理化指标值均满足了GB/T15038-2006的要求。f结论f该研究为发酵型青梅果酒的生产奠定了理论基础。  相似文献   

4.
排泥水沉淀物与废弃果渣制备生物肥料的pH值试验   总被引:1,自引:0,他引:1  
[目的]以排泥水泥淀物和废弃果渣为原料制取生物肥料。[方法]以水厂排泥水沉淀物、废弃果渣为培养基的主要原料,接入酵素菌,通过固体发酵,使其转化为生物肥料。[结果]试验表明,pH值在整个菌种生长繁殖过程中起决定性作用,pH值在6.8以上时,菌种无法生存和繁殖。[结论]排泥水沉淀物、废弃果渣用量对培养基的pH值影响很大。  相似文献   

5.
发酵菌剂对玉米芯与菇渣混合物堆肥发酵的影响   总被引:2,自引:0,他引:2  
[目的]为研制开发适合无土育苗和栽培的优质、价廉的本土化有机基质提供技术支持.[方法]试验利用玉米芯和菇渣的混合材料,以不加微生物菌剂为对照,研究粗纤维高效降解菌剂和酵素菌对玉米芯和菇渣混合物的堆肥发酵腐熟效果,以及对发酵过程中理化性质动态变化的影响.[结果]添加2种发酵菌剂对基质发酵腐熟的时间无影响,EM酵素菌可提高发酵中后期堆体温度;发酵结束时3个处理下的基质容重、总孔隙度,通气孔隙、大小孔隙比均符合栽培基质要求,但基质容重偏轻、pH偏高和EC值高于理想值.3个处理中以粗纤维降解菌处理的基质理化性质和GI值优于对照和EM菌处理.[结论]发酵基质使用时应与其它基质复配,可形成理化性质均良好的基质;2种发酵菌剂中以粗纤维降解菌剂处理下玉米芯和菇渣混合物堆肥发酵效果优于酵素菌处理和CK.  相似文献   

6.
复合纤维素降解菌对城市落叶的降解研究   总被引:2,自引:1,他引:1  
[目的]研究了纤维素降解菌处理落叶的方法,以解决目前城市落叶难于处理的问题。[方法]以落叶为发酵过程中唯一的碳源,研究不同起始pH值对降解过程中的pH值和酶活的影响,确定发酵最佳起始pH值;比较不同培养方式对降解效果的影响;测定发酵过程中产酶、产还原糖的变化;通过干物质的变化及其分解率来确定降解效果。[结果]试验得出,发酵的最佳起始pH值为6.0。静瓶培养比摇瓶培养降解效果更明显。在发酵第5天出现最高CMC酶活,达到9.012 U;第7天滤纸酶活最高,达到14.806 U。发酵结束后,干物质的分解率最高可达到43.42%。复合菌系对发酵液的pH值有良好的调节作用。[结论]纤维素降解落叶的方法不仅能够产还原糖还能够有效减少干物质量,对实际应用有积极的意义。  相似文献   

7.
[目的]研究土霉素菌渣活性炭对亚甲基蓝的吸附.[方法]以土霉素菌渣活性炭为吸附剂,研究了pH、吸附温度及转速对土霉素菌渣活性炭吸附亚甲基蓝效果的影响,并采用准一级方程和准二级方程模型对反应动力学数据进行拟合.[结果]随着pH的增大,吸附量增大;吸附温度为35 cc时吸附量最大;转速为150 r/min时吸附量最大;准二级反应动力学模型能够较好地描述土霉素菌渣活性炭对亚甲基蓝的吸附动力学数据.[结论]该研究可为土霉素菌渣活性炭吸附亚甲基蓝废水的科学研究和合理利用提供科学依据.  相似文献   

8.
[目的]本研究是对Fomitiporia yanbeiensis S.GuoL.Zhou液体发酵培养基的营养源和培养条件进行探索。[方法]以发酵培养液中的菌球生物量、菌丝生长速度和菌球萌发活力指数为主要指标,通过单因素试验和正交试验对发酵工艺的培养的温度、pH值、碳源、氮源、接种量进行优化筛选,研究最佳的发酵培养基配方,并对发酵菌丝体和子实体的功能性成分测定对比。[结果]液体发酵培养中最佳的发酵培养条件为:温度27℃、起始pH为8.0、接种量为11%、碳源是海藻糖、氮源是豆粕粉,最佳的培养基配方为海藻糖2.0%、豆粕粉3.5%、KH_2PO_4(0.05%)、MgSO_4(0.025%),该条件下菌球生物量最高为2.36g·100mL~(-1)。发酵菌丝体的三萜类化合物、β-葡聚糖和黄酮含量均高于子实体。[结论]通过对发酵工艺的筛选优化,为该菌的人工驯化和功能性食品开发奠定了基础。  相似文献   

9.
荧光假单胞菌岩藻多糖酶的生产和酶学性质研究   总被引:1,自引:1,他引:0  
康静  张品品  冯冲  陈红歌 《安徽农业科学》2010,38(18):9400-9401
[目的]研究了荧光假单胞菌HNTO1液态发酵产岩藻多糖酶的条件,并对酶学性质进行初步探索。[方法]采用单因子试验。[结果]HNT01产酶的最适培养基组成为:海带粉2%、尿素2%、葡萄糖0.06%、磷酸氢二钾0.1%,发酵起始pH值6.0,250 ml三角瓶装液量为100 ml,30℃、160 r/min条件下培养76 h。该菌所产岩藻多糖酶最适反应温度为50℃,最适反应pH值为6.0。[结论]为进一步开发高附加值的褐藻类保健食品和医药产品提供必要的科学基础。  相似文献   

10.
张强  徐升运  任平  阮祥稳 《安徽农业科学》2012,40(28):13997-13998
[目的]提高沙棘果渣的蛋白质含量。[方法]以沙棘果渣为原料,采用酿酒酵母和产朊假丝酵母发酵生产蛋白饲料,利用正交试验确定了无机盐的用量及发酵工艺条件。[结果]当酿酒酵母:产朊假丝酵母为1∶6,添加3%硫酸铵、0.2%磷酸二氢钾及0.05%硫酸镁,原料含水率65%,接种量10%,初始pH 6.0,30℃发酵48 h,得到的产品经烘干、粉碎后测得粗蛋白含量23.5%,且具有浓烈的醇香味。[结论]该研究为沙棘果渣饲料化的高效利用提供了参考依据。  相似文献   

11.
[目的]提升豆渣的饲用价值,缓解饲料短缺矛盾.[方法]以豆渣为培养基主要原料,对面包酵母B_(188)固体发酵生产单细胞蛋白(SCP)的工艺条件进行了研究.[结果]通过对培养基组成和培养条件的优化,确定了豆渣固体发酵生产单细胞蛋白的工艺条件;其优化工艺是麸皮与豆渣的最佳配比为1∶6;尿素、硫酸铵的添加量分别是3;,0.2;;起始pH 5.0,接种量12;,培养温度30℃,培养时间48 h;在此优化条件下,SCP合成量达最大值,蛋白质含量为36.19;.[结论]该研究为豆渣的饲料化规模生产提供了一种参考方法.  相似文献   

12.
龚秋红  刘玎  谭彦琦  兰时乐 《安徽农业科学》2013,(18):7945-7949,7953
[目的]对松乳菇固态发酵棉粕脱毒的发酵条件进行优化,以期获得最佳的发酵工艺参数。[方法]采用单因素单因子法研究了碳源、氮源、无机盐含量以及温度、起始pH、料液比、接种量等因素对游离棉酚降解率的影响,在此基础上,采用响应面法评价了发酵温度、起始pH、料液比、接种量及其交互作用对游离棉酚降解率的影响,用Design-Expert 8.0.5b软件分析试验数据,建立了松乳菇固体发酵棉粕发酵条件的数学模型。[结果]研究表明,适宜的发酵培养基组成为:棉粕与麦麸的比例6∶4,(NH4)2SO40.75%,KH2PO40.15%,MgSO4·7H2O 0.05%;适宜的发酵条件为:温度28℃,初始pH 6.6,料液比1∶1.4 g/ml,接种量10%。优化后的发酵条件为:温度28℃,初始pH 6.6,固水比1∶1.38 g/ml,接种量10.38%。在此条件下,游离棉酚的降解率达到87.702 3%。[结论]研究可为棉籽饼粕的深度开发和生产棉籽蛋白提供参考依据。  相似文献   

13.
张邦建  王海峰  武建新 《安徽农业科学》2011,39(3):1525-1527,1849
[目的]以冬瓜、香菇、牛奶为主要原料,通过发酵生产一种新型复合酸乳饮料,为其推广提供参考。[方法]将冬瓜、香菇分别取汁,选取嗜热链球菌和保加利亚乳杆菌(1∶1)的混合菌种为发酵剂进行乳酸发酵生产复合酸乳饮料,通过L9(33)正交试验优化最佳发酵工艺参数。[结果]冬瓜、香菇复合酸乳饮料的最佳配比为:蔗糖用量7%,冬瓜汁与香菇提取液的质量比为2∶3,其添加量为25%,稳定剂添加量为0.2%,发酵温度为42℃,接种量为5%,发酵时间为4.5 h,产品经调酸后pH值为4.25。[结论]冬瓜、香菇复合乳酸饮料滋味独特,香气浓郁,价格低廉,具有较高的营养和保健价值。  相似文献   

14.
孔捷  赵功玲 《安徽农业科学》2009,37(7):3232-3233
[目的]寻求酶解豆渣蛋糕的最佳配方。[方法]以湿豆渣为原料,将灭菌的豆渣冷却到50℃,调pH值至5.0,加入纤维素酶,在50℃的恒温水浴中酶解,用纤维素酶解后的豆渣代替部分面粉制成一种新型蛋糕,对其进行质量评价和成分测定,通过正交试验确定其最佳配方。[结果]酶解豆渣蛋糕的最佳配方为面粉50 g,豆渣50 g,纤维素酶添加量为0.024%,酶解时间1 h,白糖75 g,鸡蛋110 g。该蛋糕不粗糙,不腻口,无豆腥味,有独特的豆香味。蛋白质含量大于11%,总膳食纤维含量大于为6%,可溶性膳食纤维的含量占总膳食纤维含量大于22%。[结论]该研究增加了豆渣的利用率,改善了蛋糕口感。  相似文献   

15.
生物有机肥发酵参数优化研究   总被引:3,自引:0,他引:3  
刘秀春  王炳华 《安徽农业科学》2010,38(33):18835-18837
[目的]研究生物有机肥发酵参数的交互效应及最佳组合可优化生物有机肥生产工艺,提高肥料质量,减少生产成本。[方法]研究菌剂的投入量、C/N比、水分、pH值及其不同水平因素的正交组合对生物有机肥发酵过程中有益菌总量、水分、温度、酸碱度及速效氮含量变化的影响。[结果]菌剂加入量、堆肥中酸碱度、C/N比及水分含量4因素对堆肥的质量有一定的影响,且因素间有交互效应。4个因素对试验结果的重要程度依次为:菌剂加入量〉C/N比〉水分含量〉pH值。[结论]生物有机肥影响因素交互效应结果为以自制菌剂投入量为8 kg/t,pH值为7,C/N比为30,水分控制在50%左右的生产工艺参数为最佳组合。  相似文献   

16.
[目的]优化高产蛋白酶棒曲霉Asp-195v的发酵条件。[方法]利用正交设计方法研究培养基成分配比、含水量、初始pH值、培养时间、接种量和培养温度等发酵条件对棒曲霉Asp-195v产蛋白酶的影响。[结果]影响该菌株产酶的最主要因素是培养时间,其次是温度,其他4个因素对该菌株产酶影响较小。该菌株最适产酶条件为:培养基成分中麸皮和豆粕比例为7∶3(总量为10g),含水量为90ml(250ml三角瓶),pH值为7,培养时间为72h,接种量为1.5ml,培养温度为24℃,摇床转数为120r/min。棒曲霉Asp-195v对盐有一定耐受力,其中24%NaCl中的蛋白酶与空白样品相比仍有47.6%的活性。[结论]该菌株在豆酱生产中具有良好的应用价值。  相似文献   

17.
[目的]寻找提高红曲米色价的方法。[方法]以红曲霉为菌种,大米为原料,用固态培养的方法生产红曲米;在不同条件下进行红曲米的发酵,通过测定红曲米色素的色价得出最适的发酵工艺。[结果]提高红曲米色价的的最佳发酵条件为大米中添加10%的麸皮,米饭的含水量为40%,pH为5,接种量为6%,发酵时间为8 d,在此条件下,生产的紫红色红曲米色价较高,为370。[结论]该研究优化了红曲米发酵制备工艺,为获得更高产量的红曲色素奠定了基础。  相似文献   

18.
pH值对沼气产气量的影响   总被引:2,自引:1,他引:1  
[目的]探讨发酵条件对产沼气的影响。[方法]以新鲜猪粪为原料,采用批量进料的方法,研究了7个处理(pH值分别为5.5、6.0、6.5、7.0、7.5、8.0、8.5)对厌氧发酵产气量、产气特性的影响。[结果]不同pH处理发酵都能启动。以pH值6.5启动最快,其次是7.0,其余pH处理启动较慢。各处理的pH值上升到6.5的时间为11 d(pH值7.0)1、2 d(pH值6.5)3、0 d(pH值7.5)3、2 d(pH值6.0)。pH值7.0和pH值6.5的60 d总产气量最高,pH值6.0次之,pH值5.5最低。pH值7.0处理的CH4含量最高,达78.0%,与其他处理差异极显著;pH值6.5处理的CH4含量最大为62.0%;其余各处理CH4含量50.0%左右,差异不显著。[结论]发酵体系的pH值为6.5~7.0,可促进厌氧发酵的启动,提高产沼气的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号