首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为舍饲育肥牦牛高效生态生产、减少有害气体和温室气体排放提供参考,采用大型呼吸测热环控舱(Chamber)模拟舍饲状态,对4头生长期育肥牦牛排放的主要温室气体甲烷(CH4)和二氧化碳(CO2)及有害气体氨气(NH3)进行动态监测.结果表明:牦牛在采食1.5~3 h后CH4排放量达最大值,维持一段时间后,排放量逐渐下降;CO2排放相对平稳;NH3排放无明显规律.CH4、CO2和NH3日平均排放量分别为22.42 g/头、1 023.10 g/头和5.84 g/头,舍内NH3浓度为157.29 mg/m3,超出牦牛耐受氨气浓度.NH3排放不影响CH4和CO2排放规律,但是影响气体总排放量.  相似文献   

2.
冬季猪舍通风管理方式影响猪舍内的环境质量以及污染物的排放,为确定改造后猪舍侧窗负压通风系统6阶段管理对冬季舍内环境质量以及氨气和温室气体排放的影响,对舍内温度、湿度和空气流速等环境指标进行了测定,采用水分平衡方程确定了不同通风阶段猪舍的通风率,利用INNOVA 1412多气体分析仪-连续采样测试技术,对冬季猪舍NH_3、N_2O、CH_4和CO_2的排放进行了测定,确定了不同通风量条件下氨气和温室气体的排放率。结果表明,冬季侧窗通风密闭式育肥猪舍平均温度为13.7℃,湿度为69.7%,舍内最大温度与湿度差值分别为3.2℃和39.6%,平均通风率为6 207 m~3·h~(-1)(单头生猪通风量:24.9 m~3·h~(-1)),舍内平均空气流速为0.28 m·s~(-1),满足了育肥猪生长的要求;冬季试验猪舍中NH_3平均浓度范围在8.42~15.63 mg·m~(-3),CO_2平均浓度范围保持在2 509~5 303 mg·m~(-3)之间,CH_4浓度变化在1.11~5.90 mg·m~(-3),可满足冬季育肥猪生长的需求;单头生猪NH_3、CO_2和CH_4的平均排放率分别为250.0 mg·h~(-1)、79.9 g·h~(-1)、57.7 mg·h~(-1),单头生猪累积日排放量分别为6.0 g·d~(-1)、1.92 kg·d~(-1)和1.39 g·d~(-1),试验期间没有监测到N_2O的排放;采用的6级通风管理模式显著影响NH_3、CO_2的平均排放率,对CH_4的排放影响不显著。  相似文献   

3.
研究不同地面形式对我国自然通风奶牛舍气体排放量的影响。选取河南省郑州市中荷奶牛培训中心2个典型的带有放牧场自然通风奶牛舍,牛舍地面分别为漏缝地板和实体地面,使用CO_2平衡法计算通风换气量,同时测试分析舍内冬季温室气体和NH_3的排放量。结果表明:1)采用改进的CO_2平衡法计算的自然通风牛舍通风量与奶牛的生产阶段有关;2)漏缝地板牛舍内CO_2、N_2O、NH_3和CH_4的质量浓度均显著高于实体地面牛舍(P0.05),2栋奶牛舍内CO_2和CH_4浓度存在一定的正相关关系(R~2=0.37~0.65);3)漏缝地板牛舍的NH_3和CH_4排放量显著高于实体地面牛舍(P0.05),其NH_3排放量分别为19.83和11.45 g/(HPU·d),CH_4排放量为117.22和32.66 g/(HPU·d)。漏缝地板牛舍的N_2O排放量和实体地面牛舍无显著差异,其排放量分别为0.12和0.11 g/(HPU·d);4)温度可以显著影响舍内NH_3排放量,舍内温度与氨气的排放量呈现正相关关系(R~2=0.76)。实体地面奶牛舍内温室气体和NH_3的浓度和排放量均低于漏缝地板奶牛舍,主要原因是实体地面的清粪次数明显高于漏缝地板。因此,漏缝地板牛舍需要增加粪坑中粪尿的清除次数,以此降低舍内有害气体的浓度和排放量。  相似文献   

4.
堆体规模对牛粪堆肥氨气和温室气体排放的影响   总被引:3,自引:0,他引:3  
【目的】分析堆体规模对牛粪堆肥过程中氨气和温室气体排放的影响,为减少温室气体排放提供参考。【方法】采用牛粪与锯末混合物进行堆肥,调节含水率约为66%,牛粪、锯末混合物的质量分别为109.24,217.52和429.53kg,每周翻堆2次。通过发酵棚+INNOVA 1412i多种气体分析仪+INNOVA 1409-24多点采样器测量系统,对3种规模堆肥过程中氨气和温室气体排放进行不间断测试,每小时测量1次进气口和排气口氨气、氧化亚氮、甲烷和二氧化碳的质量浓度,进而对堆肥过程中的温室气体排放进行分析与评价。【结果】单位质量堆肥的氨气、甲烷和氧化亚氮排放率随着堆体规模的增加而增大,CO_2排放率则随堆体规模增加而减小。NH_3-N和N_2O-N分别占堆体初始总氮的12.59%~17.44%和3.29%~4.62%,CH_4-C和CO_2-C分别占堆体初始总有机碳的0.31%~0.41%和20.70%~30.98%。各处理单位质量堆肥的总温室气体排放量(CO_2基础)为241.20~257.36g/kg。【结论】牛粪堆肥过程中,增加堆体规模能降低总温室气体排放量。  相似文献   

5.
酸化处理对猪场原水和沼液存储过程中气体排放的影响   总被引:2,自引:1,他引:1  
为探索酸化处理对猪场原水和沼液存储过程中温室气体(CH_4、N_2O、CO_2)以及NH_3排放的影响,采用浓硫酸酸化处理猪场污水,利用动态箱法在线监测存储75 d内各气体排放通量。试验分别设置一个对照组和两个酸化处理组:原水对照组p H为6.5(RCK),加酸处理后p H分别为5.1(RT1)和5.7(RT2);沼液对照组p H为7.8(BCK),加酸处理后p H分别为5.7(BT1)和6.5(BT2)。对于原水组,RCK、RT1、RT2的CH4排放通量分别为32.2、2.37、3.10 g·m~(-3)·d~(-1),N_2O排放通量分别为336.45、23.36、29.79 mg·m~(-3)·d~(-1),NH_3排放通量分别为1.01、0.82、1.63 g·m~(-3)·d~(-1),CO2排放通量分别为109.14、99.66、110.55 g·m~(-3)·d~(-1),酸化处理显著降低原水CH_4和N_2O排放量;对于沼液组,BCK、BT1、BT2的CH_4排放通量分别为0.24、0.86、0.63 g·m~(-3)·d~(-1),N_2O排放通量分别为2.54、73.43、268.66mg·m~(-3)·d~(-1),NH_3排放通量分别为8.02、1.35、1.51 g·m~(-3)·d~(-1),CO_2排放通量分别为48.9、44.3、44.0 g·m~(-3)·d~(-1),酸化沼液显著增加CH_4和N_2O排放通量,但NH3排放可显著降低81%~83%,同时酸化组内氨氮含量较对照组增加40%~54%。根据CH_4和N_2O在100年尺度上的全球增温潜势计算各组的综合温室效应,猪场原水酸化后CO_2-eq降低91%~92%,沼液酸化后温室气体增加5~11倍。结果表明:酸化处理原水能够有效降低温室气体排放,而酸化处理沼液则一定程度上增加了温室气体排放,但可有效降低NH_3排放,同时保留沼液中氮养分。  相似文献   

6.
改性膨胀蛭石覆盖对沼液贮存氨气和温室气体排放影响   总被引:1,自引:0,他引:1  
畜禽养殖污水贮存是重要的氨气(NH_3)和温室气体(GHG)排放源,本文以奶牛场沼液贮存气体排放为研究对象,探索采用不同酸性盐溶液改性膨胀蛭石后再覆盖对气体减排效果的影响。研究比较了硫酸铜改性蛭石(CuSO_4-VM)、氯化锌改性蛭石(ZnCl_2-VM)、未改性蛭石(UN-VM),以及不加覆盖(CK)4种条件下奶牛场沼液贮存32 d过程中NH_3、甲烷(CH_4)、二氧化碳(CO_2)和氧化亚氮(N_2O)排放情况,分析了不同改性处理蛭石覆盖对各气体排放的影响及其原因。研究发现,改性处理后可使蛭石覆盖对NH_3和CH_4的减排效果增强,ZnCl_2-VM、CuSO_4-VM和UN-VM对NH_3减排效果分别为90%、81%和34%;对CH_4减排效果分别为58%、21%和14%;对于CO_2的减排效果分别为-8%、2%和20%。蛭石改性后呈酸性,其覆盖后对污水的酸化是NH_3减排效果提高的关键因素;而蛭石改性后产生的对污水有机物的絮凝作用以及形成的良好覆盖是促使CH_4减排效果提高的主要原因。但是酸性的提高会降低改性蛭石覆盖对CO_2的减排效果。研究中较低的温度条件造成N_2O排放较低,不能判断改性对N_2O排放的影响。研究表明,改性膨胀蛭石覆盖可能是一种有效的污水贮存NH_3和CH_4的减排方法。  相似文献   

7.
为研究过磷酸钙不同添加量对蔬菜废弃物堆肥过程中氨气和温室气体排放的影响,以生菜的废弃菜叶和玉米秸秆为原料,以过磷酸钙肥料为添加剂,进行了27 d的曝气供氧堆肥,对堆肥过程中的氨挥发和温室气体排放(N_2O、CH_4和CO_2)进行了监测.试验共设6个处理,除CK处理(不添加过磷酸钙)外,其余处理依次根据混合物料初始总氮物质量的5%、10%、15%、20%和25%的比例添加过磷酸钙。结果表明:添加过磷酸钙对减少堆肥过程中的氨挥发和温室气体排放均有明显效果,氨挥发总量较CK减少了4.0%~16.7%,总温室气体CO_2排放当量减少了10.2%~20.8%。堆肥过程中排放的NH_3对温室效应的贡献相对较大,各处理NH_3的CO_2排放当量为59.90~81.58kg/t,占4种气体总CO_2排放当量的69%~77%。蔬菜废弃物堆肥过程中适量添加过磷酸钙是减少氨挥发和温室气体排放并提高堆肥品质的有效措施。  相似文献   

8.
【目的】研究猪粪与菌剂配施对山地红壤温室气体排放的影响,为减少温室气体排放提供理论依据。【方法】通过盆栽试验,探讨对照(CK)、复合肥(F)、猪粪(FM)、低量菌剂与猪粪配施(FMI1)、中量菌剂与猪粪配施(FMI2)和高量菌剂与猪粪配施(FMI3)6种不同处理下土壤温室气体的排放规律。【结果】(1)施用菌剂可以显著降低CO_2、CH_4和N_2O的排放通量,且高量菌剂与低中量菌剂有显著差异性;(2)高剂量菌剂与CK相比,CO_2累计排放量降低了84.33%,CH_4累计排放量降低了76.39%,N_2O累计排放量降低了86.44%;(3)施用菌剂可以显著降低综合温室效应(GWP),菌剂施用量越大,对温室效应抑制越明显;(4)施用菌剂可以显著提高土壤养分含量。【结论】在施用肥料的基础上配施菌剂,可以降低山地红壤CO_2、CH_4和N_2O排放通量与综合温室效应,且菌剂剂量越大,效果越佳。  相似文献   

9.
巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究   总被引:3,自引:1,他引:2  
为明确巢湖圩区再生稻田甲烷(CH_4)及氧化亚氮(N_2O)的排放规律,采用静态箱-气相色谱法对比观测了巢湖圩区2019—2020年再生稻田(RR)和稻麦轮作田(SW)的CH_4和N_2O排放通量,测定了土壤氧化还原电位(Eh)、土壤溶解性有机碳(DOC)、土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)。研究结果表明:SW处理在水稻返青期和分蘖期出现较大CH_4排放峰,RR处理的CH_4排放峰不仅出现在中稻季返青期和分蘖期,还出现在成熟期和再生季前期。SW处理N_2O排放峰主要出现在麦季降雨之后、稻季烤田及排水落干时,而RR处理N_2O排放峰主要出现在促苗肥施用后。与SW处理相比,RR处理的全年CH_4排放量、N_2O排放量、总温室气体排放量(TGHG)和温室气体排放强度(GHGI)分别降低了22.3%、86.5%、36.3%和15.9%(P0.05)。RR处理无小麦产量,但水稻产量增加了16.2%(P0.05)。稻季CH_4排放通量与土壤Eh呈显著负相关(P0.01),但与土壤DOC含量无显著相关性(P0.05)。RR处理的稻季N_2O排放通量与土壤NH_4~+-N浓度呈显著正相关(P0.05)。综合来看,在巢湖圩区种植再生稻不仅能提高水稻产量,还大幅减少总温室气体排放量和温室气体排放强度。  相似文献   

10.
花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响   总被引:3,自引:0,他引:3  
为研究不同花生壳生物炭添加比例对猪粪堆肥过程中温室气体和NH3排放的影响。利用强制通风静态堆肥技术,研究0(对照)、3%、6%和9%花生壳生物炭添加比例(质量比)对猪粪堆肥过程CO_2、CH_4、N_2O和NH_3排放和堆肥性质的影响。结果表明:添加生物炭能够延长堆肥高温期持续天数,使pH提高0.09~0.13个单位,EC提高11.7%~50.6%;各堆肥处理CO_2、CH_4和N_2O排放速率均随发酵时间的延长呈先升高后降低的趋势,且CO_2、CH_4和N_2O排放速率均与pH具有显著的相关性;随生物炭用量的增加,猪粪堆肥过程中CO_2排放速率表现为先升高后降低的变化趋势,其中以3%生物炭添加比例处理最高,其平均CO_2排放速率比对照增加12.9%;N_2O排放和NH_3挥发均以9%生物炭添加比例处理最低,分别比对照降低12.5%和29.9%。综上,在整个堆肥过程中,花生壳生物炭的添加降低了N_2O和CH_4的累积排放量,且随花生壳生物炭添加比例的增加,温室气体减排效应增大。  相似文献   

11.
不同耕作方式下稻田土壤CH4和CO2的排放及碳收支估算   总被引:4,自引:0,他引:4  
二氧化碳(CO_2)和甲烷(CH_4)是重要的温室气体,研究免耕稻田CO_2和CH_4排放有助于评价稻田免耕技术对全球气候变化及碳循环的影响.本文通过运用静态箱技术和田间原位碱液吸收法研究了免耕稻田土壤CO_2和CH_4的排放规律和排放量,及其稻田碳(C)的收支状况.研究表明,施肥提高了CH_4排放,而不影响CO_2的排放;免耕显著影响稻田CH_4排放,而CO_2的排放不受耕作影响.对稻田C收支及平衡的分析表明,施肥提高了稻田系统C的输入,同时,相对于翻耕处理,免耕处理表现为大气C的"汇".表明了稻田免耕能将更多的碳累积于农田土壤碳库中,有利于提高稻田生态系统在减缓气温上升过程中所发挥的作用.  相似文献   

12.
水氮耦合对设施土壤温室气体排放的影响   总被引:4,自引:2,他引:2  
为探究水氮耦合对设施土壤温室气体排放的影响,基于连续5年的设施番茄水氮调控定位试验,比较分析了水氮耦合对土壤N_2O、CO_2和CH_4排放通量和累积排放量的影响,并估算了温室气体的全球增温潜势(GWP)和温室气体排放强度(GHGI)的差异。田间小区试验设置不同灌水下限(W1:25 kPa、W2:35 kPa、W3:45 kPa)和施氮量(N1:75 kg N·hm~(-2)、N_2:300 kg N·hm~(-2)、N3:525kg N·hm~(-2))组合共9个处理。结果表明:设施土壤N_2O和CO_2排放通量受灌水施肥时期的影响,施肥后N_2O排放通量呈增加趋势,高灌水量(低灌水下限25 kPa)促进N_2O和CO_2排放。CH_4的排放通量表现为中等和强变异的特点。除水氮交互对CO_2累积排放总量和施氮量对CH_4累积排放总量影响不显著外,灌水下限、施氮量和水氮交互作用对N_2O、CO_2、CH_4累积排放总量、GWP、GHGI和番茄产量的影响显著或极显著。随氮肥用量的增加,N_2O累积排放总量增加。N_2O和CO_2累积排放总量与GWP之间均达到极显著正相关,且各处理N_2O对GWP平均贡献率为5.25%,CO_2为94.59%。适当减少氮肥用量和增加灌水下限能够有效地降低温室气体排放和减缓全球变暖。W2N1处理是本研究中减缓温室气体排放并提高番茄产量的最佳水氮管理措施。  相似文献   

13.
生物质炭对城市污泥堆肥温室气体排放的影响   总被引:1,自引:0,他引:1  
采用城市脱水污泥为研究对象,设置两种堆肥处理(试验组:添加水稻生物质炭;对照组:未添加生物质炭),考察污泥堆肥过程温室气体动态变化特征以及添加生物质炭的影响。结果表明:生物质炭能提高堆体温度、延长堆体高温期、加快堆体腐熟,减少堆体TC(总碳)、TOC(总有机碳)和氮素损失(特别是减少NH_4~+-N的损失),两种处理TC、TOC和TN(总氮)均呈显著性差异(P0.05)。CH_4排放主要集中在高温期和降温期,占CH_4总排放量的76.40%~82.40%,添加生物质炭会促进CH_4排放。CO_2排放主要集中在高温期和降温期,占排放总量的78.77%~78.83%,添加生物质炭能减少CO_2排放。超过84%的N_2O排放集中在腐熟期,添加生物质炭能减少堆肥过程中N_2O排放,试验组N_2O累积排放量比对照组低18.94%。添加生物质炭对污泥堆肥处理具有一定的温室气体减排作用,试验组与对照组CO_2排放当量(以干污泥计)分别为60.21 kg·t~(-1)和67.19 kg·t~(-1),添加生物质炭能减排温室气体10.39%。  相似文献   

14.
过量施用氮肥增加农田温室气体的排放,通过监测农田温室气体排放量寻求合理的氮素减排措施对农业生产有重要作用。本研究设置3个不同梯度喷涂吡啶尿素水平(N1-3)及不施氮肥(N0),在夏玉米和冬小麦生长期间采用静态箱法收集气体,研究土壤CO_2、CH_4和N_2O的排放特征,定量评价不同用量喷涂吡啶尿素的综合增温潜势。结果表明:不同喷涂吡啶尿素用量下的温室气体排放具有明显的季节性变化特征。玉米和小麦季土壤CO_2排放通量具有明显的季节性排放规律。CO_2平均排放通量小麦季明显低于玉米季,而CO_2累积排放量小麦季则高于玉米季;各施氮处理玉米和小麦季基肥和追肥后均出现显著的N_2O排放峰。整个轮作季,随喷涂吡啶尿素用量的增加,土壤对大气CH_4的交换通量有所降低,而土壤排放CO_2和N_2O的量有所增加。CO_2的综合增温潜势(GWP)对轮作系统总GWP贡献最大,而CH_4很小。玉米和小麦季各喷涂吡啶尿素处理的总GWP均高于对照;玉米季各处理的净GWP均为正值,是温室气体排放的一个源;而小麦季各处理的净GWP均为负值,是温室气体排放的一个汇。说明玉米/小麦轮作体系的综合增温潜势随施氮肥量的增加而增加,合理减施氮肥可以有效降低大气增温效应。  相似文献   

15.
为了研究添加锯末对牛粪堆积过程中气体排放的影响,试验采用静态箱技术探讨了牛粪单独贮存、牛粪和锯末质量比为2∶1和1∶1(干物质基础)对贮存过程中氨气和温室气体排放的影响.结果表明:在90d贮存期内,牛粪单独贮存、牛粪锯末质量比为2∶1和1∶1的氨气累积排放量分别为16.00,4.54和7.05mg/kg,氧化亚氮累积排放量分别为11.23,19.83和6.86mg/kg,甲烷累积排放量分别为839.87,81.24和65.69mg/kg,二氧化碳累积排放量分别为8.41,59.76和83.83g/kg.添加锯末显著降低了牛粪贮存过程中氨气和甲烷的排放量(p0.05),但同时也显著增加了二氧化碳的排放量(p0.05).牛粪锯末质量比为2∶1时,氧化亚氮排放量显著增加(p0.05),牛粪锯末质量比为1∶1时氧化亚氮排放量却显著降低(p0.05).牛粪单独贮存、牛粪锯末质量比为2∶1和1∶1时的总温室气体排放量分别为26.55,7.55和3.68g/kg(CO_2基础),与牛粪单独贮存相比,牛粪锯末质量比为2∶1和1∶1处理组的总温室气体排放量分别降低了71.57%(2∶1)和86.13%(1∶1).  相似文献   

16.
东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究   总被引:4,自引:2,他引:2  
为了评估季节性冻融交替对土壤温室气体排放的影响,采用静态暗箱-气相色谱法,监测了东北松嫩平原两种典型农田生态系统(稻田和玉米田)非生长季土壤CO_2、CH_4和N_2O通量变化。研究表明:三种温室气体排放在土壤冻结期、覆雪期、融雪期和解冻期具有明显的季节动态特征。冻结期和融雪期对温室气体排放贡献最大,这两个时期内稻田和玉米田CO_2排放量分别占非生长季总累积排放量的74.9%和68.6%,稻田CH_4排放占非生长季总排放的95.7%,尽管玉米田土壤CH_4以吸收为主,但在融雪过程中存在明显释放峰,短暂的融雪期内N_2O呈集中爆发性释放,稻田和玉米田N_2O通量峰值分别是冻结前的40倍和99倍,排放量占到总累积排放量的73.9%和80.7%,覆雪期土壤CH_4和N_2O存在弱的吸收。另外,土壤温室气体排放存在土地利用方式间的差异,表现在稻田土壤比玉米田(非生长季)具有更高的温室气体排放潜力。稻田土壤CO_2、CH_4和N_2O累积排放量均高于玉米田,表现为净排放(源),而玉米田土壤CH_4通量表现为净吸收(汇);稻田土壤CO_2和CH_4平均排放速率显著高于玉米田;除覆雪期外,其他时期内三种温室气体平均通量在两类农田之间也存在显著差异。总之,在评价季节性冻土区温室气体排放时需要重视土壤冻结和融化过程,同时需要考虑不同土地利用方式间的差异。  相似文献   

17.
【目的】探讨亚临床低血钙症奶牛饲料采食量、泌乳量、粪尿排放量及粪污所产生污染气体排放特征的关系。【方法】黑龙江某集约化奶牛养殖场选取产后7—14 d年龄、体况、胎次相近的奶牛12头,根据血钙指标分为亚临床低血钙症组和健康组奶牛各6头,每头奶牛分别单独饲养,连续饲养4 d。每天采血检测血液中Ca、BHBA、NEFA、CLU、P、Mg指标含量;记录每头牛每天泌乳量、采食量、粪、尿排放量;通过简易动态箱法对试验奶牛粪尿进行混合,检测混合物产生的NH_3、CO_2、CH_4气体排放量并进行分析。【结果】亚临床低血钙症组奶牛血清Ca、P、Mg浓度极显著低于健康组奶牛(P0.01),CLU显著低于健康组(P0.05),BHBA浓度显著高于健康组(P0.05),NEFA浓度极显著高于健康组奶牛(P0.01);亚临床低血钙症组奶牛产奶量和4%能量校正乳(ECM)极显著高于健康组(P0.01),排粪量显著高于健康组(P0.05);干物质消化率和尿量的差异虽然不显著但都有升高趋势。亚临床低血钙组奶牛采食1 kg干物质的产奶量极显著升高(P0.01),采食1 kg干物质的排粪量显著升高(P0.05);健康组和亚临床低血钙症组奶牛CH4的排放曲线无明显差异,两组的产气趋势基本相同,于试验的52 h左右出现峰值,之后下降;总体上看CO_2的排放没有明显变化趋势,无明显规律,健康组和亚临床低血钙症组分别在48和36 h处出现排放高峰,亚临床低血钙症组出现峰值的时间要早于健康组,之后下降随即无规律起伏。亚临床低血钙症组的CO_2累计排放量随时间的推移低于健康组;健康组奶牛NH_3排放浓度在24h处出现高峰,随后降低,45 h再次出现峰值,之后排放浓度逐渐降低。亚临床低血钙症组奶牛NH_3排放浓度在21 h处出现峰值,之后排放浓度降低,两组试验的折线趋势基本一致,都是出现峰值后浓度降低但都是有起伏的波动。亚临床低血钙症组NH_3的累计排放量低于健康组。【结论】亚临床低血钙症奶牛患病期间由于采食摄取营养物质不能满足泌乳需求而处于能量及钙负平衡状态。同时肠道消化吸收率增加,用于满足泌乳对能量的需求;在相同质量的粪尿混合物检测情况下亚临床低血钙症不会影响CH_4的排放量,但亚临床低血钙奶牛粪尿中NH3和CO_2排放量低于健康牛,然而降低的温室气体排放是否与肠道消化吸收率的增加促进了饲料能量的吸收有关利用仍需进一步研究。  相似文献   

18.
尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响   总被引:3,自引:0,他引:3  
为明确生物质炭对酸化茶园土壤改良及温室气体排放的影响,利用室内培养试验,研究了在施氮(N1)和不施氮(N0)条件下,不同小麦秸秆生物质炭添加量(B1,10 g·kg~(-1);B2,30 g·kg~(-1);B3,50 g·kg~(-1))对茶园土壤pH值、CO_2和CH_4排放的影响。结果表明,添加生物质炭显著提高了茶园土壤pH值(P0.05),生物质炭施加比例越高,土壤pH值提高幅度越大,处理组N0B1、N0B2和N0B3土壤平均pH较对照组CK(氮和生物质炭都不施)分别提高了0.18、0.53、1.06个单位,生物质炭添加量为3%(B2)时,短期内可达到提高土壤pH值、改良酸化土壤的效果;CO_2和CH_4的累积排放量随着生物质炭添加比例的升高而增大,且显著高于对照组CK(P0.05)。施加尿素短期内显著提高了土壤pH值(P0.05),并促进了CO_2的排放,但对CH_4的排放无显著影响。与单施生物质炭相比,生物质炭与尿素共施时土壤pH提高幅度更大,CO_2累积排放量提高程度也更为显著,而CH_4的排放得到抑制,但仍显著高于对照组CK(P0.05)。生物质炭的添加在提高土壤pH值的同时也会增加CO_2和CH_4的排放量,增大环境风险,但当土壤酸化程度较轻时,可适当施加低量生物质炭,在缓解土壤酸化状况的同时尽可能地减少温室气体的排放量。  相似文献   

19.
研究水稻栽培过程中的施肥对冬种紫云英生长季温室气体排放和土壤碳库的影响,对于进一步认识施肥对温室气体排放以及冬季绿肥对土壤碳库的影响具有重要的参考价值。以晚稻季不施氮前提下的冬闲为对照,以晚稻季不同施氮量下的冬种紫云英为研究对象,研究晚稻季施氮对后茬紫云英产量、温室气体排放的影响以及冬种紫云英后的土壤碳库特征。结果表明:晚稻季施氮225 kg/hm~2处理下的紫云英产量最高,达18 388.97 kg/hm~2,与其他处理间差异显著(P0.05);晚稻季施氮增加了紫云英生长季N_2O、CH_4、CO_2的排放量以及全球增温潜势(GWP);与冬闲处理相比,冬种紫云英显著提高土壤有机碳和土壤碳库管理指数;紫云英产量与N_2O、CH_4排放呈显著正相关(P0.05),与CO_2的排放量、全球增温潜势(GWP)、活性有机碳、碳库管理指数呈极显著正相关(P0.01)。晚稻季施氮会增加紫云英生长季的N_2O、CH_4、CO_2排放量,增强紫云英生长季温室气体排放潜势。因此,在不降低水稻产量的前提下,减少水稻季氮肥用量可在一定程度上降低后茬紫云英生长季温室气体排放量。  相似文献   

20.
中国畜牧业温室气体排放现状及峰值预测   总被引:4,自引:0,他引:4  
为了解近年来中国畜牧业温室气体的排放趋势,预测排放峰值,按照《省级温室气体清单编制指南(试行)》(2011)要求,根据中国2005—2015年畜禽饲养量,评估了中国2005—2015年畜牧业温室气体(GHG)的排放状况,并以欧盟、美国2013年的人均畜产品蛋白占有量为衡量指标,预估了中国畜牧业达到该水平时的年份以及该年份的温室气体排放量,作为中国畜牧业温室气体排放峰值。结果表明:2005—2015年中国畜牧业温室气体排放量的范围为4.06~4.52亿t CO_2-eq,总体呈现两次先降后升的趋势,最低点出现在2008年,最高点为2009年;2009年之后,中国畜牧业温室气体排放总量较为平稳。以2015年的数据为基础分析中国畜牧业温室气体排放的组成,肠道CH_4是主要排放源,所占比例为66.61%,粪便N_2O和CH_4排放比例分别为18.23%和15.16%;从畜禽种类来看,反刍动物(牛、羊)为主要来源,排放比例可达72.44%,猪和家禽所占的比例分别为19.22%和6.81%。因此,养牛业是中国畜牧业温室气体的主要排放源,其次为养猪业。就地域分布来看,2015年,中国畜牧业温室气体排放量居于前10位的省份呈现连片性。河南、四川、内蒙古、山东和云南居全国前列,是施行减排的重点区域;新疆和西藏地区也应作为CH_4减排的重点区域。对于中国畜牧业温室气体排放峰值而言,若要达到欧盟2013年的人均畜产品蛋白占有量水平,峰值出现在2034年,排放量为4.89亿t CO_2-eq,较2015年增长8.94%,年均增长率为2.90%;若要达到美国2013年的人均畜产品蛋白占有量水平,排放峰值则在2043年,排放量为5.10亿t CO_2-eq,较2015年增长13.53%,年均增长率为4.32%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号