首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
自动准确收集渔业捕捞数据是电子观察员系统的重要组成部分,然而,由于工作环境的复杂性和跟踪的不稳定性,金枪鱼延绳钓渔获数量自动估计在实践部署中仍存在挑战。本研究设计了一个轻量级计数网络对渔船上的实时视频数据进行自动处理,实现对金枪鱼渔获物的实时跟踪和计数。本研究选择YOLOv5s作为基准网络,首先采用通道剪枝算法对YOLOv5s的主干网络进行修剪,结果表明,剪枝后的模型检测精度mAP0.5-0.95达到68.8%,CPU下检测速度为16.5帧/秒(FPS),与原始模型相比,检测效果基本不变,模型的参数量、模型大小和计算量分别减少了67.2%、66.4%和42.5%,检测速度提高了32.5%。其次,利用ByteTrack算法实现了多目标的实时跟踪,优化了计数区域形状,解决了被跟踪金枪鱼身份(ID)跳变导致的计数偏差问题,10个视频的测试结果表明,该方法的平均计数准确率为80%,视频处理速度为50.7帧/秒,满足工业级实时检测要求。综上,该模型具有轻量化、高精度、实时性等优点,可在复杂的工作环境下完成对延绳钓捕捞结果的实时监控,为实现渔业自动化提供思路。  相似文献   

2.
针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图像样本,为了使模型具有更好的泛化能力,对已有数据进行数据增强,将样本数量扩增到了5 320张。然后构建YOLOv4-tiny轻量化模型,与经典的YOLOv4算法模型相比,其主干特征提取网络CSPDarkNet53模块替换为CSPDarkNet53_tiny,使用CPSnet进行通道的分割,实现了网络模型的压缩并提高了训练速度;添加了FPN结构,对有效特征层进行特征融合;依据模型评价指标,通过试验将YOLOv4-tiny轻量化网络与经典的YOLOv4网络、Faster-RCNN网络、YOLOv4-MobileNet系列轻量化网络、YOLOv4-GhostNet轻量化网络和SSD轻量化网络进行对比。结果表明,YOLOv4-tiny的平均准确率可以达到81.79%,检测速度可以达到90.03帧/s,模型权重大小为22.4 MB,能够比较精准地识别水稻胡麻斑病、白叶...  相似文献   

3.
针对现有番茄检测精度低、没有品质检测和部署难度高等问题,提出基于YOLOv5s改进的番茄及品质实时检测方法,并与原始YOLOv5模型及其他经典模型进行对比研究。结果表明,针对番茄大小不同的问题,采用K-Means++算法重新计算先验锚框提高模型定位精度;在YOLOv5s主干网络末端添加GAM注意力模块,提升模型检测精度并改善鲁棒性;应用加权双向特征金字塔网络(BiFPN)修改原有结构,完成更深层次的加权特征融合;颈部添加转换器(transformer),增强网络对多尺度目标的检测能力。改进后的YOLOv5s番茄识别算法检测速度达到72帧/s。在测试集中对番茄检测均值平均精度(mAP)达到93.9%,分别比SSD、Faster-RCNN、YOLOv4-Tiny、原始YOLOv5s模型提高17.2、13.1、5.5、3.3百分点。本研究提出的番茄实时检测方法,在保持检测速度的同时,可降低背景因素干扰,实现复杂场景下对番茄的精准识别,具有非常好的应用前景,为实现番茄自动采摘提供相应技术支持。  相似文献   

4.
为解决当前流行的目标检测模型对自然环境下百香果由于目标密集互相遮挡所致的检测效率低等问题,以YOLOv3网络为基础,提出了一种基于增强的YOLOv3百香果目标检测算法。首先,针对百香果目标尺寸的特点,利用以交并比为距离度量的改进K-means++算法,重新获取与目标果实相匹配的锚选框,提高对目标的框选精度以及模型的收敛速度;其次,在输出网络中将用来筛选目标预测框的Soft-NMS算法通过线性函数的形式对其高斯函数的抑制参数进行改进,以提高模型在不同密集场景下的适应性和检测能力;最后,利用增强的YOLOv3模型在经过预处理后的百香果数据集上进行多次试验对比,结果表明增强后的YOLOv3目标检测算法平均精度均值(mAP)达到94.62%,F1值达到94.34%,较原YOLOv3算法分别提升了4.58和3.68百分点,平均检测速度为25.45帧/s,基本满足了自然环境下百香果目标检测的精准性和实时性要求。  相似文献   

5.
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。  相似文献   

6.
为构建田间杂交大豆胚轴颜色检测模型,以大田场景下的大豆植株为研究对象,利用自走式大豆表型信息采集平台获取图像数据并构建杂交大豆胚轴颜色数据集,使用不同目标检测模型(SSD、Faster R-CNN、YOLOv3、YOLOv4、YOLOv5、YOLOX和YOLOv7)对杂交大豆胚轴颜色数据集进行检测,将模型分数(F1)、平均精度均值(mAP)及检测速度3个指标用于评估不同模型在杂交大豆胚轴颜色检测中的性能。在YOLOv7网络中添加CARAFE特征上采样算子、SE注意力机制模块和WIoU位置损失函数,建立杂交大豆胚轴颜色检测模型YOLOv7-CSW,并利用改进模型对杂交大豆胚轴颜色数据集进行消融试验。结果表明:1)YOLOv7模型的F1(0.92)与mAP(94.3%)均显著高于其他模型;2)YOLOv7模型的检测速度为58帧/s,低于YOLOv5和YOLOX,检测速度可以满足田间实时检测任务需求;3)YOLOv7-CSW模型比YOLOv7模型的F1和mAP分别升高0.04和2.6%;4)YOLOv7-CSW模型比YOLOv7模型检测速度升高了5帧/s,可以实现杂交大豆胚轴颜色实时检测。综...  相似文献   

7.
为了提高养殖场猪目标检测的检出率和实时性,提出一种从特征提取骨干网络和特征金字塔网络这2个方面对YOLOv3算法进行改进的猪目标检测算法(Ghost-YOLOv3-2),并与经典YOLOv3、Ghost-YOLOv3、YOLOv3-2等3种算法进行对比研究。试验结果表明,特征提取骨干网络的残差单元中引入影子块,可以在保留原有信息容量的同时减少计算量,提高网络速度;特征金字塔网络融合低层细粒度信息与高层语义信息,将输出层改为2尺度,可以进一步提高模型的表达能力与网络的实时性;改进的Ghost-YOLOv3-2算法在猪目标检测中平均精度(AP)达到88.03%,较YOLOv3算法提高5.2%;速度达到23.61 f/s,较YOLOv3算法提高34.6%,所提算法对猪检测的检出率和实时性有一定的提高。  相似文献   

8.
针对当前柑橘果实目标检测模型多数需在服务器上运行,难以直接在果园部署且识别实时性较差等问题,设计了基于边缘计算设备的便携式柑橘果实识别系统。该系统由优化的目标检测模型和嵌入式智能平台组成;通过扩展YOLOv4–Tiny目标检测算法,将所有批量归一化层合并到卷积层,加快模型前向推理速度;采用多尺度结构并使用K–means聚类方法获得柑橘数据集的先验框大小,使网络模型对柑橘果实识别具有更强的鲁棒性;使用GIOU距离度量损失函数,使网络模型更加关注柑橘图像中重叠遮挡的区域。将改进算法部署到嵌入式平台Jetson nano,试验结果表明,识别系统对柑橘果实的识别平均准确率达93.01%,单幅图片的推断时间约为150 ms,对视频的识别速率为16帧/s。  相似文献   

9.
针对现有生猪检测跟踪算法参数量多、网络相对复杂、计算量大,不利于部署在嵌入式边缘节点的问题,文章提出一种改进YOLOv5s识别算法,结合DeepSort算法,适用于嵌入式边缘计算部署的群养生猪多目标识别跟踪算法。该算法在YOLOv5s主干网络中引入空洞卷积替代普通卷积,降低网络中参数量与计算量;添加CA协调注意力机制使模型锁定重点关注候选区域,提升模型精确度;对YOLOv5s算法主干网络中BN层进行不同比例剪枝操作,减少模型计算量,最后得到最优识别模型。将优化后识别模型结合DeepSort组成Tracking By Detecting算法并移植到Jetson AGX Xavier边缘计算节点中进行试验测试。结果表明,改进的YOLOv5s相较于YOLOv5s模型减少65.3%,模型识别精确度达到96.6%,跟踪消耗时间46 ms左右,跟踪帧率约21.7帧·s-1。研究改进识别跟踪算法可满足在嵌入式边缘计算节点中稳定实时运行,加速推进深度学习算法在畜牧养殖业中的实际应用,为后期生猪预警疾病及其应对措施奠定基础。  相似文献   

10.
基于YOLOv4网络的棉花顶芽精准识别方法   总被引:1,自引:0,他引:1  
为实现非接触、低成本、精准识别棉花顶芽,提出一种基于YOLOv4网络在复杂环境下对棉花顶芽进行精准识别的方法。利用K-means算法对棉花顶芽数据集进行聚类,优化先验框改善网络检测精度和速度,得到最优权值模型。对聚类前后模型以及与其他目标检测模型在棉花顶芽检测性能上进行了对比试验,并探究了顶芽在逆光和遮挡环境下,不同模型的检测性能。结果表明:该模型在测试集的平均检测精度(AP)、精确率(P)、召回率(R)、调和平均值(F1)比原模型分别提高0.36%、1.73%、0.52%、1.16%,单张图像平均检测时间缩短0.28 s;对比SSD、YOLOv3、Tiny-YOLOV4模型,该模型检测精确率和F1值最高,性能均衡;在自然场景处于逆光状态下,YOLOv4模型检测顶芽效果好于其他模型,且逆光环境对检测影响小;在遮挡条件下各个模型检测精度均有不同程度下降。  相似文献   

11.
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。  相似文献   

12.
基于深度学习的笼养蛋鸡行为实时检测方法   总被引:2,自引:2,他引:0  
针对蛋鸡养殖中,传统蛋鸡行为检测操作复杂、分类单一、实时性差的问题,提出一种基于深度学习的轻量型蛋鸡行为检测算法TD-YOLOV3。该检测算法以YOLOV3为基础网络结构,对其进行网络结构压缩,获得轻量型T-YOLOV3网络结构,用以提高系统检测速度;将第一个多尺度预测中的残差模块替换为Dense block,并在网络结构中的第Convolution 5,Convolution 7,Convolution 10,Convolution 12的卷积层之后添加NIN网络中的MLP结构,用以提高检测精度;采用基于K-means算法的聚类维度优化和训练策略优化对本研究的数据集进行训练和测试。试验结果表明,本研究提出的TD-YOLOV3检测算法的平均精准度均值89.26%,检测速度为33帧/s,参数量为55 MB;在同一硬件水平下与YOLOV3和T-YOLOV3相比,TD-YOLOV3在检测速度、精度等方面的综合性能最优,更适用于笼养蛋鸡行为的实时自动检测。  相似文献   

13.
草莓目标检测对草莓智能化监测和自动化采摘具有非常重要的意义。本文提出了一种基于YOLOv4的草莓目标检测方法。针对复杂环境下采集到的草莓数据集,首先采用LabelImg进行数据类型标注,然后采用改进的Kmeans聚类算法进行先验框尺寸的计算,最后采用分阶段训练方法对搭建的YOLOv4模型进行训练和模型评估。结果表明,该方法的测试集平均精度均值达到97.05%,单张图像检测时间平均为74 ms,能够满足草莓的高精度实时检测需求。  相似文献   

14.
基于YOLO的贻贝(Mytilus edulis)识别与检测技术,是实现贻贝分级、分苗等作业环节机械化和智能化的关键。然而,贻贝的外部特征不够清晰明确,给识别准确率的提高带来了挑战。本文提出一种基于改进YOLOv5算法的贻贝目标检测模型(CST-YOLO)。该算法融合CoordAttention注意力机制,以增强特征表达能力;采用SIoU作为边界框回归损失函数,以减少边界框回归损失,提高模型的检测速度;将Head替换为改进的解耦头TSCODE Head来提高检测准确率。并在自制的贻贝数据集上进行算法测试,实验结果显示:相比YOLOv5算法,CST-YOLO算法准确率P提高了0.428%,mAP_0.5:0.95达到92.221%,提高了1.583%。实验表明CST-YOLO算法在保证检测速度的前提下,有效地提高了贻贝目标的检测精度。本研究有助于机器视觉技术在贻贝养殖业自动化与智能化生产加工中的应用。  相似文献   

15.
目的 提高杂交稻种子活力分级检测精度和速度。方法 提出了一种基于YOLOv5改进模型(YOLOv5-I)的杂交稻芽种快速分级检测方法,该方法引入SE (Squeeze-and-excitation)注意力机制模块以提高目标通道的特征提取能力,并采用CIoU损失函数策略以提高模型的收敛速度。结果 YOLOv5-I算法能有效实现杂交稻芽种快速分级检测,检测精度和准确率高,检测速度快。在测试集上,YOLOv5-I算法目标检测的平均精度为97.52%,平均检测时间为3.745 ms,模型占用内存空间小,仅为13.7 MB;YOLOv5-I算法的检测精度和速度均优于YOLOv5s、Faster-RCNN、YOLOv4和SSD模型。结论 YOLOv5-I算法优于现有的算法,提升了检测精度和速度,能够满足杂交稻芽种分级检测的实用要求。  相似文献   

16.
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原...  相似文献   

17.
复杂环境下香蕉多目标特征快速识别研究   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】针对野外环境下断蕾机器人对多特征的变量目标快速识别难题,以及目标受到树叶、遮挡及光照影响精度的问题,提出多特征目标的快速识别方法。【方法】提出对香蕉果实、果轴和花蕾这3个目标进行多尺度特征提取及模型分类,融合聚类算法设计新的目标候选框参数,提出改进YOLOv3模型及网络结构参数的YOLO-Banana模型;为了平衡速度和准确度,用YOLO-Banana和Faster R-CNN分别对变化尺寸的香蕉多目标进行试验,研究算法对识别精度与速度的影响。【结果】YOLO-Banana和Faster R-CNN这2种算法识别香蕉、花蕾和果轴的总平均精度分别为91.03%和95.16%,平均每张图像识别所需时间分别为0.237和0.434 s。2种算法精度均高于90%,YOLO-Banana的速度相对快1.83倍,更符合实时作业的需求。【结论】野外蕉园环境下,采用YOLO-Banana模型进行香蕉多目标识别,可满足断蕾机器人视觉识别的速度及精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号