首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
根据特许公报(B2)昭62-27114的专利,用三聚氰胺甲醛尿素树脂改性酚醛树脂,利用多元统计分析的方法和科学的分析软件Mathlab,通过多元线性回归来确定各因素(三聚氰胺、尿素、甲醛、苯酚)合成三聚氰胺甲醛尿素初期缩合树脂(A)和酚醛初期缩合树脂的水平。再通过正交分析来确定最佳配方方案。最后确定此方案合成的胶粘剂压制的胶合板强度满足国家标准对一类板要求。颜色达到了脲醛胶压制胶合板的白度。热压温度为110~120℃。每毫米板厚的热压时间为20~25s。甲醛释放量满足国家标准E1级的要求。  相似文献   

2.
选用乙二醛(G)部分取代甲醛(F)与尿素(U)反应制备乙二醛-尿素-甲醛(GUF)共缩聚树脂,探究不同反应条件对所合成GUF树脂基本性能的影响规律,用动态热机械性能分析方法(DMA)对人造板的热压过程进行模拟和树脂的固化过程进行监测,并以此为依据优化GUF树脂的合成条件,用优化条件下合成的GUF树脂制备胶合板并测定其力学性能及甲醛释放量。结果表明:GUF树脂的较优合成条件为乙二醛与尿素先在pH为4.0~5.0,于70~80℃保温反应1 h,乙二醛、尿素、甲醛的物质的量比nG∶nU∶nF为0.7∶1.0∶0.7,再加入甲醛于pH为5.0~6.0保温反应2 h;在优化条件下合成的GUF树脂固化后其储存模量达到13 976 MPa,以其胶合的胶合板胶合强度能满足国标GB/T 9846.3—2004对III类胶合板干状胶合强度的要求,甲醛释释放量也能满足国标GB/T 9846.3—2004对E0级胶合板的要求,可以直接用于室内并在干燥状态下使用。  相似文献   

3.
利用淀粉和碱木素改性酚醛树脂, 讨论了各种因素对该胶黏剂所压制的胶合板的胶合强度、甲醛释放量的影响;并采用差示扫描量热(DSC)法探讨了淀粉-碱木素改性酚醛树脂的固化反应过程,运用Kissinger和Ozawa法进行了动力学研究,得到其固化反应活化能,并通过Crane法得到了反应级数。结果表明:该胶所压制的胶合板的胶合强度达到国家一类胶标准要求,甲醛释放量达到国家E1级标准要求; 当碱木素用量为质量分数18.00%、羟甲基化产物加入量为质量分数12.00%时,所压制的胶合板的胶合强度最大(其值为1.22 MPa);而当碱木素用量为质量分数18.00%,羟甲基化产物加入量为质量分数9.00%时,胶合板的甲醛释放量最小(其值为0.32 mg·L-1)。2种方法计算得到活化能的大小顺序是一致的,高质量分数羟甲基的改性酚醛树脂在固化过程中具有的活化能比低质量分数羟甲基的酚醛树脂的要高,意味着高质量分数羟甲基的改性酚醛树脂固化时需要较多热量,所以不宜添加过多羟甲基化产物。反应级数为小数(0.69~0.86),说明淀粉-碱木素改性酚醛树脂的固化反应是一个复杂反应。  相似文献   

4.
为探索尿素—双醛淀粉树脂用于胶合板制备的施胶、热压等工艺因素及其影响,扩展淀粉基胶粘剂在人造板工业的应用,促进无醛环保型室内用胶合板的研究与发展,对尿素—双醛淀粉树脂胶合机理与热压工艺进行试验研究,试验采用响应面分析法对胶合板热压工艺予以优化,选取热压温度、热压时间和施胶量3个因素进行Box-Behnken设计,利用Design-Expert 软件对胶合强度的二次多项式回归模型进行分析。结果表明:热压温度对尿素—双醛淀粉胶合板胶合强度的影响最为显著;当选用热压温度136℃、热压时间1.99 min·mm-1、施胶量416 g·m-2时,尿素—双醛淀粉胶粘剂胶合板的胶合性能最优,且最优胶合强度预测值为2.12 MPa,与理论预测值误差小,试验所得出的拟合方程与稳定性试验匹配较好。  相似文献   

5.
以竹胶合板用酚醛树脂合成工艺为基础,按不同的尿素与苯酚摩尔比.合成一系列苯酚-尿素-甲醛共聚型树脂胶粘剂(PUF),并用该系列胶粘剂难制竹帘胶合板.通过对竹帘胶合板进行性能检测和检测结果分析.表明随尿素与苯酚摩尔比的增加,竹帘胶合板的力学性能总体呈下降趋势,但对静曲强度、弹性模量和冲击强度的影响不显著,对保存强度有很大的影响,将尿素与苯酚的摩尔比控制在0.5以下时.产品可以达到国家相关标准的要求.  相似文献   

6.
在自制的酚醛树脂(PF树脂)中加入不同固化剂,考察固化剂对酚醛树脂固化时间的影响,筛选出固化速度最快的固化剂碳酸丙烯酯,同时研究了碳酸丙烯酯用量与树脂固化时间、适用期、胶合强度之间的关系,并优化出添加最佳用量的碳酸丙烯酯优化树脂的热压工艺.结果表明,当碳酸丙烯酯用量为树脂胶液量的2%时,酚醛树脂的固化时间缩短了64.4%,适用期240min.利用添加2%碳酸丙烯酯的酚醛树脂,通过不同热压工艺生产胶合板,当热压时间为1.0min·mm-1时,热压温度从105℃降到95℃;当热压温度为105℃时,热压时间从1.0min·mm-1缩短至0.7min·mm-1,两者均可减少能耗,降低生产成本.差示扫描量热法分析结果表明,添加2%碳酸丙烯酯的酚醛树脂固化起始温度为49.6℃,峰顶温度为109.2℃,固化温度较低.  相似文献   

7.
胶合板用快速固化酚醛树脂胶黏剂   总被引:1,自引:0,他引:1  
选取氢氧化钡作为催化剂合成高邻位酚醛树脂胶黏剂,原料的物质的量比为n(苯酚)∶n(甲醛)∶n(氢氧化钡)=1.00∶1.80∶0.03,反应温度为85~90℃,制得的酚醛树脂胶黏剂比普通酚醛树脂胶黏剂聚合时间缩短了30%。利用傅里叶红外光谱对酚醛树脂进行了结构表征。结果表明钡酚醛树脂的酚环之间是以亚甲基键连接,且邻位取代远高于对位取代,显示了树脂快速固化的机理。用该酚醛树脂胶黏剂热压胶合板,可以大幅减少热压时间。  相似文献   

8.
通过对快速热裂解生物油进行羟甲基化处理,用于合成生物油酚醛树脂。为优化生物油酚醛树脂的合成工艺,在单因素试验的基础上,选取羟甲基化生物油苯酚替代率、甲醛/苯酚摩尔比、氢氧化钠/苯酚摩尔比以及尿素添加量为自变量,树脂游离醛含量为响应值,对生物油酚醛树脂的合成工艺进行优化。利用Design Expert 8.0.6.1 软件得到回归方程的最佳预测模型并进行响应面分析,确定树脂的最佳合成条件为:醛酚摩尔比为1.8,生物油替代率为5%,氢氧化钠/酚摩尔比为0.15,尿素添加量为9 g,整个试验过程中,酚的加入量均为1 mol,即94 g,其他各个原料加入量均是以酚作为基准的添加量。在较优的合成条件下,生物油酚醛树脂的游离醛含量为0.744%,低于常规酚醛树脂中的游离醛含量。  相似文献   

9.
分别采用常规和高醚工艺合成脲醛(UF)树脂及三聚氰胺改性脲醛(UMF)树脂,研究了各树脂的基本性能及化学结构特征。高醚工艺采用甲醛/尿素为2.7的初摩尔比,在pH为3.0的酸性条件下进行缩聚反应,树脂中的线性及环状亚甲基醚键含量增加,固化时间较长,贮存稳定性好,游离甲醛含量较低;改性树脂中的三聚氰胺在反应初期加入,羟甲基化较充分,产物缩合增加了树脂中线性亚甲基醚键的含量,同时也导致尿素与甲醛羟甲基化程度下降,缩合生成亚甲基数量减少,因此树脂中剩余羟甲基含量增加。21%~27%尿素游离于低摩尔比常规UF树脂中未参与反应,而其在高醚UF树脂中含量更高。  相似文献   

10.
利用13C-NMR分析了在传统合成工艺(碱—酸—碱)条件下,脲醛树脂及其改性树脂在反应不同时刻的结构差异。用于13C-NMR分析的样品分别在碱性阶段保温开始时、保温结束时和总反应结束时采集。通过对化学位移的对比分析,得到以下结论,脲醛树脂和聚乙烯醇改性脲醛树脂在相同的反应时刻,存在相同的反应特征和结构特征,因此,不能证明聚乙烯醇参与了反应。三聚氰胺的改性作用在于,它不仅能与甲醛反应,而且能与尿素甲醛发生共缩聚反应;在树脂的缩聚阶段除了有亚甲基化的反应外,还存在着醚键的分解反应,少量的醚键在反应结束后仍然存在。分次加尿工艺能明显降低树脂中的游离甲醛含量,游离尿素并不存在,尿素主要以一取代脲和二取代脲的形式存在。  相似文献   

11.
采用富含氨基的大豆蛋白对酚醛树脂进行共缩聚改性,探索蛋白对酚醛树脂低温快速固化的影响。通过检测树脂的pH、固含量、凝胶时间,以及结合红外、热重、差示扫描量热分析等方法对改性的酚醛树脂的各项性能进行研究。结果表明,大豆蛋白改性酚醛树脂具有良好的理化特性和胶接性能,其中30%SPF树脂制备胶合板的胶合强度高,达到1.30 MPa;大豆蛋白与苯酚、甲醛发生了共缩聚反应,形成的大豆蛋白-苯酚-甲醛共缩聚树脂结构具有优异的热稳定性,且具有较低的固化温度。该研究解决了酚醛树脂存在的固化温度高、固化速率慢、高度依赖化石资源等缺点,为其在木材工业中广泛应用提供依据。  相似文献   

12.
羟甲基酚制备单宁基胶黏剂与性能   总被引:2,自引:0,他引:2  
以杨梅单宁为原料,以羟甲基酚作为单宁基胶黏剂键桥增长剂,分析了羟甲基酚对单宁基胶黏剂适用期及其制备的胶合板耐水性影响,并对相关制备工艺进行优化。结果表明,以羟甲基酚作为单宁基胶黏剂键桥增长剂所制备的单宁基胶黏剂耐水性略低于普通酚醛树脂,但施胶性能和适用期优于普通酚醛树脂。单宁基胶黏剂最佳制备工艺为:羟甲基加量10%,甲醛加量6%,热压温度180℃,热压时间3min。  相似文献   

13.
采用速生人工林桉树木材苯酚液化产物和甲醛进一步树脂化制备液化木基酚醛(Liquefied wood phenol formaldehyde,LWPF)树脂作为胶合板用胶粘剂,探讨了热压温度和热压时间对LWPF树脂胶合板胶合性能的影响.结果表明,热压温度和热压时间均对LWPF树脂胶合板的胶合性能有显著影响(P<0.05),热压温度160℃、热压时间5min时所得胶合板的胶合性能好,平均木破率为86.4%.  相似文献   

14.
:以三聚氰胺改性脲醛树脂(MUF)与聚乙酸乙烯酯树脂(PVAc)共混物作为成膜树脂,以磷酸脒基脲(GUP)、聚磷酸铵(APP)、三聚氰胺(MEL)和季戊四醇(PER)的组合物为膨胀阻燃体系,制备适用于木材的膨胀型水性阻燃涂料。以锥形量热仪法、傅里叶变换红外光谱法和热重分析法为评价手段,对膨胀型水性木材阻燃涂料涂覆的胶合板A、仅涂覆成膜树脂的胶合板M和素胶合板S的阻燃性能进行了对比分析。结果表明:胶合板A的热释放速率、总热释放、烟释放速率均比胶合板M、胶合板S的显著降低,但其残余物质量最高,并显著延长了点燃时间。在传统的膨胀型阻燃体系中引入GUP后,与APP在不同温度区间起到催化成炭作用,有利于提高涂料的阻燃性能。胶合板A的涂层受热辐射后炭化彻底,表明GUP-APP-MEL-PER是MUF-PVAc共混树脂的有效膨胀型阻燃体系。   相似文献   

15.
本文通过对马尾松树皮化学组成及改性马尾松树皮处理法-酚醛树脂胶制备过程各环节样品的分析,探讨了改性马尾松树皮处理液-酚醛树脂胶的成胶机理.认为是改性马尾松树皮处理液中的多酚类物质与酚醛树脂缩合交联成为线型聚合物,通过热压进一步交联固化成为不溶不熔的树脂.  相似文献   

16.
改性马尾松树皮处理液-酚醛树脂胶成胶机理研究   总被引:1,自引:0,他引:1  
本文通过对马尾松树皮化学组成及改性马尾松树皮处理法-酚醛树脂胶制备过程各环节样品的分析,探讨了改性马尾松树皮处理液-酚醛树脂胶的成胶机理.认为是改性马尾松树皮处理液中的多酚类物质与酚醛树脂缩合交联成为线型聚合物,通过热压进一步交联固化成为不溶不熔的树脂.  相似文献   

17.
以三聚氰胺改性脲醛树脂(MUF)与聚乙酸乙烯酯树脂(PVAc)共混物作为成膜树脂,以磷酸脒基脲(GUP)、聚磷酸铵(APP)、三聚氰胺(MEL)和季戊四醇(PER)的组合物为膨胀阻燃体系,制备适用于木材的膨胀型水性阻燃涂料。以锥形量热仪法、傅里叶变换红外光谱法和热重分析法为评价手段,对膨胀型水性木材阻燃涂料涂覆的胶合板A、仅涂覆成膜树脂的胶合板M和素胶合板S的阻燃性能进行了对比分析。结果表明:胶合板A的热释放速率、总热释放、烟释放速率均比胶合板M、胶合板S的显著降低,但其残余物质量最高,并显著延长了点燃时间。在传统的膨胀型阻燃体系中引入GUP后,与APP在不同温度区间起到催化成炭作用,有利于提高涂料的阻燃性能。胶合板A的涂层受热辐射后炭化彻底,表明GUP-APP-MEL-PER是MUF-PVAc共混树脂的有效膨胀型阻燃体系。  相似文献   

18.
豆胶/PF的混合应用   总被引:2,自引:0,他引:2  
研究了化学改性豆胶加入酚醛(PF)树脂交联剂后提高胶合板强度的问题。利用石灰乳、氢氧化钠、硅酸钠等化学药剂按不同配制比例对豆粉进行改性,制备豆胶;按胶合强度筛选出的最优配方,以达到Ⅲ类胶合板的强度要求。将改性豆胶与PF胶按3∶1的比例混合应用,在150℃温度、2.5MPa压力、5min热压时间条件下压制的胶合板可以达到Ⅰ类胶合板的强度要求。PF胶以适当的比例添加才能起到良好的交联作用。豆胶与PF的混合应用使胶合板的强度和耐水性得到极大改善,为开发利用低成本高性能天然胶黏剂做出了有益的探索。  相似文献   

19.
SSL-40酚醛树脂胶粘剂研究   总被引:1,自引:0,他引:1  
木素作为造纸工业的副产品是可以大量得到的廉价胶粘剂原料。本文概述了利用造纸液替代40%苯酚合成SSL-40酚醛树脂胶粘剂的机理,并压制了Ⅰ类胶合板。探讨了废液浓度、助剂加量、酚醛树脂摩尔比、缩合度、热压条件等对胶液粘度、稳定性、胶合质量的影响。结果表明,所压制的Ⅰ类胶合板质量达到标准要求,并可大幅度降低成本和挥发酚含量。  相似文献   

20.
低毒脲醛树脂的合成   总被引:8,自引:1,他引:8  
采用了不同的改性剂与不同的合成工艺 ,研制用于胶合板制造的低毒脲醛树脂胶。结果表明 :利用三聚氰胺和聚乙稀醇作为改性剂 ,结合特定的合成工艺 ,制得低毒脲醛 (UF)树脂胶 (游离甲醛含量≤ 3g·kg-1) ,三层胶合板甲醛释放量为 1 36mg·L-1。既讨论了影响树脂中游离甲醛含量的因素及制胶中出现的问题 ,又提出了解决的方法 :树脂的摩尔比控制在 1 3左右 ,聚乙烯醇和三聚氰胺的加入量分别为尿素总量的 1 6%和 2 5 % ;在加成反应阶段 ,树脂的pH值不应低于 7 0 ;在缩聚反应阶段 ,温度控制在 80~ 85℃ ,pH控制在 4 0~4 2。表 4参 7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号