首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
利用水稻品种‘Dasanbyeo'和‘TR22183'为亲本构建的重组自交系(recombinant inbred line,RIL)群体及其分子连锁图谱,分别在高氮和低氮2种水平条件下对水稻苗期最大根长、根干重、茎(叶)干重和苗高进行QTL分析。结果表明:这4个苗期形态性状与不同氮素水平存在明显互作效应。高低2种氮素水平条件下共检测到2个茎(叶)干重、1个根干重、1个苗高和3个最大根长QTL,同时检测到1个根干重、1个茎(叶)干重和2个最大根长的高低不同氮素水平差值QTL。其中,高氮素水平下仅检测到1个与茎(叶)干重有关的QTL;低氮素水平下根干重的1个QTL与最大根长的1个QTL均定位在第10染色体RM239-S10023标记区间,可能存在基因的"一因多效"或"基因紧密连锁"现象。此外,高氮素水平下茎(叶)干重QTL与高、低氮素水平茎(叶)干重差值QTL均定位在第9染色体S09075A-S09075B标记区间,低氮素水平下2个最大根长QTL与2个高低氮素水平最大根长差值QTL分别定位在第12染色体RM101-S12075和S12012-S12011标记区间,定位在这2个染色体相关区域的QTL很有可能与水稻的氮素(缺氮)响应以及吸收利用相关。  相似文献   

2.
籼稻不同定位群体的抽穗期和株高QTL比较研究   总被引:1,自引:1,他引:0  
 【目的】通过分析控制不同定位群体水稻抽穗期、株高和产量性状表现的QTL,挖掘同时控制株高与产量性状且对抽穗期影响小的QTL区间,为水稻高产育种提供参考。【方法】以杂交稻恢复系密阳46作为共同父本,分别与保持系协青早B和珍汕97B配组,构建2个籼籼交重组自交系群体,在同一地点多年种植,对不同群体抽穗期和株高相关的QTL定位结果进行比较。【结果】共定位到12个抽穗期QTL和11个株高QTL,其中2个抽穗期QTL在2个群体中都能检测到,分别位于第6染色体短臂和第7染色体长臂近着丝粒区域。通过与前期相同群体产量性状QTL定位结果比较,发现6个多效性区间,其中,1个同时控制抽穗期、株高和产量性状,3个同时控制抽穗期和产量性状,2个同时控制株高和产量性状。【结论】相对于共同的父本密阳46,水稻矮败型保持系协青早B与野败型保持系珍汕97B对抽穗期和株高的遗传控制存在较大差异,并以株高更为明显。第2染色体长臂RM6—RM240的QTL作用较稳定,对株高和产量性状作用方向一致,且对抽穗期无显著影响,对于通过“矮中求高”实现水稻高产育种具有重要的应用价值。  相似文献   

3.
水稻第6染色体短臂产量性状QTL簇的分解   总被引:1,自引:0,他引:1  
【目的】将水稻第6染色体短臂上产量性状QTL分解到更小的区间中。【方法】从珍汕97B/密阳46重组自交系群体筛选到针对第6染色体短臂RM587-RM19784区间的剩余杂合体,衍生了一个由221个株系组成的F2:3群体,种植于海南和浙江两地,考察每株穗数、每穗实粒数、每穗总粒数、千粒重、结实率和单株产量,建立SSR标记连锁图,应用Windows QTL Cartographer 2.5检测QTL。【结果】在所分析的6个性状中,除穗数外在第6染色体短臂上的目标区间均检测到QTL,分别座落于目标区域中3个以上的不同区间中,单个QTL对群体性状表型变异的贡献率为6.3%~35.2%;控制产量构成因子的QTL基本以加性作用为主,但3个单株产量QTL的显性度分别为1.65、0.84和0.42。【结论】目标区间存在3个以上的产量性状QTL,且同一区间控制不同性状的QTL、不同区间控制同一个性状的QTL在遗传作用模式、效应方向和效应大小上存在一定差异。  相似文献   

4.
【目的】本文剖析了水稻叶绿素在不同时期的表达规律。【方法】利用由2个籼稻品种岗46B和A232杂交构建的包含173个株系(F10)的重组自交系群体,其相应的包含130个SSR标记的遗传图谱,采用完备区间作图法,检测2年2个生长阶段(分蘖期和抽穗期)控制顶三叶叶绿素含量的QTL。【结果】2年共检测到30个QTL,分布在第1、2、3、4、5和7染色体上的16个标记区间上,单个QTL对表型的贡献率为5. 91%~38. 69%。位于第3染色体RM231~RM3392区间,2年中共有8次被检测到,说明该区间上的QTLs受环境影响较小,且在不同生长阶段也能稳定表达,有利于提高叶片叶绿素含量,增强光合作用。与其他研究比较发现,定位在第3染色体RM5625~RM1350区段和RM231~RM3392区段、第4染色体RM280~RM1113区段和RM5473~RM303区段和第7染色体RM21253-RM248区段的位点可以在不同群体和不同环境下稳定表达。【结论】这些QTL将为进一步了解水稻叶绿素含量的遗传机制提供理论依据,可用于水稻分子标记辅助育种。  相似文献   

5.
【目的】挖掘水稻粒型相关QTL位点可为水稻的粒型遗传机制研究和优质化分子育种提供理论基础。【方法】以广西普通野生稻高代自交系材料ZY03为父本,栽培稻品种日本晴为母本,通过常规杂交获得包含160个单株的F_2分离群体,并开展粒长、粒宽及粒长宽比等粒型性状的调查。利用分布于水稻12条染色体上的184个SSR标记对F_2群体单株进行分子检测。应用MAPMAKER EXP 3.0软件进行数据分析,构建分子标记连锁图。应用QTLmapping3.0软件,采用复合区间作图法(composite interval mapping,CIM),以LOD=2.5为阈值检测控制粒长、粒宽和粒长宽比等性状的QTL。【结果】在F_2群体中,目标性状呈现连续变异,有明显的双向超亲分离现象。共检测到与粒型相关的QTL 3个,其中1个粒长QTL位于第5染色体RM405~RM548区间内,被命名为qGL5.1,表型贡献率为10.68%,加性效应为0.02;在第1染色体RM5501~RM486区间内检测到1个控制粒宽的QTL,被命名为qGW1.1,表型贡献率为10.56%,加性效应为0.34;在第5号染色体RM405~RM548区间检测到1个控制粒长宽比的QTL,被命名为qLWR5.1,表型贡献率为14.77%,加性效应为0.12。上述所有QTL的增效等位基因均来自于亲本ZY03。其中,粒长QTL qGL5.1与粒长宽比QTL qLWR5.1位于同一标记区间内。【结论】从野栽分离群体挖掘到3个野生稻的粒型QTL位点,定位结果可用于下一步主效QTL的精细定位和分子标记辅助选择育种。  相似文献   

6.
【目的】水稻栽培区土壤的盐、碱化日趋严重,植物体内Na+、K+浓度及Na+/K+是植物耐盐、碱性重要指标。在盐、碱胁迫条件下检测水稻苗期地上部和根部的Na+、K+浓度及Na+/K+的QTL位点,为水稻的耐盐、碱性遗传机制及分子标记辅助育种提供理论依据。【方法】以优质高产水稻品种东农425与耐盐、碱水稻品种长白10为亲本构建重组自交系(RIL)为作图群体,利用102对SSR标记构建遗传连锁图谱,该图谱覆盖水稻基因组约1 915.05 c M,标记间平均距离为18.77 c M;在140 mmol·L-1 Na Cl盐胁迫和0.15%Na2CO3碱胁迫处理条件下,对水稻苗期地上部和根部的Na+、K+浓度及Na+/K+等性状进行测定,利用SPSS v19.0对各性状进行相关分析,并采用QTL Ici Mapping v3.3的完备区间作图法(ICIM)进行QTL定位。【结果】盐、碱胁迫条件下,亲本及RIL群体地上部Na+、K+浓度均高于地下部Na+、K+浓度,各性状在RIL群体中基本符合正态分布,表现出典型的数量性状遗传特征,符合QTL定位要求。相关分析结果表明,盐、碱胁迫条件下,地上部Na+与K+及根部Na+与K+均呈极显著正相关,2种胁迫条件下的各性状相关性不显著。盐、碱胁迫条件下共检测到15个与Na+、K+浓度和Na+/K+相关的QTL,2种条件下所检测到的QTL位于不同染色体区域。在盐胁迫下共检测到5个QTL,包括1个与地上部K+浓度相关QTL,位于第8染色体的RM1308—RM281区间内,贡献率为6.83%;3个与根部Na+浓度相关QTL,位于第3和第8染色体上,其中q SRNC3-1贡献率最大,为16.41%;1个与根部K+浓度相关QTL,贡献率为3.52%;未检测到与地上部Na+浓度、Na+/K+及根部Na+/K+相关的QTL。在碱胁迫下共检测到10个QTL,包括1个与地上部Na+浓度相关的QTL,位于第2染色体的RM1347—RM48区间内,贡献率为14.41%;1个与地上部K+浓度相关QTL,位于第2染色体的RM1255—RM213区间内;3个与地上部Na+/K+相关QTL,分别位于第2、7、10染色体上,其中q ASNK2贡献率最大,为7.57%;1个与根部Na+浓度相关QTL,位于第3染色体的RM293—RM232区间内,贡献率为13.71%;2个与根部K+含量相关QTL,分别位于第1染色体的RM5—RM9和第2染色体的RM12865—RM12941区间内;2个与根部Na+/K+相关QTL,分别位于在第3和第4染色体上,其中q ARNK3贡献率较大,为10.48%。通过比较图谱发现,本研究中的大部分QTL与以往不同群体中影响耐盐、碱相关性状的QTL定位在同一或相邻的染色体区域,另外在碱胁迫下所检测到的q ASKC2和q ARKC2在前人研究中未见报道,可能存在新的耐碱性位点。【结论】在盐、碱胁迫条件下,Na+、K+的吸收和运输均是平行而独立的过程,且根部对Na+和K+的吸收与向地上部运输存在不同的遗传机制;盐、碱胁迫条件下,水稻Na+、K+浓度的遗传是相互独立的。  相似文献   

7.
【目的】构建重组自交系(recombinant inbred line,RIL)群体及其遗传连锁图谱,对小麦重要农艺性状进行数量性状位点(quantitative trait locus,QTL)分析,为发现小麦新基因与分子标记辅助育种奠定基础。【方法】配制普通小麦品种(系)早穗30和偃展1号的杂交组合,通过一粒传的方法培育重组自交系群体;利用SSR(simple sequence repeat)标记、DarT(diversity arrays technology)标记、ISBP(insertion site-basedpolymorphism)标记以及抽穗期和株高的功能标记绘制其遗传连锁图谱并通过复合区间作图法(Compositeinterval mapping,CIM)对多个环境下的抽穗期、株高、千粒重、穗粒数、每穗小穗数、穗长等农艺性状进行QTL定位分析。【结果】培育出由219个F7家系组成的重组自交系群体;构建了含481个分子标记的遗传连锁图谱;检测出分布在12条染色体上的26个与重要农艺性状相关的QTL,其中9个QTL能够在至少2个环境下重复;研究还发现了3个QTL聚集的"QTL簇",其中4D染色体上的矮秆基因Rht2所在区段控制株高与千粒重,5D染色体上的Vrn-D1-WMS212区间控制抽穗期、穗粒数与每穗小穗数,7B染色体上wPt4230-wPt4814区段控制抽穗期、穗粒数、株高与穗长。【结论】构建的小麦遗传作图群体可成功地用于重要农艺性状分析;矮秆基因Rht2与春化基因Vrn-D12个发育相关基因均与多个重要农艺性状有关;在7B上可能存在与发育相关的重要新基因。  相似文献   

8.
粳稻粒形性状的数量性状基因座检测   总被引:2,自引:0,他引:2  
 【目的】通过对粳稻粒形性状的QTL检测,为粳稻粒形性状相关QTL的精细定位和分子标记辅助选择育种提供理论依据。【方法】利用大粒粳稻DL115与小粒粳稻XL005杂交获得的F2代200个个体为作图群体,在北京进行稻谷粒长、粒宽、粒厚、长宽比、千粒重等粒形性状的鉴定。采用复合区间作图法,利用SSR标记对上述粒形性状进行数量性状基因座检测。【结果】上述粒形性状在F2群体均呈正态连续分布,表现为由多基因控制的数量性状。共检测到与粒形性状相关的QTL 16个,分布于第2、3、5和12染色体上。其中qGL3a、qGW2、qGW5、qGT2、qRLW2、qRLW3、qGWT2和qGWT3对表型变异的贡献率分别为15.42%、40.89%、13.54%、33.43%、13.82%、13.61%、12.51%和10.1%,为主效QTL。其中,qGW2、qGT2、qRLW2和qGWT2均位于第2染色体上的RM12776-RM324 区间。在所检测到的16个QTL中,4个QTL的增效等位基因来源于小粒亲本XL005,而其余QTL的增效等位基因均来源于大粒亲本DL115。基因作用方式主要表现为加性或部分显性。【结论】粳稻粒形性状是由多基因控制的数量性状。第2染色体RM12776-RM324区间是分别与粒宽、粒厚、长宽比和千粒重相关的4个主效QTL的共同标记区间,与其相邻的2个标记(RM12776和RM324)应在分子标记辅助选择育种中探讨其利用价值。大粒亲本对稻谷粒长、粒宽、粒厚和千粒重等性状的增效作用显著。  相似文献   

9.
【目的】利用野栽杂交分离群体定位水稻结实率,为能更好地挖掘和利用野生稻中控制穗结实率基因的QTL位点提供参考。【方法】分别以广西普通野生稻资源Y03为父本和栽培稻品种日本晴为母本,经过杂交构建包含142个单株的F2定位群体,然后利用覆盖水稻基因组的184对SSR分子标记,采用复合区间作图法(CIM),以LOD=2.5为阈值检测控制结实率的QTL。【结果】共检测到3个影响结实率的QTL。其中,2个QTL位于第1染色体,1个QTL位于4号染色体上,并分别命名为q SSR1-1,q SSR1-2和q SSR4-1。q SSR1-1位于第1染色体RM486~RM5501,表型贡献率为14.49%;q SSR1-2位于第1染色体RM102~RM315,表型贡献率为8.63%;q SSR4-1位于第4染色体RM252~RM119,表型贡献率为8.27%。对结果进行分析还发现,在3个QTL位点上来源于野生稻亲本Y03的等位基因均有利于提高水稻结实率。随后,根据获得的主效QTL定位信息最终开发出与水稻结实率性状紧密连锁、可用于分子育种的分子标记RM119。【结论】发掘的新QTL和性状连锁标记可为水稻产量性状QTL的发掘和分子标记辅助选择育种提供重要的基因资源和分子选择工具。  相似文献   

10.
水稻籽粒大小相关性状QTL定位   总被引:1,自引:0,他引:1  
【目的】水稻籽粒大小是影响产量和品质的数量性状,籽粒大小相关QTLs的定位是进一步克隆、功能研究以及分子育种的基础。【方法】用1个大粒水稻ZD05321和斯里兰卡的极小粒Suwandel为亲本,创建了1个246个单株的F2群体,用48个SSR标记对控制粒长、粒宽、千粒重和长宽比进行QTLs定位分析。【结果】F2群体粒长、粒宽、千粒重等性状呈现连续分布的数量性状遗传特点,多数植株的表型偏向大粒亲本。粒长、粒宽与千粒重都存在极显著的正相关;随着粒重的增加,粒长对粒重的作用逐渐变小。在第1、4、6、7、8和9号染色体上,共检测到15个与籽粒大小相关的QTL,单个性状QTL为3~5个,可分别解释1.02%~16.52%的相应性状变异。在第9染色体上检测到同时控制粒长、粒宽、千粒重和长宽比等4个性状的4个QTL,它们位于该染色体的RM3609~RM7586和RM6543~RM566区段上。【结论】大粒亲本ZD05321中可能存在控制籽粒大小的效应值较大的QTLs,第9染色体上存在同时控制多个粒形性状区域,为下一步精细定位这些新的粒形相关QTL奠定了基础。  相似文献   

11.
不同环境下水稻株高和穗长的QTL分析   总被引:4,自引:1,他引:3  
【目的】水稻株高和穗长是影响水稻产量的2个重要因素,选育长穗大粒和株高适中的品种将对水稻的增产有非常重要的意义。通过对株高和穗长进行多环境QTL分析,鉴定稳定表达的株高和穗长的主效QTL,增加对株高和穗长遗传行为的了解,为水稻株型育种提供参考。【方法】首先,以辽宁省超级粳稻品种沈农265和云南省的地方粳稻品种丽江新团黑谷杂交衍生的粳-粳交重组自交系(recombinant inbredline,RIL)群体为试验材料,采用QTL IciMapping v3.0软件基于完备复合区间作图法在多环境条件下(沈阳,2011;海南,2012年;沈阳,2013年)对株高和穗长进行QTL分析;其次,基于上面定位的结果,结合已发表的文献和水稻数据库中的相关数据,对在3种环境条件下检测到的主效QTL进行比较分析,确定其可靠性;最后,采用主效QTL-BSA法(Bulked Segregant Analysis of Major QTL)对3种环境条件下检测到的主效QTL进行分析,进一步缩小目标QTL的区间范围。【结果】在3种环境条件下,沈农265和丽江新团黑谷的株高和穗长均存在显著差异,在RIL群体中,株高和穗长存在较大幅度变异,呈现双向超亲分离,近似于正态分布,这表明株高和穗长均为多基因控制的数量性状。在3种环境下,共检测到9个与株高和穗长相关的QTL,包括5个株高QTL,分布于第6、7、9和12染色体上,LOD介于2.67-19.39,加性效应值在-17.68-2.90,单个QTL贡献率为4.25%-37.35%;4个穗长QTL,分布于第6、7和9染色体上,LOD介于3.57-23.18,加性效应值在-3.22-1.42,单个QTL贡献率为11.30%-61.62%。有5个QTL被单独检测到,仅有4个QTL能在2个或3个环境中被检测到。其中,位于第9染色体上相同区间的qPL9a和qPH9能在3种环境中被检测到,而位于第7染色体上相同区间的qPH7qPL7b分别能在2种或3种环境中被检测到,增效等位基因均来自丽江新团黑谷。同时,依据已发表的相关文献和Gramene网站对所定位的主效QTL进行整合分析,在第7染色体上的RM10-RM248区域存在一个油菜素内酯的信号转导调控因子基因OsBZR1和8个控制株高或穗长相关的QTL,在第9染色体上的RM566-RM242区域存在多个赤霉素合成或油菜素内酯合成相关基因和9个控制株高或穗长相关的QTL,进一步验证了所检测到的主效QTL的可靠性。利用主效QTL-BSA分析法将第9染色体上控制株高和穗长的QTL-qPHL9qPL9aqPH9)定位在RM1189-RM24457,物理距离522.46 kb,而将新发现的第7染色体QTL-qPHL7qPL7bqPH7)定位在RM478-RM429,物理距离为856.49 kb。【结论】3种环境中,在沈农265和丽江新团黑谷的RILs群体分别检测到5个控制株高和4个控制穗长的QTL,其中位于第9染色体上的主效QTL-qPHL9同时影响株高和穗长,在3种环境中均能被检测到,位于第7染色体上的主效QTL-qPHL7同时影响株高和穗长,该位点能在2种环境中被检测到,是一个新的多效性QTL位点。  相似文献   

12.
水稻产量性状杂种优势的QTL定位   总被引:3,自引:2,他引:1  
 【目的】利用QTL定位方法检测水稻产量性状杂种优势QTL,并解释杂种优势产生的可能分子机理。【方法】利用重组自交系与亲本协青早B构建BC1杂种群体,通过两地重复试验,以中亲优势考察6个产量性状的杂种优势表型,利用Windows QTL Cartographer 2.5的复合区间作图法检测其QTL。【结果】多数产量性状均表现出较强的杂种优势。在两地试验中,共检测到20个产量性状杂种优势QTL,分布在水稻第2、3、6、7、8、10等6条染色体上,包括3个控制单株产量杂种优势的QTL、2个控制单株穗数杂种优势的QTL、6个控制每穗总粒数杂种优势的QTL、4个控制每穗实粒数杂种优势的QTL、4个控制结实率杂种优势的QTL和1个控制千粒重杂种优势的QTL。单个QTL对群体性状表型变异的贡献率为4.90%—12.85%。【结论】检测到控制6个产量性状杂种优势的20个QTL,其中qHNP-3、qHTNSP-7、qHNFGP-7、qHSF-7、qHTGWT-3 5个QTL在两地试验中稳定表达;检测到的20个杂种优势QTL中,有13个与在RIL群体中检测到的QTL重叠,重叠率达65%,因此,认为来自纯系的产量性状加性效应对杂种优势产生具有重要贡献。  相似文献   

13.
【目的】对产量相关性状进行多年、多环境的QTL分析,寻找能够稳定遗传的产量性状主效QTL,剖析超级早籼稻中嘉早17的高产机理,为选育高产新品种提供有用信息。【方法】以日本晴×中嘉早17构建的重组自交系群体为研究材料。筛选亲本间多态性SSR标记,对群体各家系进行基因型分析,利用Mapmarker/exp 3.0构建分子遗传连锁图谱。群体于2015—2016年,两地三季种植于杭州、海南和杭州,成熟期考察有效穗数、每穗粒数、单株产量、结实率、千粒重、粒长、粒宽和粒厚等产量相关性状。运用Windows QTL Cartographer 2.5检测产量相关性状QTL,运用QTL Network 2.2检测QTL与环境互作效应。【结果】构建的连锁图谱共包含163对SSR标记,73%的标记父母本基因型比例符合1﹕1理论分离比,23%标记显著偏分离,主要偏向父本中嘉早17,图谱总图距约1 479.4 cM,标记间平均距离约为9.08 c M。3个环境下共检测到46个QTL,分布于除第11染色体外的其他染色体上,贡献率变幅为3.78%—25.45%。共有10个QTL在3个环境下能被重复检测到,分别是控制有效穗数的qEP1、qEP2、qEP4a,控制每穗粒数的qNGPE1、qNGPE7,控制结实率的q SRT7,控制千粒重的q TGW2,控制粒长的qGL3和qGL9,控制粒宽的q GW2b;其中qEP1、qEP2、qNGPE7、qTGW2和q GW2b的增效等位来自亲本日本晴;而qEP4a、qNGPE1、qSRT7、qGL3和qGL9的增效等位来自亲本中嘉早17;除此之外,所检测到的每穗粒数、结实率、粒长和单株产量QTL中大部分增效等位基因均来自中嘉早17。产量性状与环境互作分析显示,控制每穗粒数qNGPE1和qNGPE7、控制结实率的q SRT1a和q SRT7、控制单株产量的q YPP1和q YPP7等6个QTL与环境互作效应显著或极显著。此外,在第1、2、7染色体某区段多个与产量相关的QTL成簇分布。【结论】以日本晴×中嘉早17构建的重组自交系群体连锁图谱具有丰富的多态性标记,覆盖水稻基因组的93.64%,可较好地满足水稻重要农艺性状QTL定位要求。利用该套群体检测到多个产量相关性状QTL,其中,多数控制每穗粒数、结实率、粒长和单株产量的QTL的增效等位基因均来自中嘉早17。该结果与中嘉早17的每穗粒数、结实率、单株产量、千粒重和粒长等性状显著明显优于日本晴的结果一致,这些产量增效QTL可能是中嘉早17高产、稳产的遗传基础。  相似文献   

14.
水稻产量性状竞争优势QTL定位   总被引:1,自引:0,他引:1  
【目的】检测与水稻产量性状竞争优势相关的数量性状座位(QTL),探讨水稻竞争优势的遗传基础。【方法】以特青为母本、以基于IR24遗传背景的6个IRBB近等基因系为父本,配组衍生了由204个水稻恢复系株系组成的重组自交系(RIL)群体,并用各个RIL与不育系中9A杂交获得测交F1群体。两年同地种植两套群体,相邻两列并列种植相应的RIL和F1,设2次重复。成熟时每份材料每个重复混收中间4株,考查单株穗数、每穗实粒数、每穗总粒数、结实率、千粒重和单株产量,计算得出2次重复的平均值。在各个性状上,以同一年的数据为基础,将F1表现型减除对应RIL表现型,获得1套衍生数据。以(F1-RIL)数据为基础,应用QTLNetwork 2.0检测QTL;经1 000次Permutation计算,选用全基因组显著性水平P<0.05为阈值。【结果】6个产量性状在RIL和F1群体之间均呈极显著正相关,相关系数以千粒重最高,为0.903;以单株穗数和单株产量最低,分别为0.333和0.357;结实率、每穗实粒数和每穗总粒数居中,分别为0.406、0.448和0.680。结果还表明,随着RIL表型值的增加,F1杂种优势强度逐步降低、杂种劣势强度逐步升高。未检测到控制单株穗数的QTL,但在其他5个性状上共检测到16个QTL,分布于水稻第2、3、5、6、8和10染色体,其中,3个控制每穗实粒数,4个控制每穗总粒数,3个控制结实率,4个控制千粒重,2个控制单株产量,单个QTL的贡献率为1.7 %-22.1 %。控制每穗实粒数的所有3个QTL全部表现为中9A/IR24的竞争优势优于中9A/特青,而在每穗总粒数、结实率和千粒重上,分别有3、2和2个QTL表现为中9A/IR24的竞争优势优于中9A/特青,有1、1和2个QTL表现为中9A/特青的竞争优势优于中9A/IR24。在控制单株产量的2个QTL中,qGY2与控制每穗实粒数和每穗总粒数的qNGP2qNSP2位于同一区间,qGY10与控制每穗实粒数和结实率的qNGP10qSF10位于同一区间,它们均表现为中9A/IR24的竞争优势高于中9A/特青。【结论】亲本性状表现和杂种优势均对F1的产量表现具有重要作用,与竞争优势有关的QTL对杂交稻产量性状遗传控制具有重要作用。  相似文献   

15.
超级杂交稻两优培九产量杂种优势标记与QTL分析   总被引:1,自引:0,他引:1  
辛业芸  袁隆平 《中国农业科学》2014,47(14):2699-2714
【目的】对超级杂交稻两优培九影响产量及其构成因素性状的杂种优势位点进行定位,在此基础上探讨亲本培矮64S和9311的遗传差异与水稻产量性状的杂种优势间的关系,以探明水稻产量杂种优势的分子预测途径。【方法】应用经单粒传法获得后续世代的219个培矮64S×9311 F8重组自交系(RILs)株系材料与亲本培矮64S回交,并选用151个分布于水稻基因组12条染色体上的SSR多态性标记,构建回交群体RILs BCF1;构建基因组总长为1 617.7 cM、标记间平均距离10.93 cM和含151个分子标记的遗传图谱;采用分子标记技术和自由度不等的单向分组方差两组法、三组法分析,用SAS软件ANOVA分析、混合线性模型复合区间作图等方法,对回交RILs BCF1群体的产量性状及其构成因素的F1表型值进行相关分析、优势预测与QTL定位。【结果】本回交杂种群体RILs BCF1具备多种基因型,遗传变异丰富,性状平均值均显著高于亲本群体重组自交系RILs F8,共筛选到影响RILs BCF1群体产量及其构成因素性状杂种优势的阳性、增效位点74个;其中,三组法所筛选的阳性、增效位点数高于两组法,用这些阳性、增效位点所预测的遗传距离与产量F1性状值的相关性也显著提高;三组法所筛选产量性状的增效位点与两组法所筛选的增效位点完全一致;连锁紧密的位点有成簇分布的现象,每穗空粒数、每穗实粒数、结实率有6个杂种优势位点相同,并与3个产量杂种优势位点重叠,且均处在第7染色体上;通过逐步回归建立了对4个产量性状进行预测的回归方程模型;筛选到28个杂合型的特异性标记,它们与产量性状的表型值显著相关,使用特异性标记可使遗传距离与产量F1性状值的相关系数由全部标记的0.335提高到0.617;定位到3个与产量杂种优势相关的QTL和3个影响每穗实粒数杂种优势的QTL。其中,在第7染色体上影响每穗实粒数和产量杂种优势的QTL QGpp7和QHy7与影响每穗实粒数和产量杂种优势的增效位点的结果相符。【结论】通过增加筛选产量杂种优势阳性位点或增效位点数量、筛选影响杂种优势特异性分子标记的方法,可显著提高分子标记遗传距离与产量F1性状值的相关性,有效提高用分子标记遗传距离对杂种优势预测效率。定位了3个影响产量杂种优势的QTL及3个影响每穗总粒数杂种优势的QTL,分别在第2、3、7、11和12染色体上,其中,影响产量杂种优势的数量性状位点QHy7,贡献率为7.48%,可用于杂种优势的预测和杂交组合的选配。定位于第3染色体RM293-RM468的表型贡献率为14.9%的抽穗期QTL可用于早熟高产水稻的选育。  相似文献   

16.
中国不同地理来源旱稻地方品种的遗传相似性研究   总被引:1,自引:1,他引:0  
【目的】通过对中国旱稻地方品种的遗传多样性检测,分析不同地理来源旱稻地方品种的遗传相似性和遗传差异,为旱稻地方品种在水稻遗传育种中的有效利用提供理论依据。【方法】利用39对SSR引物对来自中国17个省份或地区的158份旱稻地方品种以及20份巴西旱稻种质进行SSR标记多态性、遗传相似性和聚类分析。【结果】在中国旱稻地方品种中共检测到等位基因308个,每对引物等位基因数变异在2—21个,平均等位基因数为7.8974个,其中RM72、RM241、RM232和RM412的等位基因数较多,分别为21、17、16和15个。Nei’s基因多样性指数变异在0.0435—0.8989,平均基因多样性指数为0.6153,其中RM232、RM72和RM241的基因多样性指数较高,分别为0.8989、0.8914和0.8883。籼型旱稻地方品种的平均等位基因数和平均基因多样性指数分别为6.4359和0.6227,而粳型旱稻地方品种分别为6.9744和0.5087。籼型旱稻地方品种各省份或地区间遗传一致性变异在0.4007—0.8959,平均为0.7168,而粳型旱稻地方品种各省份或地区间遗传一致性变异在0.5803—0.9581,平均为0.7643。【结论】籼型旱稻地方品种的基因多样性显著高于粳型旱稻地方品种;各省份或地区间粳型旱稻地方品种的遗传一致性高于籼型旱稻地方品种;各省份或地区粳型旱稻地方品种间遗传相似性与地理位置密切相关,而籼型旱稻地方品种间遗传相似性与地理位置未见相关。  相似文献   

17.
利用水、旱稻DH系定位产量性状的QTL及其环境互作分析   总被引:15,自引:1,他引:15  
 为研究水、旱栽培条件对水稻产量及其构成因素QTL表达的影响,以粳型陆稻IRAT109和粳型水稻越富杂交的116个株系的DH群体为材料,利用已构建的水稻分子连锁图(其中94个RFLP标记和71个SSR标记),在水田、旱田栽培条件下,定位了千粒重、结实率、有效穗数、穗粒数及单株产量等性状的QTL。结果表明,水田条件共检测到11个加性QTL和13对上位性QTL,旱田条件下检测到18个加性QTL和17对上位性QTL,其中控制千粒重的2个加性QTL和1对上位性QTL及控制有效穗数的1个加性QTL在水田、旱田条件下都检测到。 检测到11个控制产量性状QTL区域存在一因多效或紧密连锁,其中3个区域也是控制根系性状QTL的热点区。 发现8个加性QTL和8对上位性QTL对表型变异贡献率(以下简称贡献率)大于10%(其中4个加性QTL和5对上位性QTL为旱田条件下检测到),这些高贡献率QTL特别是旱田条件下的高贡献率QTL对旱稻产量性状分子育种具有一定的指导作用。  相似文献   

18.
【目的】通过比较控制株高及其构成因素的QTL与赤霉素和油菜素内酯合成及信号转导相关基因的关系,为明确株高的分子调控机制提供理论参考。【方法】利用沈农265和丽江新团黑谷杂交构建的粳-粳交重组自交系为作图群体,对水稻株高及其构成因素进行QTL定位,并与控制赤霉素和油菜素内酯合成及信号转导的相关基因进行比对分析。【结果】RILs群体的株高及各个构成因素均呈正态分布。株高与各构成因素间呈正相关。相邻的构成因素间呈极显著的正相关,而相距较远的构成因素间的相关性减弱甚至负相关,进一步分析表明,株高主要受倒1和倒4节间长度的影响。共检测到21个控制株高及其构成因素的QTL,分布在第1、2、3、5、6、7、8、9、11和12染色体上。其中位于第9染色体上的QPH9b即直立穗基因EP1(DEP1或qPE9-1)对于水稻的株高起着很重要的作用,其主要通过影响倒1和倒2节间的长度来影响株高,该基因的分子功能与之前发现的众多控制株高的基因均不同,可能是一个种新的调控株高的机制。【结论】通过比较21个QTL与赤霉素和油菜素内酯合成及其信号转导相关基因发现,该群体株高的遗传基础复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号