首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
玉米转录因子结构与功能研究进展   总被引:1,自引:0,他引:1  
转录因子在植物的生长发育及对外界环境的响应过程中发挥着重要的调控作用。目前对转录因子结构与功 能研究主要集中在模式植物拟南芥与水稻里,在玉米中的研究则较少。根据植物转录因子数据库Plant TFDB, 目前已发现的玉米转录因子包括56个家族。综述了玉米中56个转录因子家族及其各自在植物中的结 构与功能研究进展,促进玉米转录因子的相关研究。  相似文献   

2.
转录因子是杨树干旱胁迫应答分子调控网络中的重要组成部分之一,通过特异性结合干旱响应相关基因启动子区的顺式作用元件,调控下游靶基因的转录表达,从而参与杨树干旱胁迫响应过程。杨树WRKY、NAC、bZIP、MYB和AP2/ERF是干旱胁迫响应分子机制研究中最主要的五大转录因子家族,每个家族拥有超过80个成员。本文简要介绍了杨树干旱胁迫转录组学研究进展,系统总结和概括了杨树这五类转录因子的结构特征与亚家族分类、调控下游靶基因表达的方式及其在参与调控干旱信号转导网络中的作用等方面的研究进展,并对存在的问题与未来研究进行展望,旨在深入了解杨树耐旱分子机理,为培育抗旱型杨树新品种提供参考。  相似文献   

3.
植物转录因子MYB基因家族研究进展   总被引:1,自引:0,他引:1  
转录因子是响应环境胁迫,即干旱、盐分和寒冷等植物信号传导途径的主要调节剂,MYB是植物最大转录因子家族之一,MYB转录因子亚家族特定于植物界。综述提供了MYB基因家族在植物中的最新功能调控研究进展,以了解植物中MYB转录因子的调控机制,为植物分子育种研究提供新思路。  相似文献   

4.
介绍了MADS-box转录因子的命名、分布、分类及结构,概述了近年来MADS-box转录因子参与调控水稻、玉米和番茄等植物对非生物胁迫(干旱、高盐、高温、低温等)响应方面的研究进展,并对MADS-box的家族成员进行了系统进化树分析,以期为进一步鉴定MADS-box家族转录因子的生物学功能和抗性植株的培育提供参考。  相似文献   

5.
植物MADS-box转录因子参与调控非生物胁迫的研究进展   总被引:2,自引:1,他引:1  
介绍了MADS-box转录因子的命名、分布、分类及结构,概述了近年来MADS-box转录因子参与调控水稻、玉米和番茄等植物对非生物胁迫(干旱、高盐、高温、低温等)响应方面的研究进展,并对MADS-box的家族成员进行了系统进化树分析,以期为进一步鉴定MADS-box家族转录因子的生物学功能和抗性植株的培育提供参考。  相似文献   

6.
Trihelix转录因子家族基因在光响应和植物形态建成,如花、萼片、气孔、表皮毛、胚胎和种子发育等不同生长发育过程,以及在病害、盐胁迫、干旱胁迫和低温胁迫等生物胁迫和非生物胁迫响应等过程中都扮演重要角色。从结构特征、生物学功能及逆境胁迫和激素的响应等方面对Trihelix转录因子家族进行综述,以期加深研究者对Trihelix转录因子家族的理解,进而促进Trihelix转录因子家族基因功能研究的开展。  相似文献   

7.
WRKY转录因子家族是高等植物十大转录因子家族之一,在植物逆境胁迫响应中发挥了重要作用。综述了植物中WRKY转录因子在非生物胁迫下的功能,主要包括温度胁迫(高温胁迫和低温胁迫)、水分胁迫(干旱胁迫)和盐胁迫等胁迫下的研究进展。  相似文献   

8.
WRKY转录因子家族是高等植物十大转录因子家族之一,在植物逆境胁迫响应中发挥了重要作用。综述了植物中WRKY转录因子在非生物胁迫下的功能,主要包括温度胁迫(高温胁迫和低温胁迫)、水分胁迫(干旱胁迫)和盐胁迫等胁迫下的研究进展。  相似文献   

9.
玉米自交系响应高温、干旱胁迫的关键基因及通路   总被引:1,自引:0,他引:1  
以4个不同的玉米自交系为材料,对高温、干旱处理后的苗期植株进行转录组测序.玉米自交系响应高温和干旱胁迫的差异表达基因(DEGs)分别为6966和6272个,在高温和干旱胁迫下4个玉米自交系相同的DEGs分别是705和871个.同时响应高温和干旱的DEGs有100个.在耐旱、耐热性强的玉米自交系中鉴定出18个特异的DEGs,其中锌指转录因子、WRKY转录因子、GT转录因子和B2热激转录因子在胁迫响应中发挥关键的调控作用.KEGG通路分析结果表明,耐旱、耐热性强玉米自交响应高温干旱胁迫的DEGs富集在生物学过程、分子功能、代谢过程、遍在蛋白代谢和氮代谢途径5条通路.热带、亚热带玉米种质的耐旱、耐热性强于温带玉米种质,可在热带、亚热带玉米种质中有效筛选耐旱、耐热基因.  相似文献   

10.
为研究NAC转录因子在苦荞中的功能,从苦荞发育种子中克隆了一个NAC家族基因,其开放阅读框全长1 098 bp,编码365个氨基酸,将其命名为FtNAC15。基因结构分析表明:FtNAC15基因由3个外显子和2个内含子组成。氨基酸序列多重比对和进化关系分析表明:FtNAC15蛋白与水稻ONAC003、拟南芥ANAC010和ANAC073亲缘关系较近,属于NAC家族转录因子家族中同一亚组。基因上游启动子序列顺势作用元件分析表明:该基因启动子中的顺式作用元件可以分为5类,即启动子核心元件、节律和光照响应元件、转录因子结合位点、非生物胁迫响应元件和激素响应元件。表达分析表明:FtNAC15基因在种子发育的成熟期和干旱胁迫下上调表达,表明其参与调控荞麦种子发育和响应干旱胁迫。  相似文献   

11.
【目的】探究AP2/ERF转录因子在绿豆干旱胁迫响应中的应答机制。【方法】基于全基因组测序数据对绿豆VrERF家族基因的种间同源性、互作蛋白功能及顺式作用元件进行分析,通过转录组测序数据分析各VrERF基因的组织特异性表达、干旱胁迫下基因表达差异情况并用q RT-PCR进行验证。【结果】绿豆与豌豆、菜豆和大豆的ERF家族基因间不仅具有相同的进化起源,还存在明显的基因扩张现象。VrERF基因启动子区均具有多个与激素响应、胁迫响应以及生长发育相关的顺式作用元件。此外,不同的绿豆VrERF蛋白间存在广泛的互作关系,可能通过与b ZIP、RAP2.4和STZ等蛋白互作参与绿豆非生物胁迫的防御响应。基因表达分析显示,多数VrERF家族基因的表达具有较强的组织特异性,且在干旱胁迫下,VrERF7/62在绿豆VC1973A和JP226873叶片中均显著下调表达,qRTPCR检测也显示VrERF7/62的表达受干旱胁迫诱导显著下调。【结论】推测VrERF7/62可能在绿豆干旱胁迫响应过程中起负调控作用,结果也为绿豆AP2/ERF家族基因的抗逆性表达及基因功能研究奠定了基础。  相似文献   

12.
bZIP蛋白是植物转录因子中数目最多、最保守的一类转录因子,参与调控植物生长发育及逆境胁迫响应机制等诸多生命进程。本研究选取玉米bZIP基因亚家族、共计14个ZmbZIP基因为研究对象,系统地研究了ZmbZIP在应答不同逆境胁迫的表达模式。系统进化树分析结果表明,14个ZmbZIP基因可以细分为5个亚组。实时荧光定量PCR(qRT-PCR)分析结果显示,ZmbZIP基因在不同组织器官中有不同的表达模式,其表达模式多样性显示其生物学功能的分化。在人为模拟盐、干旱、低温和硝态氮/铵态氮缺乏等逆境胁迫条件下,ZmbZIP基因呈现不同的表达模式,表明ZmbZIP基因广泛地参与各类逆境胁迫响应途径,并在其中发挥着不同的作用。本研究为将来深入研究这些基因的生物学功能提供科学数据。  相似文献   

13.
[目的]干旱是影响作物生长发育及产量的重要因素。植物WRKY转录因子超家族在植物的生长发育、响应逆境胁迫过程中发挥着重要作用。因此,克隆分析玉米WRKY转录因子的序列特征和功能,为研究玉米耐逆分子育种提供重要抗逆基因资源。[方法]本研究以玉米自交系B73为材料提取玉米总RNA反转录cDNA,克隆、分离获得ZmWRKY41基因编码区全长序列。DNAMAN比对发现,ZmWRKY41蛋白具有保守结构域WRKYGQK和锌指结构域(zinc-finger motif)C2HC,属于第三类WRKY转录因子家族。利用生物信息学方法研究该基因蛋白质理化性质,并对其进行结构分析预测。利用PlantCARE在线工具预测、鉴定ZmWRKY41基因启动子区是否含有响应非生物胁迫的顺式作用元件。将ZmWRKY41基因编码区全长序列构建pGBKT7诱饵载体上,与GAL4DNA结合域融合,转化酵母菌株AH109验证ZmWRKY41转录因子转录激活活性。[结果]玉米ZmWRKY41基因编码区全长774bp,含有长度分别为221bp、126bp、427bp 3个外显子,共编码257个氨基酸序列。蛋白质高级结构预测发现,ZmWRKY41蛋白包含2个α-螺旋结构和5个β-折叠结构,不含跨膜结构和信号肽。ZmWRKY41基因启动子元件预测发现,该启动子中含有干旱胁迫(CGGTCA)、热胁迫(AAAAAATTTC)、低温胁迫(CCGAAA)等非生物逆境胁迫响应相关的顺式作用元件。酵母转录激活验证实验显示,将含有pGBKT7-ZmWRKY41融合表达载体转化酵母AH109菌株,能在单缺、三缺培养基正常生长且能使α-半乳糖苷酶底物分解显蓝色,表明ZmWRKY41基因具有转录激活活性。[结论]玉米ZmWRKY41基因是WRKY转录因子基因家族成员之一,在酵母体内具有转录激活活性,可能参与响应非生物逆境胁迫,为进一步研究该转录因子调控非生物逆境胁迫奠定基础。  相似文献   

14.
HD-Zip(同源结构域-亮氨酸拉链)蛋白是植物特有的转录因子,分为4个不同的亚家族(HD-Zip Ⅰ~Ⅳ)。HD-Zip Ⅰ转录因子在响应植物非生物胁迫中扮演重要的角色。文章结合国内外研究进展,综述了植物HD-Zip Ⅰ转录因子的结构特点,论述了HD-Zip Ⅰ亚家族响应干旱、脱落酸(ABA)、低温、盐和氧化胁迫的研究进展,为深入阐释植物HD-Zip Ⅰ亚家族调控非生物胁迫应答的分子网络机制提供参考。  相似文献   

15.
【目的】系统鉴定玉米纤维素合成酶(CesA)家族成员,明确其进化关系及基因功能。【方法】采用系统生物学方法,在全基因组水平上对玉米CesA家族成员进行鉴定,进一步结合基因结构变化对CesA家族成员的进化关系进行系统阐述;通过RNA测序和核糖体图谱,系统分析玉米CesA家族成员响应干旱胁迫的表达模式,并从基因复制角度分析该家族基因的扩增方式,同时基于构建的转录调控网络,对玉米CesA基因的功能进行初步探索。【结果】鉴定出16个玉米CesA家族成员,分为7个子家族,其中有3个是新发现的成员;CesA家族成员在玉米发育过程中对干旱胁迫的响应有明显的组织特异性和发育时期特异性,干旱胁迫对玉米种子发育过程的影响较对植株生长过程的影响大;CesA家族成员在合成纤维素过程中相互协同作用,成员间存在功能冗余。【结论】系统鉴定出了16个玉米CesA家族成员,进一步明确了其彼此之间的功能协作及其在种子发育和植株生长过程中对干旱胁迫的响应程度。  相似文献   

16.
作为植物转录因子家族最大的成员之一,WRKY蛋白在植物的生长发育、防御反应以及胁迫响应中都发挥着极为关键的作用。本研究以玉米自交系B73为材料,克隆了一个玉米WRKY转录因子ZmWRKY36,并对其进行生物信息学与功能分析。结果表明,ZmWRKY36基因的开放阅读框为1 002 bp,编码333个氨基酸。ZmWRKY36蛋白分子量为35.8 kDa,理论等电点为5.66,属于酸性蛋白;不稳定系数为67.16,为极不稳定蛋白;亲水指数为-0.526,为亲水性蛋白;具有1个WRKY结构域和1个C2HC锌指结构基序,属于WRKY转录因子Ⅲ类亚家族成员;与高粱SbWRKY64、稷PmWRKY4和狗尾草SvWRKY4有着较近的亲缘关系。进一步分析发现,ZmWRKY36蛋白定位于细胞核内,并且有着较强的转录激活活性。qRT-PCR结果显示,ZmWRKY36基因在玉米根和叶中表达量较高,具有组织特异性;并且受到干旱胁迫和盐胁迫的显著诱导,表明转录因子ZmWRKY36可能在玉米抵御外界干旱胁迫和盐胁迫的过程中发挥着重要作用。  相似文献   

17.
DREB转录因子是一类可以调控多个与干旱、高盐及低温耐性有关的功能基因表达的转录因子家族。主要介绍植物DREB转录因子基因的研究进展。  相似文献   

18.
【目的】系统鉴定玉米纤维素合成酶(CesA)家族成员,明确其进化关系及基因功能。【方法】采用系统生物学方法,在全基因组水平上对玉米CesA家族成员进行鉴定,进一步结合基因结构变化对CesA家族成员的进化关系进行系统阐述;通过RNA测序和核糖体图谱,系统分析玉米CesA家族成员响应干旱胁迫的表达模式,并从基因复制角度分析该家族基因的扩增方式,同时基于构建的转录调控网络,对玉米CesA基因的功能进行初步探索。【结果】鉴定出16个玉米CesA家族成员,分为7个子家族,其中有3个是新发现的成员;CesA家族成员在玉米发育过程中对干旱胁迫的响应有明显的组织特异性和发育时期特异性,干旱胁迫对玉米种子发育过程的影响较对植株生长过程的影响大;CesA家族成员在合成纤维素过程中相互协同作用,成员间存在功能冗余。【结论】系统鉴定出了16个玉米CesA家族成员,进一步明确了其彼此之间的功能协作及其在种子发育和植株生长过程中对干旱胁迫的响应程度。  相似文献   

19.
GRAS基因家族是植物中广泛存在的一类转录因子,在植物生长发育、生物和非生物逆境胁迫、光信号和激素信号应答等多个过程中发挥重要作用。对玉米GRAS基因家族成员的理化性质、染色体定位、系统发育、顺式作用元件等特征进行了分析。结果表明,在玉米全基因组中共鉴定出49个ZmGRAS基因,不均匀地分布于1~10号染色体上,编码蛋白质理化性质差异较大,可能在不同的微环境下发挥作用。系统进化分析将GRAS蛋白分为8个亚家族,可能在调节自身生长发育、逆境应答等过程中具有重要作用。玉米GRAS基因家族的启动子区含有激素应答、光响应、胁迫应答等多种顺式作用元件,推测其可能响应激素、胁迫等多种信号。共线性分析显示,具有共线性关系的基因可能是染色体片段复制的结果,且属于同一亚家族,具有相似的结构和功能。研究结果为进一步研究玉米GRAS基因的功能和逆境胁迫响应机制提供了依据。  相似文献   

20.
WRKY 转录因子是植物中特有的一类反式作用因子。WRKY 基因家族成员众多,是植物中最大的转录因子家族之一。目前,已在多种园艺植物中对该家族进行了全基因组鉴定。大量研究表明,WRKY 转录因子参与了植物中多种生物学过程,如营养剥夺、胚胎发生、种子发育、毛状体发育、叶片衰老及其他发育和激素调节的过程,是许多调控信号网络的重要组成部分。WRKY 转录因子还可参与植物适应各种逆境的转录调控,已被证明其在生物应激反应中发挥重要作用并参与植物的防御机制,其在植物防御病菌、病毒和虫害调控过程中的重要作用正被逐步揭示。此外,WRKY 转录因子在植物响应环境中非生物胁迫方面的作用也被不断解析,其可参与调控植物对干旱、温度、盐及渗透的响应,并在此过程中发挥正向或负向调节作用。本文基于近年来的相关研究成果,重点综述了 WRKY 转录因子在园艺植物生长发育、胁迫响应和代谢合成方面所发挥的作用和调控机理,进一步明确园艺植物 WRKY 转录因子的重要生物学功能,阐明 WRKY 转录因子介导的转录调控网络,为园艺植物优良性状相关的遗传资源挖掘和分子育种提供理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号