首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 176 毫秒
1.
交替隔沟灌溉和施氮对玉米根区水氮迁移的影响   总被引:10,自引:1,他引:9  
 【目的】研究交替隔沟灌溉条件下作物根区土壤水氮迁移和累积。【方法】利用小区试验,对供试玉米采取不同的水分和氮素处理,测定交替隔沟灌溉条件下玉米根区土壤硝态氮、铵态氮和水分的变化。【结果】施氮后沟中硝态氮含量增长很快,大多集中在地表下0~30 cm处。随着时间的推移,上层土壤水分携带氮素养分下渗,造成下层土壤硝态氮含量的上升。收获时低水高氮处理的整个剖面上硝态氮的累积量最大,是高水高氮处理的1.2倍,低水低氮处理的是高水低氮的1.27倍。施氮后表层0~30 cm土壤铵态氮含量和累积量达到高峰,30 cm以下变化不明显。收获时各处理的铵态氮在剖面上的分布和累积基本相同。高水处理的土壤水分累积量明显大于低水处理,氮素水平的高低对土壤水分的累积影响不大。【结论】施氮量和灌水量是影响土壤硝态氮、铵态氮和土壤水分分布和累积的最主要因素。高水处理造成根区硝态氮淋失,降低了氮肥的利用。施氮量与硝态氮在根区剖面上的累积呈正相关。与硝态氮含量相比,铵态氮含量较低并且变化不大。最佳的水氮耦合形式为低水高氮(施氮量240 kgN•ha-1,灌水量1485.71 m3•ha-1)。  相似文献   

2.
【目的】冬小麦-夏休闲是旱地重要的轮作模式之一,随着氮肥用量的增加,一季小麦收获后土壤中残留的硝态氮含量不断增加,夏季休闲期间集中降水的特点是否会导致硝态氮淋溶损失,这一问题值得关注。【方法】连续3年(2013—2015年)采集黄土高原南部长武和杨凌两地夏季休闲前后0—200 cm土壤剖面样品,测定土壤硝态氮含量,研究不同降水年和不同施氮量下黄土高原旱地夏季休闲期间土壤剖面硝态氮累积及淋溶特性。【结果】小麦收获后,长武0—200 cm土壤剖面硝态氮累积量在97—328 kg·hm~(-2),平均193 kg·hm~(-2);杨凌施氮量为120kg N·hm~(-2)及240 kg N·hm~(-2)时,土壤剖面硝态氮累积量分别为156 kg·hm~(-2)及366 kg·hm~(-2),增加施氮量土壤剖面累积硝态氮量显著增加。不同降水年夏季休闲前后硝态氮在土壤剖面的淋溶与降水量密切相关,长武降水量高的丰水年2013年(296 mm)休闲前位于40—60 cm深度的硝态氮累积峰在休闲后到达80 cm以下,淋溶作用明显。而降水量少的欠水年2014年(157 mm)休闲后土壤剖面未发生硝态氮的淋溶。降水量一般的平水年2015年(200mm)休闲后在0—100 cm土壤剖面会发生硝态氮向下淋溶,但是迁移深度不大。在降水量高的2013年夏季休闲后100—200 cm土壤剖面增加的硝态氮累积量是0—100 cm的2.5倍,而2014年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面。杨凌2013年试验期间降水量低(仅220 mm,属欠水年),休闲后两个施氮处理的土壤剖面硝态氮累积峰甚至出现轻微上移;同为欠水年,2015年降水量有所增加(288 mm),休闲后0—100 cm土壤剖面中发生硝态氮下移达到20—40 cm。而降水量更高的2014年(346 mm,平水年),休闲后土壤剖面中硝态氮累积峰较休闲前下移了60—80 cm。相比休闲前,降水量低的2013年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面,淋溶作用弱。而降水量高的2014年施氮处理100—200 cm土层硝态氮的累积增加量显著高于0—100 cm土层,其中施氮240 kg N·hm~(-2)处理0—100 cm土壤剖面硝态氮累积量显著下降,有大量硝态氮被淋溶到100—200 cm土层。【结论】黄土高原旱地小麦收获后0—200 cm土壤剖面硝态氮累积量高。夏季休闲期间降水量是影响黄土高原旱地土壤剖面硝态氮淋溶的关键因素,降水量高的年份土壤剖面硝态氮淋溶作用明显。夏季休闲期间长武遇上丰水年土壤中硝态氮淋溶风险大,而杨凌遇上平水年就会出现硝态氮淋溶风险。  相似文献   

3.
 【目的】研究滴灌施肥中传统施氮和减氮的处理对宁夏引黄灌区温棚两年蔬菜的产量、氮素平衡和硝态氮累积及淋洗状况的影响。【方法】试验于2004~2006年在宁夏引黄灌区日光温室条件下,以番茄-番茄-黄瓜-番茄四茬蔬菜为材料,研究滴灌施肥中的传统施氮和减氮两处理对宁夏引黄灌区温棚两年蔬菜的产量、氮素平衡和硝态氮累积及淋洗状况的影响。【结果】在前两茬传统施氮与增(减)氮两处理,对番茄的产量与吸氮量影响不大,在第三、四茬随着施氮量的下调,蔬菜果实产量、总吸氮量受到影响,第4茬番茄产量比第1茬下降了48.7~72.3 t•ha-1;不同施氮处理会造成对当季蔬菜收获后土壤表层0~30 cm NO3--N累积量高,在第4茬番茄收获后,在表层NO3--N累积量比第1茬下降了91.1%~92.2%,同时造成下茬蔬菜收获后土壤NO3--N累积量向下层运移,第2茬冬春茬番茄收获后,在60~90 cm土层NO3--N累积量比第1茬增加了105.4%~137.3%,在第3茬秋冬茬黄瓜收获后,90~120 cm土层NO3--N累积量比第1茬增加了4.8%~30.8%,而120 cm以下土层NO3--N累积变化不大;连续种植四茬蔬菜,有机肥也有向下淋失的可能。第4茬番茄收获后,在有机肥处理和有机肥后效处理中60~90 cm土层的NO3--N累积量比第2茬高22.7%;在黄瓜-番茄种植体系下,滴灌量及土壤表层水分含量对土壤溶液NO3--N含量有直接影响,表层土壤溶液中NO3--N有不断向下层淋洗的趋势,施氮量高的处理表现的更为明显;四茬蔬菜整个种植体系下氮素平衡,在氮素的总输入项中,以施氮量和灌溉水为主,总输入量随氮肥施用量的增加而增加,氮素输出项中以Nmin残留为主。【结论】在当地设施蔬菜滴灌施肥条件下,传统施氮量800 kg•ha-1过高并没有使当季蔬菜增产,造成当季蔬菜收获后土壤表层0~30 cm NO3--N累积量高,并对下茬蔬菜收获后有向下淋失的趋势影响,因此采取减量施氮是切实可行的。在有机肥和磷钾肥配施基础上,秋冬茬番茄氮肥推荐施用量在100~150 kg•ha-1、冬春茬番茄推荐施氮量在250~300 kg•ha-1、秋冬茬黄瓜氮肥推荐施用量在400~450 kg•ha-1。  相似文献   

4.
【目的】本研究通过不同种植年限大棚土壤肥力状况调研及主要养分储存形态分析,探讨不同种植年限大棚土壤的合理施肥管理措施,以期在最大限度地发挥土壤自身养分供应能力的前提下,高效合理施肥,减少不必要的肥料损失、降低环境风险。【方法】研究调查河南省新乡市牧野区朱庄屯村大棚黄瓜产区的5个典型种植黄瓜大棚,以露地农田(0年)为对照,不同种植年限大棚中0~40 cm土层(每20 cm一层)的土壤养分,并对主要的土壤养分指标,进行相关分析。【结果】①0~20 cm土层养分含量和电导率均高于20~40 cm土层。不同种植年限大棚土壤的全钾、pH显著低于农田土壤,土壤有机质含量低于农田土壤。②0~20 cm土层中铵态氮、硝态氮累积量普遍低于20~40 cm土层,微生物量氮累积量显著高于20~40 cm土层,大棚中土壤固定态铵的累积量高于农田。③在0~40 cm土层范围内,除种植年限为16年的大棚外,其他种植年限大棚中铵态氮占全氮的比例均高于农田;不同种植年限大棚硝态氮占全氮的比例则均低于农田。有机形态氮占全氮比例最高,大棚土壤均高于农田土壤。【结论】全氮、全磷、全钾、电导率、速效磷、速效钾的养分含量整体上高于农田。土壤全氮与微生物量氮、固定态铵、铵态氮及硝态氮都存在显著或极显著的正相关。以有机形态为主的其它未测组分氮占全氮比例最高。  相似文献   

5.
【目的】探明不同土壤质地无作物垄沟灌溉对水氮分布特征的影响,为指导垄沟间(套)作种植田间灌水技术和合理设计灌溉系统提供参考。【方法】采用土箱进行垄沟灌溉室内模拟试验,研究黏土、砂土和壤土无作物垄沟灌溉的土壤水分和硝态氮分布特征。【结果】不同土壤质地无作物垄沟灌溉对土壤水分和硝态氮的再分布特征的影响类似。黏土的下渗作用最明显,在垂直方向50 cm处含水量可达20.96%,其侧渗作用不明显;壤土在垂直方向50 cm处含水量为16.84%,水平方向距沟中45 cm处含水量为12.04%;砂土在垂直方向50 cm处和水平方向在距沟中50 cm处的土壤含水量均为11.55%。其中,在灌水48 h内,黏土和壤土水分未能渗透至垄中,而砂土已渗透至垄中。土壤硝态氮主要通过对流作用随土壤中水分的运移而扩散,黏土和壤土硝态氮在深层土壤中大量累积,而砂土硝态氮淋溶不明显,呈同心圆分布,且更均匀。【结论】土壤质地越重,黏粒质量分数越高,土壤水分入渗能力越小。入渗水量相同时,湿润距离随土壤黏粒含量的增加而减小,随孔隙率增大而增加。  相似文献   

6.
【目的】研究施氮对黄土高原水蚀风蚀交错区不同土层土壤矿质氮含量和累积量的影响。【方法】试验设作物和施肥2个因子,分析不同施氮水平和不同作物处理下黄土高原水蚀风蚀交错区0~100 cm土层土壤矿质氮的差异。【结果】不同施氮处理对土壤硝态氮含量及矿质氮累积量有明显影响,土壤硝态氮含量和0~100 cm土层土壤矿质氮累积量均随施氮量的增加而增加,但施氮量对土壤铵态氮的影响较小;不同施氮条件下,不同土层土壤硝态氮含量和矿质氮累积量均以0~20 cm土层最高,从总体上看,随着施氮量增加,较深土层(80~100 cm)土壤硝态氮含量和矿质氮累积量亦有所增加;不同作物间,除施90 kg/hm2磷+45 kg/hm2氮处理时,种植黑麦草作物的0~20cm土层土壤NO3--N含量有所增加外,其余施氮处理对种植两种不同作物土壤的NO3--N含量和NH4+-N含量均未产生明显影响,在相同施氮处理下,黑麦草地和苜蓿地0~100 cm土层土壤总矿质氮累积量的差异不明显。【结论】不同水平氮肥处理均对黄土高原水蚀风蚀交错区土壤矿质氮含量及累积量有一定影响,土壤矿质氮含量及累积量均与施氮量密切相关。  相似文献   

7.
北京市农田土壤硝态氮的分布与累积特征   总被引:77,自引:9,他引:77  
 采用GPS定位、深层土钻取样的方法,研究北京市254个深层土壤剖面硝态氮的空间分布特征与累积状况。0~400cm土壤剖面硝态氮累积总量保护地菜田最高,115个塑料大棚和日光温室平均达1230kg·ha-1;果园土壤仅次于保护地菜田,16个取样点平均为1148kg·ha-1;相比之下,露地菜田硝态氮累积量较低,15个点平均为697kg·ha-1;粮田最低,93个冬小麦-夏玉米轮作地块平均为459kg·ha-1,8个春玉米地块平均为420kg·ha-1,水稻田7个点平均仅为69kg·ha-1。同一利用类型、不同  相似文献   

8.
小麦氮磷肥长期配施对土壤硝态氮淋溶的影响   总被引:8,自引:1,他引:7  
 【目的】利用长期肥料定位试验,监测旱地农田土壤硝态氮的淋溶动向,研究施肥量与硝态氮累积量之间的关系,为科学施肥提供参考。【方法】在试验小区0~300 cm土壤剖面中,每20 cm深度取一个土样,1 mol?L-1 KCl浸提后以AA3连续流动分析仪测定硝态氮含量。【结果】单施氮肥土壤硝态氮累积峰出现在80~100 cm土层和300 cm以下土层,当施氮量达到180 kg?hm-2?a-1时,0~300 cm土层硝态氮累积总量相当于8年的施氮量。单施磷肥对土壤硝态氮分布无影响;氮、磷肥配施时,施氮量增加硝态氮累积量显著增加,配施磷肥后可以减少硝态氮累积量,且施氮量越大减少的越多。过量施用氮肥,即使配施磷肥,硝态氮也能发生淋溶并在100~120 cm和240~260 cm土层附近累积;二次多项式回归能够较好地反映氮、磷施用量与土壤硝态氮累积量之间的关系。【结论】长期过量施用氮肥,导致硝态氮大量淋溶并形成两个累积峰,科学合理地配施磷肥可以减少硝态氮淋失;旱地麦田长期施用最大产量施肥量,可能导致硝态氮大量累积在土壤深层。  相似文献   

9.
 【目的】本研究以甜玉米(Zea mays L.)作为填闲作物,探讨根层调控措施对填闲作物消减土壤剖面累积NO3--N的影响。【方法】通过设置休闲、传统种植、土壤调理剂和秸秆还田4个处理,进行田间小区试验。【结果】在本试验条件下,施用土壤调理剂的甜玉米总生物量最大,其吸氮量与秸秆还田处理没有差异,但均明显高于传统种植;填闲季结束后0—100 cm土层NO3--N消减量显著高于100—200 cm土层,2种根层调理处理0—100 cm土层残留NO3--N显著低于传统种植,100—200 cm三者之间未表现差异,休闲导致土壤NO3--N高量残留且下移趋势严重;秸秆还田、土壤调理剂处理的30—60 cm和60—100 cm土层根长密度和根干重显著高于传统种植,根长密度与NO-3-N消减量极显著相关;土壤调理剂和秸秆还田处理在100 cm处NO3--N淋失量分别比传统种植减少68.4%和52.6%。【结论】在硝态氮高累积的设施土壤上,填闲作物可以通过土壤调理剂和秸秆还田根层调理措施实现土体NO3--N的快速消减。  相似文献   

10.
填闲作物在日光温室黄瓜生产中的应用效果   总被引:3,自引:0,他引:3  
[目的]提高目光温室氮素利用率,减少硝态氮累积。[方法]在黄瓜收获后的夏季休闲季选择玉米、大葱作为填闲作物,以休闲处理为对照,研究玉米、大葱对日光温室后茬黄瓜产量及土壤残留硝态氮累积量的影响。[结果]在填闲作物生长季中不施用任何肥料,玉米、大葱仍获得较高的经济产量,分别达到8.5t/hm^2和54.0t/hm^2,且种植玉米、大葱没有影响后茬黄瓜的产量以及外观品质;休闲夏季种植玉米、大葱后,0—120cm土壤各土层NO3^--N累积量显著低于休闲处理,不会引起较强的硝酸盐淋失。[结论]在休闲夏季种植玉米、大葱是有效降低目光温室黄瓜生长季土壤硝态氮残留的有效途径之一。  相似文献   

11.
长期施肥对潮土土壤磷素利用与积累的影响   总被引:34,自引:3,他引:34  
 【目的】探讨小麦-玉米轮作方式下长期不同施肥方式和施肥量对潮土土壤磷素积累与利用。【方法】采用14年28季长期肥料试验。【结果】不施磷肥土壤每年接收外源P 2.4~3.1 kg·ha-1,作物带走P16.7~21.6 kg·ha-1,每年亏缺P 14.3~18.5 kg·ha-1;施磷肥处理除每年无机磷肥带进78 kg·ha-1和107 kg·ha-1(1.5MNPK)外,有机肥、秸秆、雨水及灌溉水和种子带进土壤P 2.7~134 kg·ha-1,其中9.2%~38.3%被小麦、玉米吸收利用,14年小麦的磷素累积利用率在4.4%~51%之间,高低顺序为:NPK>NP>SNPK>MNPK>1.5MNPK>PK;玉米在13.4%~36.1%之间,高低顺序为:1.5MNPK>SNPK>NPK>NP>MNPK>PK。【结论】磷素施入越多,残留在土壤中越多,磷素利用率越低,其中38%~60%转化为0~40 cm土层全磷,6.7%~13.6%转化为有效态磷,有机肥处理磷的有效化高于无机肥;40%~62%成为非测定磷,即至少有40%~62%的外源磷素被浪费。  相似文献   

12.
不同滴灌施肥方式下棉花根区的水、盐和氮素分布   总被引:6,自引:0,他引:6  
 【目的】探讨不同滴灌施肥方式下土壤水、盐、氮和棉花根系的分布,对于滴灌条件下水肥盐的合理调控具有重要意义。【方法】在温室条件下应用15N标记尿素进行了不同滴灌施肥方式对土壤水、盐和氮素分布的影响及其与棉花根系分布之间关系的盆栽试验。根据滴灌灌水(W)和施肥(N)的先后顺序,设置4种不同氮肥施用方式:①氮肥在一次灌溉过程的前期施用(N-W);②后期(W-N);③中间(W-N-W);④全程施用(NW)。同时以传统的氮肥直接施入土壤后浇灌(SN-W)为对照。【结果】土壤水盐分布明显受灌溉方式的影响,但滴灌条件下不同施肥方式对土壤水盐分布无影响。氮肥滴灌施肥24 h后15N主要分布在0~20 cm深度土层,但不同施肥方式之间差异明显。NW处理15N在土壤中的垂直分布最深,但水平分布范围较小,且收获后土壤硝态氮在下层大量积累,容易造成淋失。相比之下,N-W处理15N在0~20 cm土层分布最均匀,收获后土壤硝态氮的残留量也最小,且棉花根系的生长和分布也优于其它处理。【结论】滴灌条件下,氮肥在一次灌溉过程的前期施用有利于提高氮肥利用率,减少氮素的淋洗损失。  相似文献   

13.
耕层水氮调控对土壤深层累积NO3——N运移及后效的影响   总被引:4,自引:0,他引:4  
 【目的】在华北平原地区,研究前茬小麦耕层水氮调控对后茬玉米土壤深层累积NO3--N的运移及后效的影响。【方法】设置0(N0)、150 kgN·hm-2(N150)两个施氮水平,同时设传统灌溉(W1)和根据土壤水分监测的优化灌溉(W2)两种方式,采用15N微区注射技术,布置田间微区试验,将15N标记于110 cm土层。【结果】在该试验条件下,小麦收获后标记15N在土壤中总体残留趋势:N0W2<N150W2<N150W1<N0W1,且发生垂直运移,上移30 cm,下移50 cm,除N0W2处理外,其余处理累积峰较标记位置下移30 cm;玉米收获后, 15N主要分布在100—160 cm土层,与前茬比较峰值未出现下移,其中N0W1处理15N 残留量明显减少;玉米对前茬残留的深层15N的利用率N0W1>N150W2>N150W1>N0W2,依次为:5.5%、2.2%、1.7%和1.5%;玉米地上部生物量及总吸氮量均表现为施氮高于不施氮,优化和传统灌溉处理间差异不显著;玉米根系主要分布在0—20 cm土层,且施氮处理根系比例高于不施氮处理,耕层水氮调控影响后作玉米中下层根系发育,N0W1处理80—150 cm土层根长密度明显高于其它处理。【结论】耕层适度节水减氮有利于后茬作物根系下扎,促进其中下层根系的发育,进而促进其对深层累积NO3--N的吸收利用;耕层供氮及传统灌水加剧了硝态氮在深层的累积,对地下水安全造成威胁。  相似文献   

14.
模拟降雨量下沟垄微型集雨种植玉米的水温效应   总被引:8,自引:1,他引:7  
 【目的】探明沟垄微型集雨种植(垄体覆膜沟内种植)适宜的降雨量范围,为确定合理的微型集雨种植模式提供科学依据。【方法】在夏玉米生长期,人工模拟大、中、小3种降雨量(440、340和230 mm),定期测定传统平作(T1)和沟垄微型集雨种植(T2)条件下土壤水分和耕层地温,并分析了农田水分利用效率(water use efficiency,WUE)。【结果】在玉米全生育期230、340和440 mm降雨量下,沟垄微型集雨种植农田200 cm土层平均储水量分别较平作(平作不起垄不覆膜)增加了2.3%、5.2%和4.5%,耕层0~5 cm平均地温分别增加了1.2、1.1和1.0℃。在全生育期230 mm和340 mm雨量下,WUE 较平作分别增加7 kg•ha-1•mm-1和3.1 kg•ha-1•mm-1,提高了61.24%和26.90%;当全生育期降雨量为440 mm时,沟垄微型集雨种植和平作的WUE分别为16.55 kg•ha-1•mm-1和17.46 kg•ha-1•mm-1,差异不显著。【结论】在夏玉米生育期降雨量为230 mm到340 mm雨量范围,沟垄微型集雨种植能明显改善玉米的水温条件,提高WUE。  相似文献   

15.
王立刚  李虎  杨黎  翟振  邱建军 《中国农业科学》2013,46(14):2932-2941
【目的】针对环渤海区域冬小麦/夏玉米轮作系统氮肥施用量过大,环境效应逐渐增大的实际情况,研究不同氮肥施用量下长期和区域环境效应,明确冬小麦/夏玉米的减氮潜力和区域。【方法】利用定位试验和生物地球化学模型相结合的研究方法。【结果】冬小麦/夏玉米不同氮素施用量15年的模拟结果表明,随着氮肥施用量的增加,作物产量逐渐增加,到两季作物施氮量达到240—300 kg N•hm-2以上时,作物产量增加能力有限,而氮淋溶损失量则逐渐加大,土壤中残留的无机氮素也逐渐增加。与当前区域氮肥施用量364×104 t相比,区域氮肥总量减少30%和优化施肥两种调控方案下环渤海地区总氮素平衡的各个输出项都有不同程度的降低,其中降低幅度最大的是氮淋溶,分别减少了67.23%和79.93%,极大地降低了氮素的环境风险。【结论】环渤海地区冬小麦/夏玉米轮作系统氮素的环境效应有随氮素施用量逐渐增加的态势,目前该种植模式具有减氮的潜力,区域减氮30%能够有效的减少环境效应,节氮潜力最明显的地区在山东东部、西南部和河北中部。  相似文献   

16.
土壤剖面基础性质差异对农田水氮过程和作物产量的影响   总被引:4,自引:0,他引:4  
【目的】华北平原地区是中国最重要的冬小麦和夏玉米生产基地,不同农田土壤基础性质差异是造成该地区农田生产力空间变异的基本原因。通过研究该地区冲积始成土冬小麦-夏玉米轮作农田土壤剖面性质对水氮过程以及作物产量形成的影响,以期为该地区高产农田的水氮利用与管理提供参考。【方法】选取位于山东省泰安市研究区3块具有不同土壤基础性质且产量存在显著性差异的农田,进行3年田间试验,测定土壤剖面的土壤基本性质,具体包括机械组成、饱和导水率、田间持水量、永久萎蔫点、有机碳、全氮;监测土壤剖面0-160 cm的水分和硝态氮的动态变化以及作物生物量、叶面积指数和产量等。运用根区水质模型(RZWQM)对各农田的水氮过程进行模拟计算。【结果】RZWQM模型在整体上可以很好地模拟2009年10月至2012年9月3年不同基础土壤性质农田水分、无机氮、作物产量、地上部生物量和叶面积动态特征,并计算各农田水氮平衡项。各农田土壤基础性质差异对水氮过程及产量形成的影响具体为:高产农田0-160 cm剖面的最大有效贮水量为223 mm,分别高出中产和低产农田28和56 mm,同时30 cm深度以下土层具有相对较低的饱和导水率。该基础性质差异使得高产农田年均水分损失(地表径流+深层渗漏)仅为150.3 mm,分别低于中产和低产农田5.7和26.4 mm,从而使高产农田作物受到相对低的水分胁迫。高产农田土壤表层土壤有机碳含量较中低产田高,而碳氮比则较低,使得高产农田具有更高的净矿化氮量(较中产和低产农田高52.0和82.6 kg·hm-2),且较低的氮损失(氨挥发+氮淋洗+反硝化作用),较中产和低产农田分别少6.9和10.9 kg·hm-2。高产农田的水分利用效率(WUE)为2.32 kg·m-3,分别较中产和低产农田高12.1%和6.8%,这是因为高产农田受到较低的氮素胁迫。在本研究区不同土壤基础性质农田的氮素利用效率(NUE)差异不显著。【结论】在华北平原冬小麦-夏玉米轮作区,理想的土体构型能够存储更多的有效水,高土壤有机碳含量和低的碳氮比能矿化出更多的无机氮,保障了充足的水氮供应,减缓作物受到的水氮胁迫,从而获得高产。  相似文献   

17.
不同植物轮作提取深层土壤累积硝态氮的效果   总被引:2,自引:1,他引:1  
张永利  巨晓棠 《中国农业科学》2012,45(16):3297-3309
【目的】利用不同植物轮作,通过生物修复耗竭深层土壤剖面的累积硝态氮,从而控制集约化粮田过量施氮造成的硝酸盐淋洗。【方法】通过田间试验,比较小麦-玉米轮作、休闲-玉米、小麦-休闲、紫花苜蓿连作、紫花苜蓿+苇状羊茅间作、黑麦-苋菜轮作、黑麦-高丹草轮作、黑麦-甜高粱轮作对土壤剖面硝态氮累积和淋洗的降低效果。【结果】紫花苜蓿、高丹草、黑麦1-2 m土体根系占0-2 m土体总根系的比例最高;黑麦-苋菜、黑麦-高丹草和黑麦-甜高粱处理具有较高的年吸氮量(330-390 kgN•hm-2);与小麦-玉米传统轮作相比,夏季休闲增加了土壤硝态氮淋洗。经过1年的田间试验,5个修复植物处理0-1 m、1-2 m的硝态氮累积量分别降低124.3和81.2 kgN•hm-2,其中苋菜、甜高粱、高丹草对深层土壤中硝态氮的消减作用较大;甜高粱、高丹草、苋菜种植下1 m处土壤溶液中硝态氮浓度一直处于最低水平,平均仅8.6 mg•L-1。【结论】在本试验条件下,黑麦-高丹草轮作是一年内提取深层土壤累积硝态氮效果最好的种植模式。  相似文献   

18.
【目的】系统地研究华北平原冬小麦/夏玉米轮作体系对不同碳氮管理措施的响应,为作物增产、土壤培肥、环境友好的“三赢”局面提供数据支持和理论依据。【方法】分别采用Nmin测试法、尼龙网袋埋藏法、静态碱液吸收法研究不同碳氮管理对冬小麦/夏玉米不同时期0—1 m土层硝态氮累积量、秸秆腐解、土壤CO2排放的影响。【结果】基于Nmin测试法的优化碳氮(Nopt, C+Nopt)处理和平衡氮素的碳氮(C+M, C+W)处理在冬小麦产量上为传统碳氮(Ncon, C+Ncon)处理的100.8%—115.9%;在夏玉米产量上,为传统处理的96.0%—116.4%;且能够节省48.2%—70.4%的氮肥用量。传统处理0—1m土层硝态氮累积量最高可达456.7和419.8 kgN•hm-2,而优化处理和平衡处理最高仅为283.3和180.6 kgN•hm-2,传统处理土壤中的硝酸盐被淋洗的风险要远高于优化处理和平衡处理。在低温干燥的冬小麦季,玉米秸秆腐解较慢,最后秸秆腐解率为61.7%—70.1%;在高温多雨的夏玉米季,小麦秸秆腐解较快,最后秸秆腐解率为56.7%—79.3%。土壤CO2排放具有明显的季节性变化,冬小麦季的日平均CO2排放量为4.8—10.8 gC•m-2,而夏玉米季为12.7—20.7 gC•m-2。施有机肥处理的土壤CO2排放量最大,为3 844.2和4 642.3 gC•m-2,且显著高于其它处理。【结论】基于Nmin测试法的优化碳氮管理措施和平衡氮素的碳氮管理措施不仅能够减少氮肥投入,稳定作物产量,还能降低0—1 m土层硝态氮累积量,培肥土壤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号