首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
【目的】探讨夏玉米季不同施氮水平土壤硝态氮(NO3--N)累积及对后茬冬小麦的影响,利用作物轮作降低土壤NO3--N累积,减缓其淋洗,以提高氮肥周年利用率。【方法】夏玉米季设置不同施氮量处理,冬小麦采取节水省肥栽培,研究夏玉米收获后土壤剖面累积的NO3--N对冬小麦生长发育、产量及NO3--N累积动态的影响。【结果】夏玉米季施氮量与作物收获后土壤剖面NO3--N累积量,NO3--N累积量与冬小麦的产量都呈极显著线性正相关关系。冬小麦季采取限氮或不施氮处理作物收获后土壤剖面各层NO3--N含量,与夏玉米收获后相比都有显著降低。夏玉米季施氮240 kg•hm-2、冬小麦季施氮157.5 kg•hm-2(N240+157.5)或者冬小麦季不施氮前茬夏玉米季施氮360 kg•hm-2(N360+0)都能满足冬小麦各生育时期对氮的需求,产量、吸氮量和周年氮肥利用率相近且都保持较高的水平,但夏玉米季高施氮处理,当季氮存在很大的淋洗等损失风险。【结论】夏玉米季施入的氮肥对后茬冬小麦有很强的有效性,小麦季采取节水省肥栽培,能显著减少前茬作物收获后残留的NO3--N,减缓其淋洗,同时保障作物产量,提高氮肥利用率。生产中氮肥的合理分配应充分考虑前茬残留氮素对后茬的有效性。  相似文献   

2.
试验研究了不同施肥条件下,大豆生育期内的土壤硝态氮含量动态变化。结果表明,从花期到鼓粒期是大豆吸氮高峰期,鼓粒期后大豆几乎不再吸收氮素。大豆生育期土壤剖面累积NO3--N量随施氮量的增加而增加;但施氮量在67.5kg·hm-2以下不会引起下层土壤NO3--N含量升高,只有施氮量高于67.5kg·hm-2时会导致120cm土层中NO3--N含量升高。  相似文献   

3.

以辽宁省新民市某设施蔬菜生产基地土壤为研究对象,通过设置5个不同有机肥处理的实验小区,系统研究了不同的有机肥施入量(0~60 t·hm-2)在黄瓜和豆角生长期间对0~40 cm土层土壤NO3--N含量的影响,以及在黄瓜和豆角分别收获后土壤剖面NO3--N垂直分布特征。结果表明,土壤NO3--N含量的动态变化与植株的生长发育和有机肥施用水平关系密切。5月份,0~40 cm土壤各个土层的硝酸盐含量均高于其他时期;对于不同的施肥水平,当施肥量为60 t·hm-2时0~40 cm各个土层的土壤硝态氮含量均高于其他处理。土壤剖面NO3--N含量分布特征表明,低量有机肥的施入不会引起NO3--N在深层土壤的累积和淋溶,但会导致填闲作物生长过程中氮素供给的不足;当有机肥的施入量为60 t·hm-2时,0~120 cm土层出现了不同程度的淋溶现象。

  相似文献   

4.
不同有机肥处理对设施菜地土壤硝态氮分布影响   总被引:7,自引:2,他引:5  
以辽宁省新民市某设施蔬菜生产基地土壤为研究对象,通过设置5个不同有机肥处理的实验小区,系统研究了不同的有机肥施入量(0~60 t.hm-2)在黄瓜和豆角生长期间对0~40 cm土层土壤NO3--N含量的影响,以及在黄瓜和豆角分别收获后土壤剖面NO3--N垂直分布特征。结果表明,土壤NO3--N含量的动态变化与植株的生长发育和有机肥施用水平关系密切。5月份,0~40 cm土壤各个土层的硝酸盐含量均高于其他时期;对于不同的施肥水平,当施肥量为60 t.hm-2时0~40 cm各个土层的土壤硝态氮含量均高于其他处理。土壤剖面NO3--N含量分布特征表明,低量有机肥的施入不会引起NO3--N在深层土壤的累积和淋溶,但会导致填闲作物生长过程中氮素供给的不足;当有机肥的施入量为60 t.hm-2时,0~120 cm土层出现了不同程度的淋溶现象。  相似文献   

5.
交替隔沟灌溉和施氮对玉米根区水氮迁移的影响   总被引:10,自引:1,他引:9  
 【目的】研究交替隔沟灌溉条件下作物根区土壤水氮迁移和累积。【方法】利用小区试验,对供试玉米采取不同的水分和氮素处理,测定交替隔沟灌溉条件下玉米根区土壤硝态氮、铵态氮和水分的变化。【结果】施氮后沟中硝态氮含量增长很快,大多集中在地表下0~30 cm处。随着时间的推移,上层土壤水分携带氮素养分下渗,造成下层土壤硝态氮含量的上升。收获时低水高氮处理的整个剖面上硝态氮的累积量最大,是高水高氮处理的1.2倍,低水低氮处理的是高水低氮的1.27倍。施氮后表层0~30 cm土壤铵态氮含量和累积量达到高峰,30 cm以下变化不明显。收获时各处理的铵态氮在剖面上的分布和累积基本相同。高水处理的土壤水分累积量明显大于低水处理,氮素水平的高低对土壤水分的累积影响不大。【结论】施氮量和灌水量是影响土壤硝态氮、铵态氮和土壤水分分布和累积的最主要因素。高水处理造成根区硝态氮淋失,降低了氮肥的利用。施氮量与硝态氮在根区剖面上的累积呈正相关。与硝态氮含量相比,铵态氮含量较低并且变化不大。最佳的水氮耦合形式为低水高氮(施氮量240 kgN•ha-1,灌水量1485.71 m3•ha-1)。  相似文献   

6.
 依据长武站长期田间试验(1984~2001年)的结果,分析了不同施肥措施条件下小麦产量、氮肥利用率、土壤水分的变化及其相互间的关系。结果表明,对照、有机肥(M)、氮肥(N)、氮磷肥(NP)、氮肥+有机肥(NM)和氮磷肥+有机肥(NPM)处理冬小麦的17年平均产量依次为1.5、2.6、2.0、3.3、3.4和4.0 t·ha-1;冬小麦地上部17年累计吸收的氮量依次为509.0、854.6、781.9、1 199.8、1 067.5和1 430.9 kg·ha-1;2001年0~300 cm土层NO3--N储量依次为52.2、113.1、1 064.8、254.5、535.4和512.1 kg·ha-1,N处理的NO3--N分布于0~300 cm土层,NP、NM、NPM处理的NO3--N主要分布于0~180 cm土层。收获期0~300 cm土层多年平均水分含量为CK>N>M>NP>NPM。播种期NP、NPM处理200~300 cm土层水分出现亏缺。施肥是黄土旱塬区土壤生产力提高、土壤深层水分亏缺和土壤NO3--N累积的驱动力。  相似文献   

7.
不同水氮管理对蔬菜地硝态氮淋洗的影响   总被引:19,自引:0,他引:19  
 通过3年(1999~2001)的田间定位试验研究了中国北方露地蔬菜种植中不同水氮管理方式对蔬菜地NO3--N淋洗的影响。结果表明,在蔬菜生长期内,通过减少灌溉水量不但能够降低蔬菜地水分渗漏量,而且明显降低蔬菜地NO3--N淋洗量。减少施氮量同样明显降低蔬菜地NO3--N淋洗量。说明在蔬菜生产中将施氮量降低到传统施氮量的20%~40%,土壤含水量保持在蔬菜生长的有效土壤含水量的50%~80%,能够明显降低NO3--N的淋洗风险,且蔬菜产量未受到影响。  相似文献   

8.
以冬小麦品种石新616,夏玉米品种浚单20为试验材料,采用田间定位试验和原位淋溶装置的方法,研究了河北省山前平原高产农田不同氮肥措施对冬小麦-夏玉米轮作农田0~100 cm土体中氮素淋失的影响。结果表明:不同施氮处理0~100 cm土层的NO3--N淋溶量和累积量均随施氮量的增加而增大;不同施氮措施对0~100 cm土体中无机氮分布和累积量的影响顺序为OPT+N处理>FP处理>FP-S处理>OPT处理>OPT-N处理>CK,其中OPT处理的小麦和玉米产量显著增加,且小麦和玉米收获后土壤的无机氮累积量明显降低;小麦季硝态氮主要分布在20~40 cm土层,玉米季硝态氮主要分布在表层和深层土体中;过量施氮是造成土壤氮素淋失和累积的主要来源。综合考虑经济效益和生态效益,在秸秆还田条件下,施氮量减少20%的施肥措施(OPT处理)是值得推荐的施氮措施。  相似文献   

9.
施氮量和底追肥比例对冬小麦产量及肥料氮去向的影响   总被引:30,自引:1,他引:30  
【目的】应用15N标记技术研究高产麦田中施氮量和底施与追施氮肥比例(底追肥比例)对冬小麦籽粒产量、氮肥利用及土壤残留和损失的影响。【方法】试验设置7个处理:不施氮肥(N0);在施纯氮量为168 kg•ha-1和240 kg•ha-1条件下,各设底追肥比例为1﹕1(N1和N4)、1﹕2(N2和N5)、0﹕1(N3和N6) 3个处理。【结果】与不施氮处理相比,施氮显著提高了籽粒产量和蛋白质含量,处理N2、N5和N6均较优,其中处理N2显著提高了氮肥利用率,降低了损失率。试验还表明,随底施和追施氮量增加,二者在土壤中的残留量增加,下移层次加深;随小麦的生育进程,土壤残留的肥料氮不断下移。成熟期,底肥氮在0~40、40~100和100~200 cm土层中的残留量分别占总底肥氮残留量的38%~49%、40%~51%和0%~22%;处理N4、N5的追肥氮淋洗至140~160 cm土层,N3、N6分别至160~180 cm和180~200 cm土层。在小麦全生育期,处理N2的底施和追施肥料氮均未淋洗至100~200 cm土层。【结论】在本试验中,施氮量为168kg•ha-1、底追肥比例为1﹕2的处理N2的籽粒产量、蛋白质含量、氮肥利用率均较高,损失率最小,且未淋洗至100~200 cm 土层,为最佳氮肥运筹方式。  相似文献   

10.
通过GeoprobeR深层取土18m,分析了不同施氮水平下厚不饱和层土壤中NO3--N的迁移变化。发现不同施氮处理下NO3--N在一个生育期的淋失变化主要体现在0~4m土体内,土壤中硝态氮累积峰下移深度为0.2~0.6m,高施肥土体中,深层土壤6.7~8m和13~15m土体中也有少量硝态氮淋失,施氮量越高,淋失量和累积量也越高;不同施肥处理下,厚不饱和层土壤中NO3--N累积量变化主要体现4m土体特别是根区土层中,在2m土体内,土体中NO3--N的累积量与施入的氮肥量呈极显著线性关系,根区以下不饱和层中NO3--N累积量超过1800kg/hm2。  相似文献   

11.
小麦氮磷肥长期配施对土壤硝态氮淋溶的影响   总被引:8,自引:1,他引:7  
 【目的】利用长期肥料定位试验,监测旱地农田土壤硝态氮的淋溶动向,研究施肥量与硝态氮累积量之间的关系,为科学施肥提供参考。【方法】在试验小区0~300 cm土壤剖面中,每20 cm深度取一个土样,1 mol?L-1 KCl浸提后以AA3连续流动分析仪测定硝态氮含量。【结果】单施氮肥土壤硝态氮累积峰出现在80~100 cm土层和300 cm以下土层,当施氮量达到180 kg?hm-2?a-1时,0~300 cm土层硝态氮累积总量相当于8年的施氮量。单施磷肥对土壤硝态氮分布无影响;氮、磷肥配施时,施氮量增加硝态氮累积量显著增加,配施磷肥后可以减少硝态氮累积量,且施氮量越大减少的越多。过量施用氮肥,即使配施磷肥,硝态氮也能发生淋溶并在100~120 cm和240~260 cm土层附近累积;二次多项式回归能够较好地反映氮、磷施用量与土壤硝态氮累积量之间的关系。【结论】长期过量施用氮肥,导致硝态氮大量淋溶并形成两个累积峰,科学合理地配施磷肥可以减少硝态氮淋失;旱地麦田长期施用最大产量施肥量,可能导致硝态氮大量累积在土壤深层。  相似文献   

12.
长期施肥对黄泥田碳和氮及氮素利用的影响   总被引:5,自引:0,他引:5  
 【目的】研究长期施肥下南方黄泥田碳和氮的变异规律及其与硝态氮累积的关系,阐明影响硝态氮累积的主要因素。【方法】以25年定位试验为平台,通过室内分析和统计分析,研究不施肥、施化肥和有机无机肥配施处理条件下黄泥田有机碳(SOC)、全氮(TN)、微生物量碳、微生物量氮和氮素利用率的变化及与硝态氮累积的相关关系。【结果】(1)双季稻区,在提高土壤SOC、TN、碱解氮、微生物量碳和微生物量氮含量方面,有机无机肥配施明显优于单施无机肥,并以配施高量(70%)或低量有机肥(30%)效果最佳。(2)在等养分量条件下,与施无机肥处理相比,配施高量或低量有机肥处理在土壤硝态氮含量和累积量均有显著增加,有机无机肥等比例配施处理的硝态氮含量和累积量有大幅减少,与不施肥处理基本相当。【结论】提高土壤质量以配施高量有机肥效果最好,降低土壤中硝态氮累积量以等比例配施有机无机肥效果最佳。因此,从提高土壤质量和保护生态环境方面考虑,该区域有机无机肥配施应注意配施比例。影响硝态氮累积的因素主要有土壤有机碳、全氮、微生物量碳和微生物量氮,其中最直接的影响因素是土壤微生物量碳。  相似文献   

13.
【目的】比较控释肥与普通肥料混配基施与常规施肥对设施番茄农学特性和环境效应的影响。【方法】以京郊设施番茄为对象,研究包膜控释肥与普通肥料混配基施对番茄株高、茎粗、叶片面积、叶绿素含量、根系分布,果实产量、品质,根层土壤(0-30 cm)无机氮动态和收获后残留硝态氮的影响。【结果】番茄产量为84.1-90.8 t•hm-2,处理间没有明显差异,但控释肥处理(CN270)明显降低了果实的硝酸盐含量,并提高了糖酸品质。与常规施肥相比(N450),控释肥处理(CN270)减施氮肥40%后番茄的株高、茎粗、叶绿素含量均没有降低,叶片面积有增加趋势并在第三穗果膨大期明显增加。番茄根系主要分布在0-30 cm土层内,根长密度值为0.39-1.75 cm•cm-3。CN270与N450处理根长密度值接近,均明显高于常规减量施肥处理(N270)。在整个果实膨大期间,CN270处理的表层土壤中(0-30 cm)无机氮含量为643-796 kg•hm-2,形成了充足的氮素供应;收获后,CN270处理的硝态氮主要残留在表层土壤中,减少了NO3--N向下层的淋洗。【结论】与常规处理的多次施肥相比,控释肥处理在氮肥减量40%后番茄产量没有降低,并且改善了果实品质,促进了根系生长,减小了NO3--N的淋洗。因此,控释肥和普通肥料混配基施是设施番茄优质高效生产的一种有效施肥措施。  相似文献   

14.
【目的】研究施氮量对设施滴灌番茄生长发育及品质和产量等的影响,为设施滴灌番茄的氮肥管理提供理论依据。【方法】以 天马54号为试验材料,设N0(不施氮肥)、N1(150 kg/hm2)、N2(300 kg/hm2)、N3(450 kg/hm2)、N4(600 kg/hm2)、N5(750 kg/hm2)共6个处理,研究设施滴灌番茄的氮肥的运行规律及最佳氮肥使用量。【结果】干物质累积量随施氮量的增大而增加,干物质最大增长速率出现天为45.8~52.7 d。叶面积指数在定植后40~80 d,各处理差异显著,在定植后60 d最大,表现为先增加后降低的抛物线趋势。净光合速率和SPAD值随施氮量增加表现为升高后降低的趋势,胞CO2浓度随氮肥的增加而下降。产量、氮肥利用率和氮肥产量贡献率N4(600 kg/hm2)处理最大,分别为9.35~10.26 t/667m2、42.61%~43.56%、33.89%~29.92%。【结论】 5个氮肥处理下N4(600 kg/hm2)处理效果最佳。  相似文献   

15.
缓/控释复合肥料不同形态氮素释放特性研究   总被引:25,自引:2,他引:25  
【目的】探讨缓/控释复合肥料不同形态氮素养分(NH4+-N、NO3--N、Urea-N、DON和Total N)在不同介质中释放的动力学特性及生物效应。【方法】采用水中溶出法、土壤恒温培养法和盆栽生物试验。【结果】不同培养介质中,缓/控释复合肥5种形态氮素养分的累积释放量随时间的动态变化可用一级动力学方程Nt=N0(1-e-kt)、Elvoich方程qt=a+blnt、抛物线扩散方程qt=a+bt0.5表征,并以一级动力学方程拟合效果最好(r=0.9569**~0.9999**),E1ovich方程次之(r=0.7705**~0.9933**)。缓释复合肥料不同形态氮素最大释放量(N0值)与其氮素累积释放量的变化规律一致,在水中以Total N>DON>Urea-N>NH4+-N>NO3--N,在土壤中则以Total N>NH4+-N>DON>Urea-N>NO3--N。以水为介质时,缓释复合肥料不同形态氮素释放速率常数(k值和b值)的变化序列均以Total N>DON>NH4+-N>NO3--N;以土壤为介质时,k值大小为Urea-N>DON>NH4+-N>Total N>NO3--N,b值则为Total N>NH4+-N>DON>NO3--N>Urea-N。与普通复合肥料相比,缓/控释复合肥的氮素利用效率(NUE)、氮素农学效率(NAE)及氮素生理效率(NPE)分别提高了11.4%、8.32 kg·kg-1和5.17 kg·kg-1。相关分析发现,5种形态氮素养分占总氮量的比值(Nx/NT)与水稻不同生育期吸收氮素养分之间呈显著或极显著正相关。【结论】定量描述氮素养分释放的动力学方程中以一级动力学方程评价更具有实效性。与普通复合肥料以单一尿素态氮养分为主相比较,缓/控释复合肥料的不同形态氮养分更有利于水稻对氮素的吸收利用。  相似文献   

16.
长期施肥对潮土土壤磷素利用与积累的影响   总被引:34,自引:3,他引:34  
 【目的】探讨小麦-玉米轮作方式下长期不同施肥方式和施肥量对潮土土壤磷素积累与利用。【方法】采用14年28季长期肥料试验。【结果】不施磷肥土壤每年接收外源P 2.4~3.1 kg·ha-1,作物带走P16.7~21.6 kg·ha-1,每年亏缺P 14.3~18.5 kg·ha-1;施磷肥处理除每年无机磷肥带进78 kg·ha-1和107 kg·ha-1(1.5MNPK)外,有机肥、秸秆、雨水及灌溉水和种子带进土壤P 2.7~134 kg·ha-1,其中9.2%~38.3%被小麦、玉米吸收利用,14年小麦的磷素累积利用率在4.4%~51%之间,高低顺序为:NPK>NP>SNPK>MNPK>1.5MNPK>PK;玉米在13.4%~36.1%之间,高低顺序为:1.5MNPK>SNPK>NPK>NP>MNPK>PK。【结论】磷素施入越多,残留在土壤中越多,磷素利用率越低,其中38%~60%转化为0~40 cm土层全磷,6.7%~13.6%转化为有效态磷,有机肥处理磷的有效化高于无机肥;40%~62%成为非测定磷,即至少有40%~62%的外源磷素被浪费。  相似文献   

17.
施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响   总被引:24,自引:1,他引:23  
【目的】在黄淮冬麦区,研究施氮量对旱地小麦氮素利用规律的影响,为该区旱地小麦合理的氮肥运筹提供理论依据。【方法】于2009-2010和2010-2011两个小麦生长季,在大田条件下设置6个施氮量处理(0、90、120、150、180和210 kg•hm-2),研究施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响。【结果】在150 kg•hm-2及以下的处理增加施氮量,小麦各生育时期植株氮素积累量、成熟期籽粒氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量显著增加;在150 kg•hm-2基础上增加施氮量,小麦各生育时期植株氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量与150 kg•hm-2处理无显著差异,成熟期籽粒氮素积累量及分配比例降低,营养器官氮素积累量及分配比例升高。施氮量为180 kg•hm-2和210 kg•hm-2,成熟期0-140 cm土层土壤硝态氮含量显著高于150 kg•hm-2处理,深层土壤硝态氮含量增加。施氮150 kg•hm-2处理小麦籽粒产量最高,氮素利用效率和氮肥生产效率较高。【结论】本试验条件下,施氮量为150 kg•hm-2,是兼顾产量和氮肥利用效率的适宜施氮量。  相似文献   

18.
氮肥与有机肥配施对设施土壤可溶性氮动态变化的影响   总被引:7,自引:2,他引:5  
【目的】在氮肥与有机肥配施条件下,研究设施番茄生长期内土壤可溶性氮(矿质氮和可溶性有机氮)的动态变化,评估可溶性氮在设施土壤中的作用,为设施土壤的合理施肥提供理论参考。【方法】以连续两年不施肥(CK)、不同施氮量(N0、N1、N2、N3)、单施有机肥(M)以及不同氮量配施有机肥(MN0、MN1、MN2、MN3)的设施番茄栽培的田间小区试验的方法,研究氮肥与有机肥配施以及不同施氮量对番茄生长期、休耕期土壤可溶性氮动态变化的影响。【结果】在番茄生长期,与施用氮肥处理相比,氮肥与有机肥配施处理均能够显著增加0-30 cm土层土壤矿质氮和土壤可溶性有机氮的含量(P<0.01),特别是提高了矿质氮的含量。土壤矿质氮和土壤可溶性有机氮均表现出比较大的动态变化,总体来说,土壤矿质氮和土壤可溶性有机氮含量均在第一穗果膨大期最高,在第二穗果膨大期土壤矿质氮含量大于可溶性有机氮含量,而在收获期土壤可溶性有机氮含量大于矿质氮含量,且在整个生长季内土壤矿质氮和土壤可溶性有机氮含量之间均有显著的正相关关系(P<0.05)。在休耕期(番茄收获后60 d),与施用氮肥处理相比,氮肥与有机肥配施处理均能显著增加0-50 cm土层土壤矿质氮和0-10 cm土层土壤可溶性有机氮的含量(P<0.05);在0-50 cm土层内,土壤矿质氮和土壤可溶性有机氮的含量均随土层深度加深呈逐渐下降趋势,且在20-40 cm处有明显的累积。此外,不管是在番茄生育期还是在休耕期,总体上来看,不施有机肥处理下,土壤矿质氮和土壤可溶性有机氮的含量均以N2处理的含量为最高,而且土壤可溶性有机氮在可溶性氮中占有更大的比例;而在氮肥与有机肥配施处理中,MN2和MN3处理的土壤矿质氮和土壤可溶性有机氮含量最高,而且在可溶性氮库中以土壤矿质氮为主。【结论】本试验条件下,适量氮肥与有机肥配施能够更好协调和改善设施土壤中可溶性氮的供应状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号