首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在单因素试验的基础上对降解纤维素的工艺条件进行了优化,酸法降解纤维素的优化结果是水解温度在糖化过程中影响最为显著,其次是硫酸浓度,再次是液固比,影响最小的因素是水解时间。各因素较优的水平组合为水解温度为100℃、水解时间2 h、硫酸浓度2%、液固比20∶1。酶法降解纤维素的优化结果是水解时间为最显著的影响因素,其次是纤维素酶浓度、酶解温度、液固比,影响最小的因素是pH值。各因素较优的水平组合水解时间22 h、纤维素酶浓度1.2%、酶解温度45℃、液固比20∶1、pH值4.8。两步糖化还原糖总得率为19.88%。  相似文献   

2.
采用稀硫酸预处理甘蔗渣,通过不同浓度、温度、固液比和处理时间对甘蔗渣成分含量、固体得率、物理结构和酶解效率进行研究。结果表明:稀硫酸浓度、预处理温度和时间是影响甘蔗渣成分的关键因素,其中稀硫酸浓度和处理温度影响最大,半纤维素含量由原来的的18.33%下降到0.09%左右;纤维素含量由原来的68.66%下降到40.25%左右;木质素含量基本维持在13%~15%。不同稀硫酸浓度、温度、固液比和处理时间对甘蔗渣物理结构均有不同程度的影响,处理后的甘蔗渣物理结构受到破坏,内部结构变得疏松多孔。稀硫酸浓度和处理温度对固体得率影响较大,1.5%左右的稀硫酸浓度和125℃左右的处理温度,固体得率最低。当下降到0.7左右时,下降速率明显变慢,最终趋于平缓。根据酶解效率实验得出最佳的预处理条件为:稀硫酸浓度2.0%,温度125℃,固液比1∶20,处理时间90 min。在这个条件下,甘蔗渣降解成还原糖的效率最高,还原糖质量分数约46%。  相似文献   

3.
【目的】 研究稀硫酸预处理下,酸浓度、固液比、处理时间及温度对杂交狼尾草木质纤维素降解效率的影响,分析稀硫酸对木质纤维素降解的作用机理,并筛选最佳预处理工艺。【方法】 以杂交狼尾草为研究对象,以H2SO4浓度(0.5%、1.0%、1.5%、2.0%、2.5%)、固液比(1﹕6、1﹕8、1﹕10、1﹕12、1﹕14)、时间(15、30、45、60、90 min)和温度(80、100、110、120、125℃)4个单因素进行试验,每个因素取5个水平,3次重复,分析单因素对固体分解率、纤维素降解率、半纤维素降解率、木质素脱除率及水解糖的影响。在单因素试验基础上,采用4因素2水平的L8(24)正交试验确定主要影响因素,并对最佳工艺条件预处理下的杂交狼尾草进行SEM分析和XRD分析。【结果】 单因素试验结果表明,各因素下半纤维素降解率均高于木质素降解率。其中,硫酸浓度的增加使纤维素和半纤维素的降解率增加,木质素脱除率降低;由纤维素水解产生的葡萄糖产量也随着浓度的增加而增加,但木糖含量逐渐降低;低浓度的硫酸(0.5%—1.5%)促进杂交狼尾草固体物质降解消化,继续增加硫酸浓度(>1.5%)杂交狼尾草的固体降解无显著变化。固液比对各指标的影响差异较小,固液比增加至1﹕10时,固体分解率、半纤维素和木质素脱除均达到最大。预处理时间的长短对固体分解率、半纤维素和木质素的降解影响不明显,但促进半纤维素降解和葡萄糖生成。温度对固体分解率、纤维素、半纤维素和木质素的降解及水解糖产量的影响效果明显,100℃是重要的临界温度,有效降解木质纤维素需要温度达100℃以上。正交试验结果表明,影响半纤维素降解的因素依次为:温度-浓度-时间-固液比。稀硫酸预处理后杂交狼尾草木质纤维素结构塌陷,非纤维物质被显著脱除,纤维束裸露(SEM);纤维素结晶聚合度增加(XRD)。【结论】 稀硫酸预处理杂交狼尾草主要降解半纤维素,对木质素的降解效果较差。温度是最主要的影响因素,其次为酸浓度。4 因素影响下的最佳工艺条件为:浓度1.5%,固液比1﹕6,时间15 min,温度120℃。  相似文献   

4.
预处过程中不同理化因子对竹质纤维素糖化的影响   总被引:2,自引:0,他引:2  
为研究不同理化因子对竹质纤维素糖化效果的影响,以竹质纤维素为原料,以酸解溶出的还原糖和总糖得率为考察指标,选取盐酸、硫酸、磷酸和硝酸4种稀酸在不同稀酸浓度、酸解温度、竹粉颗粒度和固液比条件下,对竹粉处理不同时间的单因素试验。结果表明:在竹粉颗粒度100目和固液比1∶15的条件下,用2%稀硫酸在温度121℃下处理25 m in后,酸解效果较好,还原糖和总糖得率分别在35%和50%以上。与较低温度下的长时间酸解相比,在较高温度下对竹粉进行较短时间的酸解处理能有效地提高酸解液中还原糖和总糖的得率。  相似文献   

5.
通过单因素法和响应面法优化了以油茶果壳为原料酸水解法制备木糖试验过程中各工艺参数,包括固液比、酸浓度、处理温度和处理时间.结果表明,稀酸预处理过程中各因素对油茶果壳木糖提取率影响程度由大到小的顺序为固液比>温度>稀酸浓度.得到稀硫酸预处理油茶果壳制备木糖的较优工艺条件为固液比1:9.13,硫酸溶液浓度3.00%,水解温...  相似文献   

6.
以稻草秸秆为纤维素原料,利用稀盐酸对其进行预处理,再用烧碱调节起始pH值,利用自制纤维素酶液进行酶解,得出稻草纤维素降解糖化的较优工艺条件,并进行了最优降解条件纤维素水解液发酵产乙醇的初步试验.结果表明:稻草秸秆在盐酸浓度2.5%、温度126℃、固液比(g/mL)1:3的条件下处理1h后,在温度为55℃、起始pH值为5...  相似文献   

7.
割手密是生物质产量较高的纤维素类植物,作为能源植物受到国内外的普遍关注。利用纤维素类材料生产燃料乙醇的过程中,秸秆的水解糖化是关键步骤。以割手密为试验材料进行单因素和正交试验研究浓硫酸和稀硫酸的浓度、试验时间、试验温度、液固比对割手密糖化处理的影响,筛选出浓硫酸和稀硫酸处理的最佳条件,将两段硫酸处理的最佳反应条件结合,即浓硫酸水解,液固比42∶1、浓硫酸浓度70%、水浴时间20min、水浴温度55℃;稀硫酸水解,液固比115∶1、浓硫酸浓度5.5%、水解时间155min、水解温度100℃。在此工艺中,还原糖得率为48.78%。该两段水解糖化法条件温和、操作简单,不需要高压,成本低廉,还原糖得率高,为割手密的进一步有效利用奠定了基础。  相似文献   

8.
探索改进泥炭的生物可降解性途径,为实现泥炭资源的高值转化提供可行预处理方法,采用稀硫酸对泥炭进行预处理,DNS法测定泥炭处理液中还原糖的含量,对稀硫酸质量分数、处理温度、处理时间、固液比4个因素进行单因素试验分析,再通过正交试验对预处理条件进行优化。结果表明,最佳预处理条件:处理温度90℃下0.5%质量分数稀硫酸处理80 min,最佳固液比为1 g∶12 m L,在此条件下还原糖含量达到2.23%。稀硫酸预处理泥炭能够降解1.17%纤维素、4.44%半纤维素和9.37%木质素,增加15.49%可溶性物质。稀硫酸预处理为泥炭的生化转化提供了可行的预处理方法。  相似文献   

9.
玉米秸秆酸解产糖影响因素研究   总被引:2,自引:1,他引:1  
贾翠英  张玉辉  李兰 《安徽农业科学》2010,38(12):6509-6511,6566
[目的]考察影响玉米秸秆稀酸水解产糖的主要因素,为进一步提高玉米秸秆利用率提供参考。[方法]通过单因素和正交设计试验分别考察稀酸浓度(稀H2SO4)、酸解温度、固液比、酸解时间对玉米秸秆酸解产糖得率的影响。[结果]酸解温度、酸解时间、稀酸浓度、固液比对酸解产糖得率均有影响,影响大小顺序依次为酸解温度〉稀酸浓度〉酸解时间〉固液比。正交试验结果表明,最适酸解条件为酸解温度120℃,稀酸浓度1.5%,酸解时间60min,固液比7.5%,在该试验条件下还原糖得率为29.64%。[结论]此研究为进一步提高玉米秸秆利用率和转化率提供重要的理论依据和借鉴意义。  相似文献   

10.
在纤维素生产燃料乙醇的过程中,原料的预处理是一个关键环节。采用氢氧化钙对原料椪柑皮进行预处理,研究了预处理中氢氧化钙的浓度、固液比、温度及时间等因素对后续酶解产物糖含量的影响。通过正交试验得出优化预处理的工艺条件为:用氢氧化钙饱和溶液,在固液比1∶30(g/mL),温度70℃下处理时间24 h,经纤维素酶分解后的糖含量可达到11.44%。  相似文献   

11.
对稀硫酸预处理棉花秸秆的糖化条件进行了研究,考察了水解温度、稀硫酸浓度、秸秆粉碎粒度、固液比等因素对棉花秸秆水解产物还原糖的影响,通过正交试验确定最优的水解工艺条件为:硫酸浓度为2.5;,水解温度 110℃,水解时间4 h,未筛分秸秆,固液比1∶12,秸秆水解率为29.61;.  相似文献   

12.
项巍  朱建良 《安徽农业科学》2011,39(20):12560-12561,12580
[目的]研究固体酸催化玉米秸秆半纤维素水解的基础动力学。[方法]单因素试验确定最佳固体酸种类、固固比、固液比,然后在以上最优条件下,综合考察反应温度和时间对半纤维素水解产率的影响。[结果]固体酸催化玉米秸秆半纤维素水解的最适反应条件:2号固体酸为催化剂,固固比1∶1,固液比1∶15,反应温度100℃,反应时间10 h。在该最适条件下,可溶性总糖浓度为34.7 g/L,半纤维素水解产率为93.8%。[结论]该研究为固体酸降解玉米秸秆工艺的优化和放大设计提供了基础动力学数据。  相似文献   

13.
研究酸酶双解稻草纸浆、发酵制备燃料乙醇的新工艺,考察时间、温度、底物浓度、催化剂用量等因素对酸解和酶解过程的影响。通过对酸酶解液及残渣成分分析,考察稻草纸浆降解产物中糖含量的变化趋势。结果表明,在170~180℃、液固比20 mL∶1 g、硫酸质量分数为2.4%、反应2 h酸解,还原糖得率为28.9%;在50℃、酶用量80 U/g、底物质量浓度0.01 g/mL、反应30 h酶解,还原糖得率为67.1%。酸酶解总还原糖得率62.6%;稻草纸浆降解液经发酵制得乙醇质量浓度为26.6 g/L,乙醇得率为49%,达到理论转化率的96%,转化率最高为0.28 g/g(乙醇/稻草纸浆)。  相似文献   

14.
[目的]在近临界水中制备蔗渣微晶纤维素,探索反应条件对产品聚合度的影响。[方法]以蔗渣纤维素为起始原料在近临界水中清洁制备蔗渣微晶纤维素,通过对反应条件的考察得到反应规律及最佳的工艺条件,用FT-IR、XRD分析产品的结构及结晶度。[结果]在近临界水中清洁制备蔗渣微晶纤维素的较优工艺条件为:液固比40:1 ml/g,反应温度230℃,反应初压力2 MPa,反应时间50min。溶解温度、溶解时间对蔗渣纤维素的降解影响较大,而初始压力、液固比的影响相对较小,蔗渣纤维素在降解过程中并未发生晶型的转变,且降解首先发生在纤维素的非晶区。[结论]通过近临界水法可成功清洁制备出蔗渣微晶纤维素。  相似文献   

15.
为了确定酸解预处理秸秆还原糖产量较高的玉米生育时期,为乙醇发酵生产提供较优原料,以"渝单8号"玉米为材料,采用DNS法测定不同稀硫酸预处理和酶解条件下拔节期、抽雄期、抽丝期、乳熟期、成熟期秸秆的总还原糖产量.对水解温度、水解时间、稀硫酸体积分数、固液质量比进行单因素试验,再通过正交试验优化预处理条件.结果表明:在稀硫酸预处理条件下,抽丝期的玉米秸秆总还原糖产量较高,更适合乙醇发酵生产;在处理温度110℃、处理时间40 min、硫酸体积分数2%、固液质量比1:15的最优预处理条件下,还原糖产量达549.42 mg/g.  相似文献   

16.
旧瓦楞纸箱稀酸水解制还原糖的研究   总被引:1,自引:0,他引:1  
张晶晶  万金泉  赵银中  王艳 《安徽农业科学》2009,37(35):17312-17314
[目的]探讨稀H2SO4水解旧瓦楞纸箱(OCC)制还原糖的影响因素。[方法]采用稀酸在高温下水解OCC,进行正交优化试验。[结果]稀H2SO4水解OCC的最佳工艺条件为:硫酸质量分数3%,水解温度180℃,水解时间60min,液固比16:1(ml:g),还原糖得率为68.481%。其还原糖得率明显高于稻草、玉米秸秆等原生植物纤维的得糖率,而酸浓度又远远低于浓跋水解的酸浓度。[结论]对于OCC酸水解过程,前30rain半纤维素先于纤维素水解,30—60min主要为纤维素水解,60~120min炭化作用超过了纤维素的水解作用。  相似文献   

17.
预处理是利用生物质原料制备燃料乙醇的工艺过程中至关重要的一步,文章以高丹草秸秆为主要研究对象,对稀硫酸预处理高丹草秸秆优化工艺进行了研究,在研究温度、时间、稀硫酸质量分数和固液质量比4个单因素对预处理效果影响的基础上,采用正交试验对稀硫酸预处理高丹草秸秆工艺条件进行优化,确定了稀硫酸最佳预处理工艺条件为水解温度120℃,水解时间2h,稀硫酸质量分数1.5%,固液质量比1:10,在此条件下,预处理水解液还原糖得率32.59%,糠醛得率为0.45%。  相似文献   

18.
以玉米秸秆为原料,利用2%NaOH溶液对原料进行预处理,并研究预处理温度、时间、秸秆粒度对纤维素、半纤维素、木质素的含量以及脱除率的影响。结果表明,当温度为100℃、时间为4 h、粒度为16目时,半纤维素和木质素的脱降率达90.6%和86.4%,纤维素含量达53%。采用浓硫酸法对预处理后的秸秆进行水解工艺研究,在比较了液固比、时间、温度、酸浓度等单因素影响后,采用正交试验进行优化,得到最佳水解工艺的条件:温度为50℃、时间为10 min、硫酸浓度为72%、液固比为10 mL∶1 g。  相似文献   

19.
选择了处理温度、硫酸浓度、固液比3个因素,以还原糖产量为指标,利用正交试验对玉米秸秆酸解产糖条件进行了优化,结果为处理温度120℃、硫酸浓度0.10 mol/L、固液比1:10(m/V,g:mL,下同)为较优预处理务件.经过试验验证,在优化后的预处理条件下还原糖产量提高了41.6%.  相似文献   

20.
为降低小麦秸秆中木质素的含量,提高半纤维素和纤维素的利用率,应用氢氧化钠和蒸汽高压联合处理小麦秸秆。首先采用单因素试验研究氢氧化钠质量浓度、固液比和处理时间对降解木质素效果的影响,然后通过正交试验研究降解木质素的最佳处理条件。结果表明,降解木质素的最佳条件为:氢氧化钠质量浓度11.67 mg/m L、固液比1∶9.0(w/V)、121℃(0.15 MPa)处理45 min。在此条件下,半纤维素、纤维素、木质素降解率分别达到78.07%、14.11%、80.33%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号