首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 146 毫秒
1.
航空喷施与人工喷施方式对水稻施药效果比较   总被引:9,自引:2,他引:7  
【目的】找出小型无人直升机航空喷施雾滴在水稻植株的沉积分布规律,并比较农用无人机航空喷施方式和人工喷施方式的不同。【方法】通过喷施试验研究了市场上主流的2种不同型号无人机(油动单旋翼和电动单旋翼小型无人直升机)、不同作业参数对水稻冠层雾滴沉积分布结果的影响,并比较了不同农用无人机航空喷施方式和人工喷施方式的效果和效率。【结果】航空喷施方式下的作业参数对雾滴沉积量和穿透性均有着相同的影响趋势,均表现出作业速度越慢,雾滴在植株间的沉积量越多,穿透性越好;作业高度越低,沉积量越多,但穿透性较差。但由于不同类型无人机旋翼风场强度的不同,油动单旋翼小型无人直升机喷施作业时作业高度对雾滴的沉积均匀性影响明显,而电动单旋翼小型无人直升机喷施作业时作业速度对雾滴的沉积均匀性影响明显。人工喷施作业的雾滴在水稻植株上、中、下3层的沉积均匀性最差,且雾滴在水稻植株间的穿透性也最差,为110.42%,人工喷施雾滴大部分都沉积在植株上层,只有3.27%的药液量到达植株的底部,而航空喷施作业有10%~30%的药液量能到达植株的底部。【结论】从不同喷施作业方式的效果和效益来看,航空喷施雾滴沉积效果优于人工喷施雾滴沉积效果,作业效率约为人工喷施方式的10倍,且成本低,效益高。  相似文献   

2.
植保无人机水稻田间农药喷施的作业效果   总被引:9,自引:1,他引:8  
【目的】测试和对比电动单旋翼与电动多旋翼植保无人机在水稻田间的作业效果。【方法】测试的植保无人机为HY-B-15L型单旋翼植保无人机(单旋翼机)和MG-1S型多旋翼植保无人机(多旋翼机)。以一定比例的罗丹明B与善思纳米农药的混合溶液作为喷施溶液,通过改变无人机作业高度和农药喷洒量进行田间喷施试验,采用荧光示踪剂法和水敏纸图像分析法获得2种无人机在不同喷施条件下喷施的雾滴在靶标上的沉积效果。按田间药效调查准则,调查不同处理下的纳米农药对水稻病虫害的防治效果。【结果】2种无人机喷施的雾滴在各采样点上的沉积量随农药喷洒量的增加而增加,当农药喷洒量为66.67和100.00 mL·hm~(–2)时,单旋翼机在各采样点上的沉积量比喷洒量为46.67 mL·hm~(–2)时的分别增加了48.50%和137.73%,多旋翼机分别增加了66.60%和111.88%。作业高度影响了无人机喷施雾滴在采样点上的沉积量和沉积均匀性,当作业高度由1.5 m增加至2.5 m时,单旋翼机喷施的雾滴在采样点上的沉积量和沉积均匀性分别降低了19.3%和53.6%、多旋翼机分别降低了48.7%和22.9%。在4种喷施条件下,单旋翼机在采样点上的沉积量比多旋翼机同条件下分别高出85.8%、26.5%、59.4%和123.4%。单旋翼机在1.5 m和46.67 mL·hm~(–2)作业条件下,农药对稻飞虱Nilaparvata lugens、稻纵卷叶螟Cnaphalocrocis medinalis、稻秆潜蝇Chlorops oryzae、细菌性条纹病及稻瘟病5种水稻病虫害的防治效果最好,防效分别为87.63%、76.67%、84.08%、59.26%和82.33%;多旋翼机在1.5 m和66.67 mL·hm~(–2)作业条件下,农药对上述水稻病虫害的防治效果最好,防效分别为86.54%、78.62%、89.47%、66.67%和83.33%。【结论】2种植保无人机由于旋翼风场不同,导致雾滴沉积效果不同,单旋翼植保无人机喷施效果更好;2种无人机喷施的农药最终对水稻病虫害的防治效果无明显差异,且防治效果均达到国家防效标准。  相似文献   

3.
为探究多旋翼植保无人机作业参数对火龙果树冠层雾滴沉积分布的影响,应用极飞P20多旋翼植保无人机对火龙果树进行喷雾作业,采用正交试验对主要作业参数(航线方向、作业高度与作业速度)进行优选。结果表明,植保无人机对火龙果树施药在航线平行于种植行、作业高度为1.5 m (距离冠层顶部高度)、作业速度为1.5 m·s-1条件下,雾滴在火龙果树各个冠层的雾滴沉积密度,覆盖率最大。极差分析结果显示,作业速度是雾滴沉积密度和火龙果树上层雾滴覆盖率的最主要影响因素;而作业高度是火龙果树中层、下层雾滴覆盖率和雾滴分布均匀性的最主要影响因素,当作业高度为1.5 m 时雾滴分布均匀性最好。根据P20多旋翼植保无人机喷雾在火龙果树冠层的雾滴沉积分布情况,对植保无人机的作业参数进行了优选,为提高植保无人机施药雾滴在火龙果树冠层的有效沉积分布,实现所选机型在火龙果树病虫害防控中的高效应用奠定了基础。  相似文献   

4.
为探究多旋翼植保无人机作业参数对火龙果树冠层雾滴沉积分布的影响,应用极飞P20多旋翼植保无人机对火龙果树进行喷雾作业,采用正交试验对主要作业参数(航线方向、作业高度与作业速度)进行优选。结果表明,植保无人机对火龙果树施药在航线平行于种植行、作业高度为1.5 m (距离冠层顶部高度)、作业速度为1.5 m·s-1条件下,雾滴在火龙果树各个冠层的雾滴沉积密度,覆盖率最大。极差分析结果显示,作业速度是雾滴沉积密度和火龙果树上层雾滴覆盖率的最主要影响因素;而作业高度是火龙果树中层、下层雾滴覆盖率和雾滴分布均匀性的最主要影响因素,当作业高度为1.5 m 时雾滴分布均匀性最好。根据P20多旋翼植保无人机喷雾在火龙果树冠层的雾滴沉积分布情况,对植保无人机的作业参数进行了优选,为提高植保无人机施药雾滴在火龙果树冠层的有效沉积分布,实现所选机型在火龙果树病虫害防控中的高效应用奠定了基础。  相似文献   

5.
植保无人机旋翼对雾滴分布的影响试验研究   总被引:1,自引:0,他引:1  
[目的]探究植保无人机旋翼对雾滴分布的影响。[方法]将植保无人机机体分别固定在4种不同高度下,比较旋翼工作与旋翼不工作2种状态下的雾滴分布情况。[结果]旋翼降低了雾滴沉积量,但雾滴分布更加宽泛,小型旋翼无人机作业高度在2.0 m处,雾滴沉积效果最佳。[结论]该研究可为制定植保无人机操作规范提供参考。  相似文献   

6.
为了探究植保无人机的喷施效果,进行了多旋翼植保无人机在不同高度下和旋翼处于不同状态下对雾滴沉积量影响的试验。结果表明,当旋翼不工作时随着高度的升高,沉积量下降,而当旋翼工作时雾滴分布趋于均匀,雾滴沉积范围加大,但雾滴沉积量显著减少。  相似文献   

7.
【目的】探索植保无人飞机(unmanned aerial vehicle,UAV)喷雾在柑橘冠层的雾滴沉积分布规律和无人机植保作业参数,并开展柑橘木虱(Diaphorina citri)和潜叶蛾(Phyllocnistis citrella)无人飞机防控实效研究,评估防治效果、作业效率和综合效益,为UAV低空低容量喷雾技术的建立和在柑橘产区的应用提供依据。【方法】在丰产期的鸡尾葡萄柚园,将4行约100株自然圆头形树冠修剪成开心形,另选4行自然圆头形树冠作为对照。在采样植株冠层内部搭设立体网格架,网格架垂直方向分上、中、下3层,每层设置3×5共计15个采样点,每株树共计45个观察点,每个点放置两张4 cm×6 cm铜版纸卡作为雾滴承接载体。以0.5%诱惑红水溶液作为示踪剂,六旋翼UAV分别在不同飞行作业速度(v_1=0.7 m·s~(-1)、v_2=1.2 m·s~(-1)、v_3=1.7 m·s~(-1))和不同作业高度(h_1=1.0 m、h_2=1.5 m、h_3=2.0 m)处理下喷雾。每次处理后采集纸卡,通过300 dpi分辨率扫描仪扫描,计算纸卡上诱惑红水溶液的铺展面积百分数,计为雾滴在柑橘叶片上的雾滴覆盖率,分析所喷洒雾滴在植株冠层的沉积分布规律,优选作业参数。以管道系统人工手持喷枪喷雾为对照,通过筛选出的优选作业参数开展柑橘木虱与潜叶蛾的UAV防控试验验证。施药日期依据果园气候和害虫发生情况确定,试验周期从2017年4月始到10月止,即此园春梢萌发到秋梢老熟的全部时期,其中包括了全年柑橘木虱和潜叶蛾危害高峰期。每次作业时,记录UAV和人工喷雾的作业量、耗费时间、用药量、用工人次、用水量、农药价格及其他支出等信息,喷药后每隔15 d左右调查一次虫口情况。【结果】柑橘园UAV喷雾施药,在兼顾作业效率和有效雾滴沉积的情况下,以开心形树冠、飞行高度1.0 m和飞行速度1.7 m·s~(-1)为作业参数,其作业雾滴穿透和分布效应较佳,平均雾滴覆盖率达19.1%;采用此作业参数,在柑橘园实施柑橘木虱与潜叶蛾的UAV防控试验,与人工喷雾作业相比,防治效果不存在显著性差异,但UAV喷雾作业的效率、总成本、施药量分别是人工喷雾的45倍、63.3%和10%。【结论】基于适宜的喷雾作业参数和树形结构的柑橘木虱和潜叶蛾多旋翼UAV飞防作业,可获得较好的防治效果,并且可显著提高作业效率、显著减少农药施用量,降低植保作业的综合成本。  相似文献   

8.
无人机喷施雾滴在水稻群体内的沉积分布及防效研究   总被引:1,自引:0,他引:1  
为阐明3WWDZ-10B型植保无人机喷雾雾滴在水稻生长后期的沉积效果,研究了飞行作业高度对无人机喷雾雾滴在水稻群体内沉积分布的影响,比较了无人机喷施与人工喷施75%戊唑醇?肟菌酯水分散粒剂(WDG)对水稻稻瘟病(Pyricularia grisea Sacc.)和纹枯病(Rhizoctonia solani Kühn)的防治效果。结果表明,3WWDZ-10B型植保无人机在作业高度2 m时雾滴的沉积覆盖率和分布密度最高,其次为作业高度2.5 m处理。在同一作业高度下,雾滴沉积覆盖率和分布密度由大到小依次为水稻上层、中层和下层,作业高度对雾滴分布均匀性无显著影响。作业高度对雾滴沉积穿透性有较大影响,在作业高度1.2~2.5 m,雾滴沉积穿透性随着作业高度的上升而逐渐增强。在不同作业高度下,雾滴粒径的体积中值直径(DV.5)主要分布在396~968μm,其中在水稻上、中层以作业高度2 m处理的DV.5最大,而在水稻下层以作业高度3.0 m处理的DV.5最大。在不同作业高度下,雾滴粒径相对粒谱宽度变化不大;在同一作业高度下,水稻上、中层的相对粒谱宽度均大于下层。在不同作业高度下,75%戊唑醇?肟菌酯WDG对水稻稻瘟病和纹枯病防效均随着使用剂量的增加而显著上升;中、低使用剂量(160 g/hm2和120 g/hm2)防效随着雾滴密度的增加而上升,而高使用剂量(200 g/hm2)防效与雾滴密度关系不大。雾滴大小对防效无显著影响。在作业高度1.5~2.5 m,75%戊唑醇·肟菌酯WDG无人机喷施对水稻稻瘟病和纹枯病防效与人工喷施处理无显著差异,而其经济效益约为人工喷施的1.5倍。该研究为3WWDZ-10B型植保无人机在水稻病害防治上的应用提供技术依据。  相似文献   

9.
为研究多旋翼植保无人机低空喷施作业过程中,水稻冠层雾滴沉积的分布规律,本研究在水稻冠层叶片正反面分别放置了雾滴测试卡,收集植保无人机喷洒过程中的雾滴信息。本研究使用清水代替农药来模拟喷施过程,利用雾滴沉积分析软件i DAS分析雾滴测试卡,得出植保无人机雾滴在水稻冠层的分布结果。试验结果表明:(1)植保无人机有效喷幅内旋翼下方区域的雾滴覆盖效果最好,而远离旋翼的位置,雾滴覆盖率较差。雾滴冠层覆盖率为54.86%。(2)水稻冠层雾滴扩散比为0.38,平均粒径范围处于110~140um之间,粒径大小适合用于植物病虫的防治。本研究在一定程度上说明了植保无人机雾滴在水稻冠层方向的沉积分布情况,对于利用无人机进行植保作业、提高药剂利用率、降低农药化肥污染具有指导意义。  相似文献   

10.
应用植保无人机喷施叶面阻控剂有利于提高喷施均匀度、减少劳动力成本、提升作业效率。为规范植保无人机喷施叶面阻控剂田间作业,确保作业技术效果,本研究以大疆T16植保无人机为作业机,研究了喷施"美鑫隆"锌锰型叶面阻控剂以降低水稻Cd积累的最佳飞行高度、飞行速度和喷雾剂量等参数。结果表明,喷施锌锰型叶面阻控剂最佳降镉(Cd)效果的植保无人机作业参数分别为:喷施叶面阻控剂质量分数为12%,喷头总流量为3.6 L·min~(-1),飞行高度3 m,飞行速度5 m·s~(-1)。第二年在最佳参数下喷施叶面阻控剂,黄华占和湘晚籼13号的糙米Cd含量分别比对照下降了0.24 mg·kg~(-1)和0.12 mg·kg~(-1),降Cd率分别达到52.7%和62.1%(P0.01)。  相似文献   

11.
植保无人机航空喷施飞行质量的试验与评价   总被引:1,自引:0,他引:1  
【目的】植保无人机的飞行质量是航空喷施作业效果的重要影响因素。探讨不同类型和不同控制方式的植保无人机航空喷施作业的飞行质量和作业效果,为航空喷施作业机型的选择和植保无人机技术的改进提供数据支持和指导。【方法】采用微轻型机载北斗导航定位系统,获取半自主飞行控制模式下单旋翼油动植保无人机(SoUAV)、单旋翼电动植保无人机(Se-UAV)和半自动四旋翼电动植保无人机(Saqe-UAV)以及全自主控制模式下四旋翼电动植保无人机(Faqe-UAV)的飞行轨迹和飞行参数,并对飞行质量(包括飞行参数均匀性、航线精度和航线长度均匀性)进行了分析和评价。【结果】四旋翼植保无人机飞行质量优于单旋翼植保无人机,且Faqe-UAV飞行质量优于Saqe-UAV;Faqe-UAV在整个作业区域内的飞行参数变化的均匀性最佳,飞行速度和飞行高度参数变化的均匀性分别为3.66%和4.67%;Faqe-UAV的平均飞行航线偏差最小,为0.172 m。飞行方向对Saqe-UAV飞行参数的影响显著,但对Faqe-UAV飞行参数的影响不显著;航线长度对Faqe-UAV飞行参数的影响显著,但对SaqeUAV飞行速度的影响不显著。【结论】在航空喷施作业过程中,全自主控制方式下四旋翼电动植保无人机飞行质量最佳,对药液喷施质量更有保障。  相似文献   

12.
侧向风对航空植保无人机平面扇形喷头雾滴飘移的影响   总被引:2,自引:0,他引:2  
目的 侧向风是影响植保无人机航空喷施雾滴飘移和作业效果的主要因素。探究航空植保喷施过程中侧向风对雾滴沉积和飘移的影响,为植保无人机航空喷施作业参数的选择和作业关键部件的改进提供数据支持和理论指导。方法 以常用平面扇形喷头Lechler系列的LU 120-015和LU 120-03标准压力喷头为研究对象,基于计算流体力学离散相模型的粒子跟踪技术,在适宜的边界条件下对喷施作业过程中风洞内雾滴流场和农药喷洒离散相进行模拟试验;通过仿真模拟对平面扇形喷头喷施的雾滴沉积和飘移分布情况进行可视化分析,探究雾滴粒子在不同侧风风速条件下的飘移特性;在农业航空专用风洞中,采用近似条件对雾滴的沉积飘移特性进行试验验证和分析。结果 仿真模拟结果表明,随着侧向风速的增加,离散相雾滴粒子飘移程度越严重,雾滴水平飘移越明显。随着侧向风速的增加,模拟离散相雾滴粒子的准确沉积率(Ra)呈指数下降,由14.11%下降到0.66%;水平飘移率(Rh)呈线性增加,由14.25%增加到60.58%。风洞试验结果表明,在侧风风速分别为1、3和6 m/s的条件下,雾滴的Rh分别为0.4%、48.1%和75.1%,且雾滴在风洞内部会随着侧风风速的增加发生一定程度的卷扬现象。仿真模拟与风洞测试试验的Rh具有显著相关性(R2=0.963,P<0.05)。结论 仿真模拟对航空喷施条件下的雾滴飘移具有较好的预测效果;采用仿真模拟辅助风洞试验测试的方法,可以比较准确地得出航空植保无人机作业中常用平面扇形喷头的雾滴沉积与飘移情况。  相似文献   

13.
采用Lab VIEW实现植保无人机变量喷洒过程的地面PC监控系统,并通过蓝牙实现基于Android平台的手机监控系统.经调试,该系统在PC机和手机中实现了喷洒流量的在线调节以及实际流量、飞行参数和地面监测点风场数据等信息的实时检测.该系统性能良好,功能实用,能满足变量喷洒地面监控系统的基本需求.  相似文献   

14.
【目的】探索植保无人飞机(unmanned aerial vehicle,UAV)喷雾在柑橘冠层的雾滴沉积分布规律和无人机植保作业参数,并开展柑橘木虱(Diaphorina citri)和潜叶蛾(Phyllocnistis citrella)无人飞机防控实效研究,评估防治效果、作业效率和综合效益,为UAV低空低容量喷雾技术的建立和在柑橘产区的应用提供依据。【方法】在丰产期的鸡尾葡萄柚园,将4行约100株自然圆头形树冠修剪成开心形,另选4行自然圆头形树冠作为对照。在采样植株冠层内部搭设立体网格架,网格架垂直方向分上、中、下3层,每层设置3×5共计15个采样点,每株树共计45个观察点,每个点放置两张4 cm×6 cm铜版纸卡作为雾滴承接载体。以0.5%诱惑红水溶液作为示踪剂,六旋翼UAV分别在不同飞行作业速度(v1=0.7 m·s-1、v2=1.2 m·s-1、v3=1.7 m·s-1)和不同作业高度(h1=1.0 m、h2=1.5 m、h3=2.0 m)处理下喷雾。每次处理后采集纸卡,通过300 dpi分辨率扫描仪扫描,计算纸卡上诱惑红水溶液的铺展面积百分数,计为雾滴在柑橘叶片上的雾滴覆盖率,分析所喷洒雾滴在植株冠层的沉积分布规律,优选作业参数。以管道系统人工手持喷枪喷雾为对照,通过筛选出的优选作业参数开展柑橘木虱与潜叶蛾的UAV防控试验验证。施药日期依据果园气候和害虫发生情况确定,试验周期从2017年4月始到10月止,即此园春梢萌发到秋梢老熟的全部时期,其中包括了全年柑橘木虱和潜叶蛾危害高峰期。每次作业时,记录UAV和人工喷雾的作业量、耗费时间、用药量、用工人次、用水量、农药价格及其他支出等信息,喷药后每隔15 d左右调查一次虫口情况。【结果】柑橘园UAV喷雾施药,在兼顾作业效率和有效雾滴沉积的情况下,以开心形树冠、飞行高度1.0 m和飞行速度1.7 m·s-1为作业参数,其作业雾滴穿透和分布效应较佳,平均雾滴覆盖率达19.1%;采用此作业参数,在柑橘园实施柑橘木虱与潜叶蛾的UAV防控试验,与人工喷雾作业相比,防治效果不存在显著性差异,但UAV喷雾作业的效率、总成本、施药量分别是人工喷雾的45倍、63.3%和10%。【结论】基于适宜的喷雾作业参数和树形结构的柑橘木虱和潜叶蛾多旋翼UAV飞防作业,可获得较好的防治效果,并且可显著提高作业效率、显著减少农药施用量,降低植保作业的综合成本。  相似文献   

15.
为优化微藻-细菌共生体系对畜禽养殖废水中碳氮磷去除的参数条件,利用响应面分析法(Response surface methodology,RSM)中的Box-Behnken中心组合设计(BBC),以接种比例、曝气量以及初始氨氮浓度为试验变量,以污染物去除率为响应值开展试验。响应面分析结果表明,对于COD去除的最佳条件为:活性污泥与微藻接种比例为6.0(m/m)、曝气量2.0 L·min~(-1)、初始氨氮浓度750 mg·L~(-1),此时COD去除率达92%以上。对于总氮(Total nitrogen,TN)的去除,当接种比例5.0(m/m)、曝气量1.5 L·min~(-1)、初始氨氮浓度750 mg·L~(-1)时,其去除率可达最大值(53%)。而对于磷酸盐的去除,当接种比例6.0(m/m)、曝气量1.5 L·min~(-1)、初始氨氮浓度600 mg·L~(-1)时,试验前96 h内便可达到100%的去除率。进一步对生物量检测发现,初始条件分别为曝气量1.5 L·min~(-1)、初始氨氮浓度900 mg·L~(-1)、接种比例4.0(m/m)或曝气量1.0 L·min~(-1)、初始氨氮浓度750 mg·L~(-1)、接种比例4.0(m/m)时,微藻生物量产量最高,可达到1.63~1.64 g·L~(-1)。研究表明,通过响应面法可以优化藻菌共生体系对畜禽养殖废水的处理工艺。对于不同的目标污染物,具有不同的最优参数组合。综合考虑各因素对各目标污染物去除效果的影响,可以选择废水处理工艺最优参数组合。通过回收在废水处理过程中生长的藻菌共生体用于后续生物质利用,可实现良好的经济价值,提高该工艺在污水深度处理中的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号