首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
水稻籽粒蛋白质积累的模拟模型研究   总被引:5,自引:1,他引:5  
 【目的】蛋白质含量是稻米的重要品质指标。通过解析和综合水稻植株氮素积累和转运的动态规律及其与环境因子和基因型的定量关系,构建一个基于氮流生理过程的水稻籽粒蛋白质形成模拟模型,以期为水稻生产中籽粒蛋白质指标的动态预测和管理决策提供量化工具。【方法】以田间试验资料为基础,结合已有水稻生长模型,采用生理发育时间作为定量生育进程的尺度,通过解析和综合水稻植株氮素积累和转运动态的基本规律及其与环境因子和基因型的定量关系,构建花前植株氮素吸收与积累、花后氮素吸收与转运及籽粒蛋白质形成过程的模拟模型。【结果】利用不同年份、不同生态点、不同品种类型和不同肥水条件下的大田试验资料对籽粒蛋白质形成模型进行了检验,籽粒蛋白质含量模拟值与观测值之间的决定系数大于0.84,根均方差(RMSE)小于0.26%。表明模型具有较好的通用性和可靠性,可以较准确地预测不同条件下的水稻籽粒蛋白质含量与蛋白质产量。【结论】基于植株氮素积累和转运的生理生态过程,以生理发育时间为主线,建立了较为简化的水稻籽粒蛋白质积累动态的模拟模型,模型的研究不仅为定量预测不同生态与肥水条件下不同水稻品种籽粒蛋白质含量与蛋白质产量的动态变化奠定了基础,而且是对国内外现有水稻生长与产量模拟模型的发展和完善。  相似文献   

2.
【目的】研究“1管6滴灌模式”下,滴灌春小麦水分截获量及不同品种远近行氮素积累与转运特征,分析其对籽粒蛋白质含量的影响。【方法】在“1管6滴灌模式”下,春小麦品种来自新疆、内蒙古、宁夏等不同地区的7个品种(系),研究距滴管带远近不同行(距滴管带最近行记为R1、中间行记为R2、最远行记为R3)在小麦发育关键时期开花期与成熟期植株各部位的氮素积累量。【结果】“1管6滴灌模式”下,小麦生长的重要阶段拔节期-孕穗期与孕穗期-开花期远行R3灌水截获量为59与56 mm,与该时段最大蒸散量62与43 mm相近;小麦品种开花期各器官氮营养指数、开花期与成熟期各器官氮素积累量、转运氮、籽粒蛋白质的行间降低幅度均小于灌水截获量的降低幅度(R2与R3相对于R1依次降低33.6%与60.3%);小麦花前氮素转运率、转运氮对籽粒的贡献率、氮收获指数R2与R3相对于R1依次升高(津强7号花前氮素转运率、转运氮对籽粒的贡献率依次降低);各器官开花期氮素积累量与再转运氮素呈正相关,相关系数为0.811,茎鞘、叶片、穗的再转运氮与对应的开花期氮营养指数呈正相关,相关系数分别为0.403、0.643、0.717,籽粒氮素积累量与再转运氮、花后氮素积累均呈正相关,相关系数分别为0.498与0.737。【结论】“1管6滴灌模式”下,小麦各行作物生长的关键时期不会受到水分胁迫;植株体内营养状况越好,花前氮素转运量越大;籽粒氮素主要来源于花前氮素的转运,“1管6滴灌模式”下,远行R2与R3的花前氮素转运率、转运氮对籽粒的贡献率、氮收获指数相对于R1会升高。  相似文献   

3.
探讨和分析不同播期条件下高产冬小麦(Triticum aestivum)品种的氮素吸收利用、转运和高效利用特征,确定不同高产小麦品种的适宜播期.采用大田试验方法,系统分析早播(10月3日)、适播(10月12日)和晚播(10月30日)3个水平对不同品种高产小麦主要生育期植株含氮率、氮素积累量、花前和花后植株营养器官氮素积累和分配、氮素再分配等特征及产量、品质和氮素利用效率等的影响.结果表明,播期影响生育期小麦植株的含氮率、氮的吸收和积累.小麦地上部营养器官氮积累量、氮再分配量、转运氮素对籽粒氮的贡献率花前高于花后.晚播条件下籽粒氮素的积累量主要依赖于花前氮吸收;适播和早播条件下花后吸收的氮素对籽粒氮素的积累占有较大比例.高产不同基因型小麦品种在不同生育期的氮素吸收强度和相对累积速率不同,花前氮素积累量、花前吸收氮素向籽粒的再分配以及转运率、花后氮素同化量以及花后吸收氮素对籽粒的贡献率等在不同小麦品种间差异显著.早播和适播条件下,不同品种小麦均获得比晚播较高的籽粒产量.氮素收获指数和籽粒吸氮量适播条件下较高,随播期的延迟籽粒吸氮量显著降低,相反,氮素利用效率晚播条件下最高.综合考虑,在农业生产中,3个高产小麦品种均适宜早播和适播;在晚播条件下应优先选择‘周麦22’.  相似文献   

4.
钾素水平对小麦氮素积累和运转及籽粒蛋白质形成的影响   总被引:14,自引:1,他引:14  
 【目的】试图阐明施钾对小麦植株氮素积累、运转和籽粒蛋白质形成的影响机理。【方法】在池栽条件下,以宁麦9号(低蛋白)和扬麦10号(中蛋白)两个蛋白质含量不同的冬小麦品种为材料,研究了不同施钾水平下植株氮素积累、运转和开花期叶片含钾量的特征及其与籽粒蛋白质和各组分含量的关系。【结果】与不施钾相比,施钾提高了籽粒蛋白质含量,极显著提高了球蛋白和醇溶蛋白含量,由于对谷蛋白含量的作用甚微,因而显著降低了谷/醇比。施钾提高了开花期叶片含钾量进而显著促进了小麦植株花前氮素的积累和贮存氮素的运转,较高的开花期叶片钾营养水平显著提高了扬麦10号的花后氮积累,但对宁麦9号花后氮积累的促进作用较小。两种类型小麦的籽粒蛋白质含量对施钾的响应程度不同,扬麦10号大于宁麦9号。【结论】施钾条件下,因较高开花期叶片含钾量而显著提高的宁麦9号花前贮存氮素运转量和扬麦10号花后氮积累量,分别是这两种类型小麦籽粒蛋白质含量增加的重要生理原因。在本试验条件下,宁麦9号和扬麦10号的适宜施钾水平分别为K2O 150、225 kg·ha-1。  相似文献   

5.
【目的】针对黄土高原旱地小麦降水少且分配不均、水分和氮素利用效率低的问题,探索旱地小麦覆盖保水和氮肥施用的最佳技术途径。【方法】于2010—2013年在山西省闻喜县邱家岭村开展试验,主区为覆盖方式,设夏闲期深翻后覆盖与不覆盖2个水平,副区为施氮量,设低(纯氮75 kg·hm~(-2))、中(纯氮150 kg·hm~(-2))、高(纯氮225 kg·hm~(-2))3个水平,明确年际间夏闲期深翻覆盖配施氮肥对旱地麦田土壤水分、植株氮素利用、产量的影响。【结果】各生育时期土壤水分、植株氮素积累量、花前氮素转运量及其对籽粒的贡献率均以丰水年最高,欠水年最低,丰水年、平水年较欠水年分别提高产量80%、69%,提高水分利用效率7%、20%,提高氮素利用效率6%、5%。夏闲期覆盖较不覆盖,播种期0—300 cm土壤蓄水量显著提高,达50—62 mm;花前各生育时期土壤蓄水量显著提高,各生育时期植株氮素积累量提高,籽粒氮素积累量显著提高;丰水年和平水年拔节后各阶段氮素积累量显著提高,花前叶片和穗氮素转运量对籽粒贡献率提高;欠水年花前各阶段氮素积累量及其所占比例提高,花前茎秆+茎鞘氮素转运量对籽粒贡献率显著提高;产量显著提高,达23%—41%;水分利用效率提高3%—15%;丰水年和平水年氮素利用效率显著提高,达14%—26%,欠水年低氮条件下也显著提高,达10%。丰水年配施高氮,平水年和覆盖条件下的欠水年配施中氮,不覆盖条件下的欠水年配施低氮,孕穗期前土壤蓄水量、产量和水分利用效率均较高。丰水年配施高氮,花前氮素转运量和花后氮素积累量均最高,且各处理间差异显著,主要是由于促进花前叶片和穗中氮素向籽粒转运;平水年和覆盖条件下的欠水年配施中氮,花前氮素转运量和籽粒氮素积累量最高,且各处理间差异显著,平水年主要促进叶片和穗中氮素向籽粒转运,穗叶片,覆盖条件下的欠水年主要促进茎秆+茎鞘和穗中氮素向籽粒中转运,茎秆+茎鞘穗;不覆盖条件下的欠水年配施低氮,籽粒氮素积累量最高,且各处理间差异显著,花前氮素转运量及其对籽粒贡献率最高,茎秆+茎鞘和穗氮素转运量及其对籽粒贡献率最高,且各处理间差异显著。【结论】旱地麦田夏闲期覆盖有利于蓄积降水,有利于促进丰水年和平水年小麦生育中后期氮素积累,促进叶片和穗中氮素向籽粒转运;有利于促进欠水年生育前中期氮素积累,促进茎秆+茎鞘中氮素向籽粒转运。丰水年施氮225kg·hm~(-2),平水年和覆盖条件下的欠水年施氮150 kg·hm~(-2),不覆盖条件下的欠水年施氮量75 kg·hm~(-2)可实现产量和水分利用效率的同步提升。  相似文献   

6.
不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响   总被引:31,自引:4,他引:27  
王小燕  于振文 《中国农业科学》2008,41(10):3015-3024
【目的】研究灌溉量和施氮量对氮素吸收转运特性的影响及其与籽粒蛋白质含量的关系。【方法】试验在山东农业大学实验农场防雨池栽条件下进行,选取高产强筋小麦品种济麦20为试验材料。利用15N同位素示踪技术,于开花期和收获期分别测定各器官中不同来源氮素的吸收量与分配比例、成熟期籽粒产量、水分利用率等。【结果】施氮量和灌溉量对植株吸氮量、籽粒产量、籽粒蛋白质含量的影响存在互作,其中灌溉量的效应大于施氮量的效应,是影响以上诸项指标的主导因素。同一施氮量条件下,增加灌溉量,成熟期氮素吸收总量增加,但籽粒蛋白质含量降低;随灌溉量增加,土壤氮的吸收量和占总氮量的比例增大,肥料氮的吸收量和占总氮量的比例减小,表明增加灌溉量导致氮素吸收总量的增加主要是通过提高土壤氮的吸收量和占总氮量的比例实现的;增加灌溉量对籽粒蛋白质含量的稀释效应则主要表现为,增加灌溉量抑制开花后营养器官中积累的氮素向籽粒的转移,最终不利于籽粒蛋白质含量的提高。灌溉量不变,施氮量由120 kg•ha-1增加到240 kg•ha-1,各营养器官中氮素的积累量增加,但开花后营养器官中积累的氮素向籽粒的转移率降低,最终籽粒蛋白质含量亦不高。【结论】施氮量为120 kg•ha-1,全生育期灌溉底墒水和拔节水(W2N1)的处理,小麦植株吸收的氮素向籽粒分配量大,开花前营养器官中积累的氮素向籽粒转移率高,籽粒蛋白质含量最高,水分利用率亦最高,但籽粒产量仅为5 534.26 kg•ha-1;施氮量为120 kg•ha-1,全生育期灌溉底墒水、拔节水和开花水(W3N1)的处理,小麦植株吸收的氮素向籽粒分配量、氮素向籽粒转移率、水分利用率均较高,籽粒蛋白质含量达14.54%,籽粒产量达7 411.37 kg•ha-1,是本试验的最佳处理。  相似文献   

7.
探讨和分析不同播期条件下高产冬小麦(Triticum aestivum)品种的氮素吸收利用、转运和高效利用特征,确定不同高产小麦品种的适宜播期。采用大田试验方法,系统分析早播(10月3日)、适播(10月12日)和晚播(10月30日)3个水平对不同品种高产小麦主要生育期植株含氮率、氮素积累量、花前和花后植株营养器官氮素积累和分配、氮素再分配等特征及产量、品质和氮素利用效率等的影响。结果表明,播期影响生育期小麦植株的含氮率、氮的吸收和积累。小麦地上部营养器官氮积累量、氮再分配量、转运氮素对籽粒氮的贡献率花前高于花后。晚播条件下籽粒氮素的积累量主要依赖于花前氮吸收;适播和早播条件下花后吸收的氮素对籽粒氮素的积累占有较大比例。高产不同基因型小麦品种在不同生育期的氮素吸收强度和相对累积速率不同,花前氮素积累量、花前吸收氮素向籽粒的再分配以及转运率、花后氮素同化量以及花后吸收氮素对籽粒的贡献率等在不同小麦品种间差异显著。早播和适播条件下,不同品种小麦均获得比晚播较高的籽粒产量。氮素收获指数和籽粒吸氮量适播条件下较高,随播期的延迟籽粒吸氮量显著降低,相反,氮素利用效率晚播条件下最高。综合考虑,在农业生产中,3个高产小麦品种均适宜早播和适播;在晚播条件下应优先选择‘周麦22’。  相似文献   

8.
通过15N微区试验,研究晚播条件下不同密度小麦氮素吸收与利用的差异,探索提高晚播小麦氮素利用效率的生理机制.结果 表明:稻茬晚播小麦开花期植株吸收的氮素67%~71%、成熟期植株吸收的氮素53%~70%来自土壤中氮素,15N微区试验结果表明开花期植株对肥料15N的吸收以基施15N为主,成熟期吸收追施15N比例则高于基施15N.花后营养器官中的肥料15N向籽粒中转运,其中茎鞘转移量最大,转移氮素以基施15N为主.增加密度可显著增加成熟期植株对追肥中肥料15N的吸收量及占总氮比例.高密度条件下籽粒中氮素的积累提高,主要是增加营养器官中追肥15N向籽粒中转运.这说明晚播条件下适度增加密度有利于提高植株对肥料氮的吸收,减少土壤中肥料残留,提高营养器官中氮素向籽粒中的运转量,结合氮肥后移措施有利于提高氮素利用率.  相似文献   

9.
【目的】探明啤酒大麦氮素积累与转运分配的关系.【方法】以甘肃啤酒大麦‘甘啤5号’‘甘啤6号’和‘甘啤7号’为材料,在施氮量分别为7.5g/m2、15g/m2、22.5g/m2并分区正交试验条件下,研究了大麦茎、叶和穗氮素积累和转运分配模型并进行了回归分析.【结果】施氮量不同,从扬花期到成熟期大麦叶片、茎秆、穗颖以及籽粒中氮含量变化显著.随着施氮量的增加,大麦氮素积累和转运量呈近似直线上升的趋势,但在施氮量超过15g/m2之后,氮素积累和转运趋向饱和.氮素转运贡献率随施氮水平的提高呈二次曲线型变化规律,营养器官对籽粒氮的贡献率在58.23%至64.58%之间.【结论】本试验条件下,甘啤大麦合理施氮量为15.81~16.51g/m2.  相似文献   

10.
【目的】分析晚播对弱筋小麦氮素积累与利用的影响。【方法】以弱筋小麦品种扬麦13和宁麦13为材料,在不同氮素水平下(N210:210 kg/hm2、N270:270 kg/hm2)设置适播与晚播处理,分析弱筋小麦氮素积累与利用情况。【结果】弱筋小麦开花期植株氮素积累量主要来源于土壤氮(70.48%~85.51%);成熟期籽粒氮素积累量主要来源于土壤氮(74.35%~86.86%);成熟期营养器官氮素积累主要来源于肥料氮(52.88%~82.12%)。与适期播种相比,晚播显著增加了小麦成熟期单株氮素积累量、开花期来源于土壤氮的积累量、成熟期营养器官和籽粒来源于土壤氮及肥料氮的积累量。弱筋小麦花前营养器官积累氮素向籽粒的转运率为55.52%~79.78%,氮素积累转移的贡献率为38.91%~77.99%。适期播种处理下,花前营养器官氮素积累转运量、转运率与贡献率分别为23.47 mg/株、75.23%和71.46%,而晚播显著降低花前营养器官氮素积累转运量、转运率与贡献率(分别为19.87 mg/株、59.74%和50.31%)。各处理小麦氮肥生产效率为25.25~44.27 kg/kg,氮素利用效率为15.75%~41.43%,氮素收获指数为0.730~0.844。同一因素下不同水平比较表明:晚播显著降低籽粒产量、氮肥生产效率、氮素利用效率及氮素收获指数,但播期对籽粒蛋白质含量无显著影响。在相同品种和氮水平处理下,晚播较适期播种籽粒产量降低。【结论】弱筋小麦晚播不利于籽粒产量的提高和氮素利用效率的提高,因此为获得较高产量水平与氮素利用效率,应尽量保证弱筋小麦适宜播种期。  相似文献   

11.
Protein concentration of grain is an important quality index of rice, and formation of grain protein largely depends on pre-anthesis nitrogen assimilation and post-anthesis nitrogen remobilization in the rice plant. The primary objective of this study was to develop a simplified process model for simulating nitrogen accumulation and remobilization in plant and protein formation in rice grains on the basis of an established rice growth model. Six field experiments, involving different years, eco-sites, varieties, nitrogen rates, and irrigation regimes, were conducted to obtain the necessary data for model building, genotypic parameter determination, and model validation. Using physiological development time (PDT) as general time scale of development progress and cultivar-specific grain protein concentration as genotypic parameter, the dynamic relationships of plant nitrogen accumulation and translocation to environmental and genetic factors were quantified and synthesized in the present model. The pre-anthesis nitrogen uptake rate by plant changed with the PDT in a negative exponential pattern, and post-anthesis nitrogen uptake rate changed with leaf area index (LAI) in an exponential equation. Post-anthesis nitrogen translocation rate depended on the plant nitrogen concentration and dry weight at anthesis as well as residue nitrogen concentration of plant at maturity. The nitrogen for protein synthesis in grains came from two sources: the nitrogen pre-stored in leaves, stem and sheath before anthesis and then remobilized after anthesis, and the nitrogen absorbed directly by plant after anthesis. Finally, the model was tested by using the data sets of different years, eco-sites, varieties, and N fertilization and irrigation conditions with the root mean square errors (RMSE) 0.22%–0.26%, indicating the general and reliable features of the model. It is hoped that by properly integrating with the existing rice growth models, the present model can be used for predicting grain protein concentration and grain protein yield of rice under various environments and genotypes.  相似文献   

12.
Tissue Nitrogen and Fructan Translocation in Bread Wheat   总被引:5,自引:0,他引:5  
Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in nitrogen and fructan translocation and their relationships to grain yield and protein content. Effects indicated that significant genotype differences existed for nitrogen accumulation at anthesis and fructan at milk stage and their translocation. Two high protein genotypes, Cunningham and PST90-19, accumulated more nitrogen before anthesis and had greater nitrogen translocation, but lower post-anthesis nitrogen uptake,than two low protein genotypes, SUN109A and TM56. Among plant parts, leaves were the major storage for tissue nitrogen and provided the overwhelming proportion of the total nitrogen translocation, whereas for fructan accumulation and translocation it was the stems. The two high protein genotypes had a higher percentage of their grain nitrogen derived from nitrogen translocation, while for the two low protein ones, it was from postanthesis nitrogen uptake and assimilation. Increasing nitrogen application increased nitrogen accumulation and translocation, but decreased fructan accumulation and translocation. High grain protein content was associated with high nitrogen translocation from leaves, stems and the total plant, while high grain yield was related to high fructan translocation from stems and the total plant. Fructan translocation was negatively correlated to grain protein content. Nitrogen and fructan translocation were not correlated with each other.  相似文献   

13.
施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响   总被引:24,自引:1,他引:23  
【目的】在黄淮冬麦区,研究施氮量对旱地小麦氮素利用规律的影响,为该区旱地小麦合理的氮肥运筹提供理论依据。【方法】于2009-2010和2010-2011两个小麦生长季,在大田条件下设置6个施氮量处理(0、90、120、150、180和210 kg•hm-2),研究施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响。【结果】在150 kg•hm-2及以下的处理增加施氮量,小麦各生育时期植株氮素积累量、成熟期籽粒氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量显著增加;在150 kg•hm-2基础上增加施氮量,小麦各生育时期植株氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量与150 kg•hm-2处理无显著差异,成熟期籽粒氮素积累量及分配比例降低,营养器官氮素积累量及分配比例升高。施氮量为180 kg•hm-2和210 kg•hm-2,成熟期0-140 cm土层土壤硝态氮含量显著高于150 kg•hm-2处理,深层土壤硝态氮含量增加。施氮150 kg•hm-2处理小麦籽粒产量最高,氮素利用效率和氮肥生产效率较高。【结论】本试验条件下,施氮量为150 kg•hm-2,是兼顾产量和氮肥利用效率的适宜施氮量。  相似文献   

14.
以桂华占、八桂香为材料,在高氮(NH,High nitrogen)、中氮(NM,Middle nitrogen)、低氮(NL,Low nitrogen)三个施氮水平下,研究了优质稻花后碳氮物质积累、运转与籽粒生长特征及其相互的关系。结果表明:①在不同施氮水平下,干物质转运效率为53.60%~62.23%,氮素转运效率为12.33%~37.95%,茎鞘和叶片干物质转运对籽粒干物质积累的贡献率为12.33%~37.95%,茎鞘和叶片氮素转运对籽粒氮素积累贡献率为47.93%~117.2%。②施氮水平影响桂华占和八桂香花后碳氮流转及籽粒的生长。高氮条件下增加叶片碳氮同化物的转运,不利于茎鞘碳氮同化物向籽粒转运。增施氮肥在一定程度上提高了地上总氮和籽粒氮的积累量,提高了籽粒氮收获指数,蛋白质含量上升。低氮处理虽能促进茎鞘碳氮同化物的转运率,但籽粒收获指数明显变低。③不同施氮水平下,桂华占和八桂香花后碳氮流转与籽粒的生长间存在密切的相关,花后茎叶干物质运转速度和转运率都与籽粒起始灌浆势呈正相关;籽粒最大灌浆速率与叶干物质运转速度和转运率呈正相关;叶片中总氮转运率与籽粒蛋白质产量呈正相关。花后茎叶氮素积累量的减少,伴随着籽粒氮素积累量的增加和籽粒蛋白质含量的升高是同步的;茎鞘花后同化物碳氮比与籽粒蛋白质含量及产量呈正相关,与籽粒直链淀粉含量及淀粉、蛋白质比呈负相关。不同施氮水平下氮素转运效率和贡献率表现出一定差异,这种差异与水稻植株自身对氮生理利用效率密切相关。  相似文献   

15.
【目的】为明确旱地麦田土壤水分变化与植株氮素吸收利用及产量形成的关系,探索极端年型可采取的耕作蓄水、覆盖播种等应急措施。【方法】2011—2016年于山西运城闻喜县开展大田试验,选取2011—2013、2015—2016 3年降雨量极端年份,在休闲期深松和免耕2个耕作基础上,对全膜覆土穴播、膜际条播、常规条播3类播种方式进行研究,分析极端年型休闲期深松蓄水配套覆盖播种对旱地麦田水分消耗与植株氮素吸收和利用关系的影响。【结果】不同降水年型休闲期深松较免耕,覆盖播种较常规条播,播种—拔节阶段土壤耗水量及其比例降低,拔节—开花和开花—成熟两阶段土壤耗水量及其比例增加,生育期总耗水量增加;各生育阶段吸氮量增加,尤其是拔节—开花阶段吸氮比例;花前各器官氮素运转量及其对籽粒的贡献率增加;深松较免耕显著提高产量16%—30%,覆盖播种较常规条播提高产量13%—28%,同时水分利用效率提高,氮素吸收效率和氮素生产效率显著提高。不同降水年型、深松与否均影响了全膜覆土穴播和膜际条播两播种方式对麦田水分消耗、氮素吸收利用、产量、水分和养分利用效率。丰水年深松条件下,全膜覆土穴播较膜际条播生育期总耗水量增加,拔节—开花阶段吸氮量显著增加,叶片中氮素运转量对籽粒的贡献率显著提高,产量、氮素吸收效率和氮素生产效率显著提高;而欠水年和丰水年在未深松条件下,两覆盖播种间生育期总耗水量差异不显著,膜际条播较全膜覆土穴播花前各器官氮素运转量、茎秆+叶鞘氮素积累量对籽粒的贡献率和花后氮素积累量提高,产量提高、氮素吸收效率也显著提高。此外,丰水年播种—拔节0—120 cm,拔节—开花120—300 cm,开花—成熟180—300 cm土层耗水量与花前各器官氮素运转量和花后氮素积累量相关性达显著或极显著水平;欠水年,播种—拔节0—100 cm,拔节—开花120—240 cm,开花—成熟120—300 cm土层耗水量与花前各器官氮素运转量和花后氮素积累量相关性达显著或极显著水平。【结论】旱地小麦休闲期深松、生育期采用覆盖播种可增加小麦生育期耗水,促进各生育阶段植株对氮素的吸收及运转,从而提高产量、水分和养分效率。休闲期深松条件下,丰水年采用全膜覆土穴播,欠水年采用膜际条播,增产增效明显。  相似文献   

16.
利用产量不同、蛋白质含量不同和加工品质各异的3个春小麦品种,研究了灌浆过程中干物质积累分配和氮素同化运转与产量和蛋白质含量的关系.结果表明,干物质的积累量,品种间存在明显差异,高产低蛋白品种和干物质产量高于低产高蛋白类型,高产高蛋白类型积累量最高;营养体的氮素积累变化动态.因向籽粒中转运量的不同而异.各营养体对籽粒氮的贡献顺序为茎(含叶鞘)>叶片>穗轴和颖片;品种间开花前后的氮素同化量不同,高蛋白品种倾向于花前同化量多,高产品种花后同化量比例相对增加,高产高蛋白类型两者兼之,品种间花后氮素同化量占总同化量的变幅为15.35%~48.35%;生育期干物质产量高是高产高蛋白品种的重要物质基础,氮素总同化量与蛋白质含量关系不大,氮素转运效率与蛋白质含量密切相关.NHI:GHI比例决定着蛋白质含量.  相似文献   

17.
【目的】及时、有效地预测籽粒蛋白质含量,能够为优质小麦品种的收购和加工提供科学合理的决策支持信息。本研究从籽粒蛋白质形成的氮素运转规律出发,研究冬小麦籽粒蛋白质遥感预测的可行性及在区域与年际间的扩展性,为高分辨率遥感卫星进行大面积蛋白质预测提供理论依据。【方法】利用2012-2013年4个冬小麦品种×4个氮肥梯度的试验数据和地面高光谱数据进行建模;基于小麦籽粒蛋白质形成的氮素运转机理,通过分析籽粒氮素累积量的两个主要来源及其之间的比例关系,重点抓住开花前的植株氮素累积量再运转这一主要来源,而灌浆期根际的氮素直接吸收则通过其与前者的比例关系来确定,通过相关农学参数模型的耦合,同时加入温度影响因子对籽粒氮素运转的影响,初步阐明了利用开花期小麦叶片氮含量可以预测籽粒蛋白质含量的应用机理;然后选择与叶片氮含量相关的植被指数,利用灰色关联分析-偏最小二乘算法(GRA-PLS)选择与叶片氮含量关联度较高的植被指数并进行小麦叶片氮含量的估算,通过与氮素运转模型的耦合构建了基于氮素运转原理的籽粒蛋白质含量遥感预测模型;最后利用2009-2010年的品种×播期×肥料试验和2012-2013年的其他品种氮肥处理试验进行验证。【结果】(1)通过GRA方法对叶片氮含量和植被指数间的关联度进行计算,选择关联度较大的前5个植被指数进行叶片氮含量建模,其植被指数分别为mND705、NDVIcanste、Readone、DCNI和NDCI;(2)通过PLS方法构建的叶片氮含量模型,建模结果的预测值与实测值的决定系数(R2)和均方根误差(RMSE)分别为0.859和0.257%,验证结果的R2和RMSE分别为0.726和0.063%,利用GRA-PLS方法估算叶片氮素含量具有较好的稳定性;(3)构建的蛋白质预测模型,建模结果和验证结果的预测值与实测值的R2和RMSE分别为0.713、1.30%和0.609、1.19%,预测模型具有较高的精度与可靠性。【结论】基于氮素运转规律构建的小麦籽粒蛋白质含量遥感预测模型,可以作为应用开花期遥感信息来预测籽粒蛋白质含量的机理性解释,初步实现了本研究区域和年际间的籽粒蛋白质含量预测,具有一定的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号