首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为提高竹材的利用率、增强废旧塑料的综合利用,制备了竹粉/废旧聚乙烯复合材料,研究了不同竹粉质量分数对复合材料弯曲性能、缺口冲击强度、蠕变性能和加速老化性能的影响。结果表明,当竹粉质量分数为0、15%、30%和45%时,随着竹粉质量分数增加,复合材料的弯曲性能和抗弯曲蠕变性能呈现增强趋势,而缺口冲击强度逐渐下降,抗氙灯加速老化性能略微下降。当竹粉质量分数为30%时,竹粉/废旧聚乙烯复合材料的综合性能最佳:弯曲强度为22.36 MPa、弯曲模量为1 033.61 MPa,与未添加竹粉的试样(对照样)相比,分别增强了18.4%和92.2%,缺口冲击强度为12.41 k J·m-2,下降了39.3%; 75%应力水平下,经历3 600 s蠕变试验后,复合材料产生挠度0.59 mm,而对照样527 s蠕变试验后就发生脆性断裂,产生挠度1.68 mm;经历480 h氙灯加速老化后,弯曲强度和弯曲模量的保留率分别为85%和80%,色差为38.1。  相似文献   

2.
为评估造纸废弃竹屑增强高聚物制备竹塑复合材料的可行性,采用竹粉、竹屑、竹浆纤维、竹屑+ 竹浆纤维共 混4 种竹质纤维,分别以50%的质量比增强高密度聚乙烯(HDPE)制备竹质纤维-HDPE(竹塑)复合材料,并对比分 析了竹屑-HDPE 复合材料与其他3 种竹塑复合材料的力学和热性能。结果表明:与常规的竹粉-HDPE 复合材料相 比,竹屑-HDPE 复合材料有较好的拉伸性能,但是弯曲性能较差。其拉伸强度和模量分别比竹粉-HDPE 复合材料 提高了45.94%和114.09%;而弯曲强度和模量分别比竹粉-HDPE 复合材料降低了8.08% 和17.64%。竹屑- HDPE 复合材料有较好的热性能,与竹粉-HDPE 复合材料相比,其起始热分解温度提高了21.23 ℃,力学松弛峰 值温度提高了10.44 ℃。   相似文献   

3.
研究了钛酸酯(DN301)偶联剂对竹塑发泡复合材料物理力学性能、热学性能和流变性能的影响,并采用环境扫描电镜观察材料的界面微观结构.结果表明,添加适量的钛酸酯可有效提高竹塑发泡复合材料的力学性能和耐水性能,钛酸酯最佳用量为竹粉质量的2%,材料密度为0.85 g·cm-3,比弯曲、比拉伸、比缺口冲击强度、弯曲模量分别为42.68 MPa、22.32 MPa、5.83 kJ·m-2和2828.04 MPa,与未改性时相比,分别提高了10.4%、7.9%、15.8%和6.8%;改性复合材料浸水1440 h后的吸水率和厚度膨胀率分别由未改性时的8.80%和1.85%降至2.48%和1.36%.频率扫描结果显示,改性复合材料的储能模量和复数黏度下降,流变性能和均相性增强.热重测定结果表明,改性复合材料的热稳定性略微提高.扫描电镜观察结果表明改性复合材料的界面相容性提高.  相似文献   

4.
为研究聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)、苯乙烯系热塑性弹性体(SBS)3种增韧剂对竹粉/高密度聚乙烯复合材料的增韧机理,制备韧性较好的竹粉/高密度聚乙烯复合材料;分别加入不同质量分数的POE、EPDM、SBS制成竹粉/高密度聚乙烯复合材料试样,并对其进行力学性能和流变性能测试。力学性能测试结果表明:随着3种增韧剂质量分数的增加,复合材料的冲击强度均明显增大,拉伸强度和弯曲强度均减小。当POE、EPDM质量分数为30%,SBS质量分数为40%时,复合材料的冲击强度最好;流变性能测试结果表明,低频区复合材料的储能模量和损耗模量总体随着增韧剂质量分数的增加而增大,说明随着增韧剂质量分数的增加,复合材料的黏弹性增强。  相似文献   

5.
为了研究热压温度对硅烷化杨木(107杨Populus × euramericana)单板/高密度聚乙烯(HDPE)薄膜复合材料各项性能的影响,以乙烯基三甲氧基硅烷(A-171)和过氧化二异丙苯(DCP)为杨木单板的改性剂,在不同的热压温度下(140,150,160,170 ℃)与HDPE薄膜复合制备了硅烷化杨木单板/高密度聚乙烯(HDPE)薄膜复合材料。采用万能力学试验机、动态力学分析仪(DMA)和冷场发射扫描电子显微镜(SEM)测定了不同热压温度下复合材料的物理力学性能、动态热力学性能以及胶接界面结构的变化。结果表明:热压温度为140~150 ℃时,复合材料的界面结合力较弱,胶接界面层存在明显的缝隙。当热压温度达到160 ℃时,硅烷化杨木单板与HDPE大分子自由基发生充分有效的胶合,形成能有效提高复合材料性能的胶接界面结构。当热压温度从140 ℃升高到160 ℃时,胶合强度、静曲强度(MOR)和弹性模量(MOE)分别由1.27 MPa,63.90 MPa和5 970.00 MPa增加到1.89 MPa ,72.20 MPa和6 710.00 MPa,但热压温度继续增加,胶合强度和抗弯性能均降低。当热压温度从140 ℃增加到170 ℃时,复合材料24 h吸水率(WA)和吸水厚度膨胀率(TS)分别从72.41%和4.98%降至54.22%和4.09%。复合材料的储能模量保留率E′(130 ℃)由62.31%提高到92.01%,到达tanδmax的温度点从144 ℃延后至200 ℃。复合材料的耐高温破坏能力随着热压温度增加逐渐增强。图5参15  相似文献   

6.
以高密度聚乙烯(HDPE)为基体,松木粉为增强项,MAPE为偶联剂,采用注塑法制备WPC,研究其热膨胀性能与弯曲性能,结果表明:木塑复合材料的弯曲强度和弯曲模量较单纯的HDPE有所提高,且随着木粉含量增加而增加;线性热膨胀系数随着木粉含量增加而降低;随着木粉的加入,对WPC长度方向上的热膨胀的限制较宽度方向上更大。  相似文献   

7.
选取6种不同木质纤维制备PVC木塑复合材料,分析木质纤维的基本形态参数及表面接触角,对比研究不同木质纤维制备木塑复合材料的综合力学性能。结果表明:木质纤维长度、长径比及接触角值均较高的材种较适合制备木塑复合材料;在6种不同木质纤维中,纤维长度、长径比和接触角分别为2.66 mm、65.35和90.32°的杉木制备的木塑复合材料综合力学性能最佳,弯曲强度、弯曲模量、拉伸强度和抗冲击强度分别可达45.63、3 247、29.14 MPa和6.41 k J/m2。  相似文献   

8.
PVC木塑复合材料中添加低熔点尼龙,并引入3种增容剂:马来酸酐接枝EVA(EVA-g-MAH)、马来酸酐接枝聚丙烯(PP-g-MAH)和马来酸酐接枝POE(POE-g-MAH),以提高材料的性能。力学性能测试显示:尼龙及增容剂的添加提高了PVC木塑复合材料的力学性能。其中,EVA-g-MAH的使用效果最为明显,复合材料的冲击强度提高了39.02%,弯曲强度提高了16.37%。动态力学性能测试表明:添加低熔点尼龙及增容剂,不同程度地降低了复合材料的储能模量。转矩流变性能测试表明:低熔点尼龙降低了复合材料的平衡转矩。而EVA-gMAH及POE-g-MAH提高了尼龙-PVC复合材料的平衡转矩,对材料的加工性有不利的影响。扫描电镜分析表明:加入增容剂后,复合材料界面不同程度发生钝化,复合材料相容性提高。吸水率测试结果表明:低熔点尼龙的加入提高了PVC复合材料的吸水率,而增容剂对降低材料吸水率有明显作用。  相似文献   

9.
为实现玉米醇溶蛋白(Zein)的材料化利用,以生物炭、聚丙烯(polypropylene,PP)、Zein为原料制备复合材料(Zein/PP),探究生物炭对Zein/PP复合材料力学性能的影响。结果表明,生物炭与Zein均没有改变PP的晶面结构,生物炭降低了Zein/PP复合材料的相对结晶度;生物炭的多孔结构与PP形成了一种稳定的界面结构,进而改善了Zein/PP复合材料的弯曲性能、拉伸性能、冲击强度、刚性、弹性、尺寸稳定性。当生物炭的含量为15%时,复合材料的综合力学性能最佳,其弯曲强度、弯曲模量、拉伸强度、拉伸模量、断裂伸长率、冲击强度分别为44.68 MPa、2.66 GPa、24.27 MPa、0.29 GPa、7.07%、6.10 kJ·m-2。试验结果可为Zein/PP复合材料性能的改善提供依据。  相似文献   

10.
为进一步拓展木塑复合材料应用领域,提高其使用安全性,研究3种阻燃剂对聚乙烯(PE)基木塑地板燃烧性能和力学性能的影响。结果表明:添加阻燃剂后,木塑地板其24.0 h吸水率、弯曲破坏载荷和烟密度等级都达到GB/T 24508-2009《木塑地板》和GB 8624-2006《建筑材料及制品燃烧性能分级》的要求;与对照试件相比较,木塑地板的氧指数提高了25.2%~34.4%,吸水率提高了47.0%~152.0%,弯曲破坏载荷降低了10.5%~27.4%;其中添加阻燃剂FR-C的氧指数和弯曲破坏载荷最大,添加阻燃剂FR-B的烟密度等级和24.0 h吸水率最小。总的来说,添加阻燃剂可以有效提高木塑地板阻燃性,但对板材的物理力学性能有不利影响。同时烟气是火灾中致死的主要原因,木塑地板的产烟毒性有待进一步研究。  相似文献   

11.
为研究热处理木粉对木塑复合材料吸水性能和力学性能的影响,分别将180、200和220℃热处理0、1、2和3 h后的杉木木粉与高密度聚乙烯( HDPE)复合制备木塑复合材料( WPC),并对其吸水性能和力学性能进行测定,通过环境扫描电镜( ESEM)观察材料拉伸断面的形貌。结果表明,随着处理温度的升高和时间的延长,木粉的吸湿性减小, WPC的吸水性明显降低,而WPC的力学性能除冲击强度逐渐降低外,拉伸强度、弯曲强度和弯曲模量总体呈先增大后降低的趋势。与对照相比,180℃热处理1-3 h的木粉基本上使WPC的弯曲性能和拉伸强度有不同程度的增加,200℃热处理木粉,随时间延长, WPC除弯曲性能仍增加外,拉伸强度和冲击强度逐渐降低,进一步提高木粉的处理温度会使WPC的力学性能降低明显,220℃处理3 h 的木粉使 WPC 降低最多,分别较对照降低34.85%、12.85%、8.31%和4.24%, WPC拉伸断面的ESEM图中两相界面结合情况的变化基本反映了各力学性能的变化。  相似文献   

12.
为实现小麦秸秆高值化利用,降低聚3-羟基丁酸酯(PHB)生产成本,同时综合提高麦秸粉(WSF)/PHB复合材料的物理力学性能和热性能。通过有机蒙脱土(OMMT)熔融共混改性WSF/PHB复合材料,热压—冷压工艺制备复合材料,探究OMMT添加量对复合材料性能的影响。结果表明:复合材料经OMMT改性后,OMMT层间距增大,部分PHB分子链进入OMMT层间,制备得到了插层型复合材料,复合材料的界面相容性得到改善。当OMMT添加量为1%时,相比对照组,复合材料的弯曲强度、弯曲模量、拉伸强度、拉伸模量、冲击强度分别提高了13.49%、13.78%、9.52%、15.53%、12.59%,吸水率下降了2.15%,复合材料的结晶度相比对照组提高了12.73%。OMMT的加入降低了复合材料的起始分解温度,但提升了复合材料的热稳定性及高温耐烧蚀性能。  相似文献   

13.
由于木竹复合材料的性能与原料的类型、施胶量、工艺参数、木材和竹材的比例等许多因素有关,本文研究了不同木材和竹材的比例对木竹层积复合材的性能影响,采用的酚醛胶固含量为45%,板材尺寸800 mm×800 mm×10 mm,热压时间15min,热压温度150℃,热压压力2.5 MPa。试验结果表明:木材和竹材的比例对木竹复合材料的静曲强度、弹性模量和胶合强度有显著影响,对其含水率影响较小。当木材比例从20%到60%时,木竹复合材料的静曲强度、弹性模量和胶合强度逐渐增加。  相似文献   

14.
采用注塑法制备竹粉/PP发泡复合材料,并对不同添加量硅烷偶联剂KH570复合材料的流变及力学性能进行了研究。频率扫描结果显示,所有复合材料均表现出剪切变稀行为;经过KH570改性的复合材料,其储能模量、损耗模量及复数黏度与未改性时的相比,总体呈现下降趋势,流变性能改善。剪切速率扫描结果表明,所有复合材料均表现出典型的非牛顿假塑性流体行为;随着KH570用量的增加,非牛顿指数增大,体系表观黏度对剪切速率的依赖性减小;同时材料的力学性能先提高后降低,添加2%KH570时,复合材料的力学性能最佳,与未改性的复合材料相比,比弯曲、比拉伸和比冲击强度提高了6.1%-23.8%。  相似文献   

15.
研究了化学竹浆纤维增强不饱和聚酯复合材料在紫外加速老化与湿热老化后力学性能变化与尺寸稳定性.结果表明,在室温与环境湿度下放置1年后,纤维未改性的复合材料弯曲强度无显著变化,弯曲模量下降31.5%;纤维经N-羟甲基丙烯酰胺改性的复合材料弯曲强度下降14.6%,弯曲模量下降37.6%.紫外线加速老化200 h后,纤维未改性的复合材料弯曲强度、弯曲模量与尺寸均无显著变化.湿热老化对复合材料力学性能有显著影响,沸水浸泡2 h后,复合材料弯曲强度保留率为49.4%,弯曲模量保留率为35.6%.  相似文献   

16.
为了丰富木塑复合材料的颜色以扩大其用途,并探索色素对木塑复合材料综合性能的影响及其机理,以毛白 杨木粉和生物降解塑料———聚乳酸为原料,选用3 种食品级色素(胭脂红、柠檬黄、果绿)在不同添加量的条件下制 备染色木粉鄄聚乳酸复合材料。对染色后的复合材料进行耐水洗坚牢度、吸水吸湿性、弹性模量、抗弯强度等物理 力学性能测试,并用红外光谱进行表征。结果表明:1)添加色素可以不同程度地改变木粉鄄聚乳酸复合材料的颜 色,但色素添加量越多,复合材料的耐水洗坚牢度越弱,且高温比室温水浴使材料褪色更加明显。2)添加色素会不 同程度地降低复合材料的抗弯强度,但对材料的弹性模量影响不大。果绿色素添加量为2%时,对复合材料的抗弯 性能影响最小。3)果绿色素添加量为2%时,染色复合材料的吸水、吸湿性最小,与未添加色素的空白组接近。4) FT鄄IR 表明,色素在制造过程中发生了变化或者与木材细胞中的物质产生了反应。5)色素的种类和添加量对木粉鄄 聚乳酸复合材料的染色及物理力学性能均有一定程度的影响。添加果绿色素且当其添加量为2% 时,复合材料的 综合性能达到最优。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号