首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于BP神经网络和支持向量机的杉木人工林收获模型研究   总被引:3,自引:2,他引:1  
以闽西北杉木人工林为研究对象,选取涵盖中龄林、近熟林、成熟林3个龄组的700个小班作为样地进行调查,以林龄、地位指数、林分密度、平均胸径作为输入变量,单位蓄积量为输出变量,运用BP神经网络和支持向量机2种机器学习方法建立林分收获模型,并采用遗传算法对模型参数进行优化。随机将样本数据分成350个训练样本和350个验证样本,对不同模型的拟合精度、预测精度进行对比分析,其中参数优化后的BP神经网络和支持向量机模型训练样本精度分别达到0.935 37和0.936 33,预测结果精度分别为0.921 30和0.926 97,训练样本和验证样本的总体拟合平均相对误差值均低于7%。分析结果表明,2种模型拟合精度高、预测性能好,为杉木人工林林分收获模拟和预测奠定了基础。为比较2种方法预测结果的差异性,将350个验证样本样地平均分为7组,分别用优化后的2种模型计算各组的预测精度,对预测精度与训练精度的差值进行t检验,结果表明,2种建模方法的预测结果不存在显著性差异,但模型精度的提高对森林资源的精确监测和森林生长动态预测具有重要的理论价值。同时,研究发现支持向量机模型的拟合精度和泛化能力均优于BP神经网络,该方法为收获模型研究提供了新思路。   相似文献   

2.
基于人工神经网络的杉木可变密度蓄积量收获预估模型   总被引:6,自引:0,他引:6  
采用人工神经网络方法拟合杉木林分蓄积量与立地质量、林龄、林分密度之间的非线性关系,建立了杉木可变密度蓄积量收获预估BP网络模型,并对所建立的模型进行精度检验.检验表明,所建模型预测精度高,可应用于森林经理调查、数据更新与经营决策优化以及编制可变密度收获表.  相似文献   

3.
应用近红外光谱和小波网络构建的木材基本密度预测模型   总被引:1,自引:0,他引:1  
以柞木为研究对象,将120个样本以2∶1的比例分为校正集和预测集,80个校正集,40个预测集;使用900~1 700 nm的近红外光谱仪,获取样本径切面的近红外光谱数据;采用蒙特卡洛采样法剔除奇异样本,采用多元散射校正和S-G平滑对光谱数据进行预处理,消除光谱漂移、表面散射和噪声的影响;通过Bi PLS-SPA算法对特征波长进行提取,构建小波神经网络模型,预测柞木基本密度;将建模方法与常用的偏最小二乘(PLS)和BP神经网络进行了对比,验证小波网络的有效性。结果表明:小波神经网络对预测集样本验证结果更好,相关系数为0.968,预测均方根误差为0.014 4。  相似文献   

4.
基于人工神经网络的森林资源预测研究   总被引:18,自引:1,他引:18  
应用人工神经网络方法分别建立土地资源预测,森林蓄积量预测,各龄组蓄积量预测三层前馈反应传播神经网络模型对森林资源进行预测模拟,预测结果表明:在小样本条件下,森林资源预测神经网络模型预测精度较高,开辟了森林资源新途径。  相似文献   

5.
基于RS技术闽江流域生态公益林林分蓄积量的动态监测   总被引:1,自引:1,他引:1  
以闽江流域生态公益林中杉木林、马尾松林和阔叶林的林分蓄积量为研究对象,采用遥感(RS)技术,构建林分蓄积量估测模型,对1986、2000和2003年闽江流域生态公益林林分蓄积量进行估测,并对近18 a的森林资源变化状况作了初步分析.结果表明:1986-2003年闽江流域生态公益林林分总蓄积量呈上升趋势;1986、2000和2003年阔叶林的林分蓄积量与针叶林的林分蓄积量的比值分别为1∶1.46、1∶3.06和1∶4.65.  相似文献   

6.
通过分析比较不同算法以及不同输入层因子,构建出最佳的黄龙山区油松人工林树高预测BP神经网络模型。以陕西省延安市黄龙县44块油松人工林样地实测数据为数据源,通过对6种BP神经网络的训练方法进行训练,经过反复筛选找出最优模型并与传统胸径-树高模型作比较;最后将BP神经网络中的输入因子从2个增加到6个后,经过反复训练筛选出最优模型与2因子的BP神经网络模型作比较。结果表明:1)贝叶斯归一化(BR)算法在6种算法中表现最佳,R2和MSE分别为0.963 0和1.168;2)不同隐含层节点数的选取会对BP神经网络模型的建立产生一定的影响,BP神经网络模型的决定系数(R2)随着隐含层节点数的增加呈现先上升后下降的趋势;均方误差(MSE)呈现先下降后上升的趋势,两者都在节点数为10时有极值,此时的模型为最优模型;3)当输入因子为胸径和优势树高时,油松人工林的最优模型结构为(输入层节点数:隐含层节点数:输出层节点数为2∶10∶1),此时BP神经网络模型对树高预测的决定系数(R2)和均方误差(MSE)分别为0.761 0和1.984 7;当输入因子为胸径、优势树高、林分密度、竞争指数、坡度和坡向时,最优模型结构为6∶10∶1,此时BP神经网络模型对树高预测的决定系数(R2)和均方误差(MSE)分别为0.844 7和1.955 7。由此得出,在建立油松人工林树高BP神经网络模型方面优化类算法要优于启发式下降算法;BP神经网络模型与传统模型相比,BP神经网络模型不需要目标方程结构,并且模拟和预测的精度均要优于传统模型;在原有BP神经网络模型的基础上再引入林分密度、竞争指数、坡度、坡向这些输入因子后所得到的新的BP神经网络模型对树高模型的建立和预测要优于原有BP神经网络模型。  相似文献   

7.
生长模型驱动的杉木林蓄积量动态可视化   总被引:1,自引:1,他引:0  
树木的生长不仅受到自身遗传因素的影响而且还受外界环境条件的影响.以杉木为例,基于实测数据建立的蓄积量随林龄增长的生长模型以及影响林木生长的立地因子,以实现林分中的杉木林蓄积量可视化表达.在3D Max中构建了杉木三维形态几何模型,结合杉木生长模型与形态模型,采用AE+VB.NET编程,实现了基于ArcScene的杉木林...  相似文献   

8.
杉木人工林胸径生长神经网络建模研究   总被引:6,自引:0,他引:6  
【目的】探索神经网络技术对杉木人工林胸径生长的模拟和预测能力,以寻求最优模型。【方法】以江西大岗山杉木人工林为研究对象,依据林木生长理论,用林龄(A)、立地指数(SI)和初植密度(N)3个因子构建平均胸径生长BP模型;通过定量和定性分析相结合的方法对模型选优,并将最佳模型与拓展的Richards模型比较;最后将优化模型应用于未参与建模的样地。【结果】最佳BP模型为Levenberg-Marquardt算法3∶5∶1结构模型(LM351),R2=0.984,MSE=0.196;拓展的Richards模型R2=0.964,MSE=0.433。LM351模型经校正后,适合预测福建邵武杉木人工林胸径生长规律(R2=0.995)。【结论】LM351神经网络模型在精度上优于传统Richards模型,适于林龄6~28年、立地指数12~17 m、初植密度1 667~9 967株/hm2的杉木林分平均胸径的模拟和预测。  相似文献   

9.
以香格里拉县高山松为研究对象,以Landsat TM 8影像和DEM(30M)数据为信息源,结合森林资源二类调查数据和地面样地实测数据,借助MATLAB平台,在前期进行基于遗传算法(GA)和粒子群算法(PSO)优化BP神经网络模型基础上,采用决定系数(R2)、均方根误差(RMSE)及预测精度(P)3个指标对优化后的BP神经网络模型及进行评价,并建立了研究区高山松蓄积量估测模型。结果表明,遗传算法效率(耗时1.9 h)低于粒子群算法(耗时1.4 h);采用遗传算法优化后的BP神经网络模型R2RMSEP分别为0.636、4.216 m3、81.748%,均优于粒子群算法。通过遗传算法优化后的BP神经网络模型估测香格里拉高山松蓄积量总量为13 317 879.7 m3。  相似文献   

10.
杉木厚朴人工混交林模式生长及土壤特性研究   总被引:1,自引:0,他引:1  
刘正忠 《安徽农学通报》2012,18(15):120-121,138
面对杉木人工纯林易发生地力衰退、生长降低等问题,开展了杉木厚朴不同模式混交造林试验研究。结果表明:杉木—厚朴混交林在提高杉木林生长量、改善土壤理化性质等方面作用明显。在不同模式的杉木—厚朴混交林中,杉木厚朴按3∶1的比例带行混交杉木林生长最快,林分蓄积量最大,而且该模式混交林土壤孔隙状况、水稳性团聚体含量及土壤有机质、有效养分含量等均最高,杉木厚朴3∶1带行混交模式是杉木-厚朴混交林中最优模式,从而为杉木林合理栽培提供技术依据。  相似文献   

11.
杉木种源地理位置模拟模型及其应用研究   总被引:1,自引:1,他引:0  
本文首次运用人工神经网络研究杉木种源与地理位置之间的内在规律.结果表明:所建立的人工神经网络模型模拟精度较高,利用已建立的树高BP模型和胸径BP模型可以预测不同地理位置杉木种源的生长情况,从而为合理区划杉木种源区域和种子调拨界限提供科学依据.  相似文献   

12.
以杉木林为研究对象,在12个县市选取浙江省2009年CFI体系的95个杉木林样地,根据样地平均木,在样地外围相似地段确定解析木共计95株,联立树高曲线方程和生物量模型,同时使用已公开发表的20个杉木生物量模型进行估算,由单株累加获得CFI系统样地的生物量,计算样地生物量与蓄积之比即BEF,建立BEF与林分蓄积之间的关系。根据2009年浙江省CFI体系数据,推算全省杉木林BEF为0.7453 t/m3,杉木林总生物量为3721.54万t,不确定性为5.739%;使用IPCC(1996)的碳密度缺省值(0.50)计,生长1 m3杉木吸收CO2 1.3663 t。  相似文献   

13.
景晓忠  严红  王帆 《安徽农业科学》2011,39(34):21278-21279
在正交试验的基础上,运用人工神经网络对发酵过程中影响氨气释放的条件进行优化。该模型预测的最佳参数条件为:含水率为60%,C/N为37∶1,pH为7,温度为31.3℃,此时总氨气量的预测值为1 149.3 mg/kg。BP神经网络模型的预测值和实测值相差不大,最大相对误差为6.58%,说明该模型具有较高的预测精度。  相似文献   

14.
  目的  马尾松Pinus massoniana是中国南方主要用材树种,建立高效的马尾松人工林胸径-树高预测模型,可为马尾松人工林经营提供理论指导。  方法  以贵州省黔中地区马尾松人工林为研究对象,基于82块样地(25 m×25 m)的4 284株马尾松单木数据,选取6个常用的广义非线性模型进行拟合,从中筛选出拟合效果最好的模型。使用相同的数据确定最佳隐层节点数量后,经过反复训练建立基于BP神经网络的马尾松胸径-树高预测模型。  结果  在6个广义非线性模型中,拟合效果最佳为Korf模型(R2=0.650);马尾松适宜的隐藏层节点数为2,适宜的模型结构(输入层节点数∶隐藏层节点数∶输出层节点数)为1∶2∶1,模型预测精度达0.717。  结论  广义非线性模型能较好地拟合马尾松人工林胸径-树高关系,但与BP神经网络模型相比,BP神经网络不需要依赖经验模型,也不用模型筛选,而且BP神经网络模型具有较高的决定系数和较低的均方根误差,拟合精度优于广义非线性模型。图5表5参35  相似文献   

15.
不同栽杉代数29年生林分生产力变化   总被引:27,自引:5,他引:22  
对一代、二代及三代杉木人工林林分生产力变化的比较分析结果表明:随着杉木栽植代数增加,林分生产力明显下降,不同代数间胸径、树高和蓄积量差异均达到极显著水平,但多重比较显示一代与二代平均胸径、二代和三代平均树高差异不显著.利用调查数据建立的立地指数与立地指数衰退量数学模型,能较好反映了连栽后杉木生长的实际情况.  相似文献   

16.
以中龄林为例,分别建立了基于多元线性回归和BP神经网络的批量评估模型,选取测试样本对这2种模型的有效性进行检验.结果表明,所建立的2种模型对于中龄林评估都适用,但BP神经网络模型较多元线性回归模型的适用范围更广,预测精度更高.  相似文献   

17.
【目的】木样总酚含量化学测定耗时长、过程复杂,建立杉木木样总酚含量的快速无损检测模型,对实现木材无损检测及木材腐朽预测具有重要意义。【方法】试验以114个杉木(Cunninghamia lanceolata)木样为研究对象,用福林酚法测定样品总酚含量,利用MPA傅立叶变换光谱仪对杉木木材进行漫反射光谱数据采集。将木样分为校正集和验证集,通过不同光谱预处理方法和建模方法建立总酚的定量模型,选择出最优模型并用验证集对其进行验证。【结果】测定的114个杉木木样中总酚含量变异幅度大,可用于构建近红外模型。对114个杉木木样进行近红外光谱扫描,得出建模光谱范围为9403.9~7498.4 cm-1、6102.1~5446.4 cm-1及4605.5~4242.9 cm-1。对杉木木样的近红外光谱进行预处理,得出最优组合:标准正态变量转换法(SNV)和一阶导数,采用偏最小二乘回归法(PLS)建立模型最优。校正集和交叉验证集的决定系数分别是0.8679和0.7549;校正均方根误差(RMSEE)和交叉验证均方根误差(RMSECV)分别为0.448和0.586,数值均较小且接近,说明模型具有很好稳定性;预测均方根误差(RMSEP)和相对标准偏差(RPD)分别为0.521和2.16,说明模型可进行定量分析。【结论】采用近红外光谱技术检测杉木总酚含量可行,能为木材化学成分快速测定提供一种有效、无损方法。受拟合规则影响,构建的模型虽然不能用于精确定量测定,仍可应用于日常科研和生产检测,在木材材质预测及良种选育等方面具有广阔应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号