首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adoption of precision viticulture requires a detailed knowledge of variation in soil chemical, physical and profile properties. This study evaluates the usefulness of apparent electrical conductivity (ECa) data within a GIS framework to identify variations in soil chemical and physical properties and moisture content. The work was conducted in a vineyard located in the Carneros Region (Napa Valley, California). The soil was sampled using 44 boreholes to quantify chemical and physical characteristics and 9 open pits to verify the borehole observations. Moisture content was determined using time domain reflectometry (TDR). To characterize soil ECa, three campaigns were undertaken using a soil electrical conductivity meter (EM38). Linear regressions between soil ECa and soil properties were determined. Boreholes and TDR data were interpolated by kriging to characterize the spatial distribution of soil variables. The resulting maps were compared to the results obtained using the best ECa linear regressions. Using ECa measurements, soil properties like extractable Na+ and Mg2+, clay and sand content were well estimated, while best estimates were obtained for extractable Na+ (r 2  = 0.770) and clay content (r 2  = 0.621). The best estimates for soil moisture content corresponded to moisture in the deeper soil horizons (r 2  = 0.449). The methods described above provided maps of soil properties estimated by ECa in a GIS framework, and could save time and resources during vineyard establishment and management.  相似文献   

2.
Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r 2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r 2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg−1) in Horsham with an r 2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.  相似文献   

3.
Remote-Sensing (RS) is the most widely used technique for crop monitoring in precision viticulture systems. This paper considers the possibility of substituting RS information obtained by various proximal sensing technologies employed directly in vineyards in order to enable a simultaneous evaluation of canopy health and vigour status. To this aim, a mobile lab has been developed. It consists of (a) two GreenSeeker RT100 sensors, a commercial optical device calculating NDVI, and Red/NIR indices in real time; (b) three pairs of ultrasonic sensors to estimate canopy thickness; and (c) a DGPS receiver to geo-reference data collected while travelling in a vineyard. During the 2007–2008 campaign, tests were carried out in a commercial vineyard in order to evaluate the monitoring system performance regarding disease appearance, diffusion, and vegetative development variations due to the normal growing process of vines. Surveys with the mobile lab were conducted in two groups of rows, treated and untreated with agrochemicals, and compared to manual morphological and physiological observations that characterised the phytosanitary status of the canopy. Measurement repeatability was verified; both NDVI values and ultrasonic data showed high repeatability (with r = 0.88 and r = 0.85, respectively). Optical data were processed in order to obtain NDVI maps, which clearly showed differences in canopy vigour evolution in the two examined groups, with low vegetative vigour in areas infected by Plasmopara viticola, as confirmed by manual assessment. Maps of the percentage infection index (I%I) were produced according to pathological manual survey results. The comparison between I%I and NDVI maps qualitatively confirmed the real vine phytosanitary status. Ultrasonically measured canopy thickness (UCT) was calculated and compared to manually measured canopy thickness (MCT) (r = 0.78). UCT and NDVI values were compared in order to identify areas affected by disease among zones presenting critical vegetation conditions.  相似文献   

4.
Rice-based flakes made from 7 mid-season rice varieties (4 indica and 3 japonica subspecies) and 3 early season indica varieties produced both in early and late season were studied for their main physicochemical characters, including water activity, film thickness, bulk density (BD), ash, reducing sugars (RS), protein, phytic acid, starch, amylose, and rapid visco analyser (RVA) viscosity profile. A significant varietal effect was found for all these parameters (P〈 0.05 or 0.01) except starch. Strong variety x season interactions were observed but the seasonal effect was less pronounced, and only significant (P〈0.01) for RS. The apparent amylose content (AAC) office flakes was significantly correlated (P〈0.01) with AAC (r=0.99) and several RVA profile parameters [e.g., final viscosity (r=0.92)] of rice flour. For rice flakes, BD was significantly correlated with AAC (r=0.82, P〈0.01) and most RVA profile parameters. The study indicates that varietal and environmental effects should be considered simultaneously for optimal production of rice grains for rice flakes manufacturing.  相似文献   

5.
A comparative study was made of the performance of different spectrophotometers as part of a research into the potential of NIR reflectance spectroscopy as a non-destructive method for predicting soluble solid content, firmness and postharvest shelf-storage time in intact pears. Three commercially available spectrophotometers were used: a scanning monochromator (SM) of 400–2500 nm, a combination of diode array and scanning monochromator (DASM) of 350–2500 nm and a diode array (DA) of 900–1700 nm. A total of 332 pears (Pyrus communis L.) cv. ‘Blanquilla’ and ‘Conference’ were used to develop calibration models in different spectral regions, using various spectral signal pretreatments. Models to predict soluble solid content yielded coefficients of determination (r2) ranging from 0.39 to 0.76, and a standard error of cross-validation (SECV) of between 0.59 and 1.49 °Brix, depending on the instrument used. Models for predicting firmness yielded r2 values of between 0.45 and 0.79 and SECVs ranging from 5.33 to 7.36 N. Subsequently, the ability of these instruments to classify fruit as a function of postharvest shelf-storage time (0, 6 and 8 days) was tested using partial least squares discriminant analysis (PLS-DA), which yielded percentages of correctly classified samples (ratio of correctly classified samples to total samples) ranging from 81.1 to 94.4%, depending on the instrument used. The results obtained highlight the potential of these NIR instruments for assessing internal quality indices and predicting postharvest storage duration in pears, particularly when the instruments SM and DASM were used.  相似文献   

6.
7.
通过大田试验,研究不同基追比和追肥时期对白肋烟干物质积累,总氮和烟碱积累动态的影响。结果表明:各处理烟株干物质积累速度在各生育期内均表现为高追肥处理大于低追肥处理,且基追比例相同时,在移栽后30d内,推迟追肥时期有利于烟株的干物质积累。白肋烟总氮含量随生育期的推进而降低,但随着追肥量的增加和追肥时期的推迟,总氮含量下降幅度减缓。烟碱含量随生育期的推进而增加,在栽后75d出现一个积累高峰,随追肥量的增大和追肥时期的延迟烟碱含量增加,其中上部叶烟碱含量变化幅度最大。  相似文献   

8.
Relationship Between Root Chemical Signals and Grain Quality of Rice   总被引:2,自引:0,他引:2  
This study was designed to elucidate the relationship between root chemical signals and the quality of rice. Various rice genotypes were used. Zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), 1-aminocylopropane -1-carboxylic acid (ACC), and organic acids in roots during grain filling and the appearance quality, cooking/eating quality were investigated. The correlations among them were analyzed. The results showed that Z + ZR concentrations in the roots at mid- and lategrain-filling stages were significantly and positively correlated with the gel consistency and alkali spreading value (r = 0.72^* - 0.90^**), whereas negatively correlated with the amylose content (r = -0.68^* - -0.78^**). ABA concentrations in roots at mid- grain-filling stage were significantly and negatively correlated with the gel consistency and alkali spreading value (r = -0.90^**-0.91^**), and positively correlated with the amylose content (r = 0.87^**). ACC concentrations in root exudates at mid-grain-filling stage were very significantly correlated with the percentage of chalky grains and chalkiness (r = 0.97^** - 0.98^**), and those at late-grain-filling stage Were significantly correlated with chalkiness and chalky size (r = 0.69^* - 0.96^**). The more the malic acid and succinic acid exuded from roots for a cultivar, the greater the breakdown values and the smaller the setback values in the starch profile, and the results were reversed for a cultivar with more tartaric acid and citric acid exuded from roots during the grain-filling period. The cultivar with more lactic acid in exudates had smaller gel consistency and alkali spreading values, but had greater amylose content. When roots were treated with exogenous ZR, ABA, and ACC during grain filling, effects of the chemicals on the rice quality were consistent with the relationships of the endogenous hormones (Z + ZR, ABA, and ACC) with the quality indexes. Using rape cake as organic fertilizer can increase the concentrations of malic acid and succinic acids exuded from roots as well as the breakdown value in starch profile and reduce the setback value. The results suggest that root chemical signals play important roles in the formation of rice quality, and dee quality could be improved through regulating the signals.  相似文献   

9.
Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting. However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice. Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production. Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row(K, average row spacing of 30 cm); equidistant row(D, 33 cm×12 cm); and mechanical carpet-seedling transplanting(T, 30 cm×12.4 cm). In addition, five different density treatments were set in K(K1–K5, from 18.62×10~4 to 28.49×10~4 hills ha~(–1)). The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha~(–1) in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend. Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage. With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased. Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality. These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×10~4 hills ha~(–1) and may be an alternative approach to improving grain yield and quality for japonica rice.  相似文献   

10.
Precision irrigation requires the mapping of within-field variations of water requirement. Conventional remote sensing techniques provide estimates of water status at only shallow soil depths. The ability of a water sensitive crop, sugar beet, to act as an intermediate sensor providing an integrated measure of water status throughout its rooting depth is tested here. Archive aerial photographs and satellite imagery of Eastern England show crop patterns resulting from past periglacial processes. The patterns were found to be spatially and temporally consistent. Field sampling of soil cores to 1 m depth established that the within-field wilting zones were significantly associated with coarser or shallow soils. The stress classes, determined by classification of the digitised images, were weakly correlated with total available water (Pearson correlation r = 0.588, P < 0.05). These results suggest that wilting in sugar beet can be used as an intermediate sensor for quantifying potential soil water availability within the root zone. Within-field stress maps generated in 1 year could be applied as a strategic tool allowing precision irrigation to be applied to high-value crops in following years, helping to make more sustainable use of water resources.  相似文献   

11.
Crop responses to management practices and the environment, as quantified by leaf area index (LAI), provide decision-making criteria for the delineation of crop management zones. The objective of this work was to investigate whether spatial correlations inferred from remotely sensed imagery can be used to interpolate and map LAI using a relatively small number of ground-based LAI measurements. Airborne imagery was recorded with the Airborne Imaging Spectrometer for Applications (AISA) radiometer over a 3.2 ha corn field. Spectral vegetation indexes (SVI) were derived from the image and aggregated to cells of 2 × 2 m2, 4 × 4 m2, and 8 × 8 m2 resolution. The residual maximum likelihood method was used to estimate the LAI variogram parameters. A generalized least squares regression was used to relate ground truth LAI data and collocated image pixels. This regression result was then used to convert variograms from the imagery to LAI units as well as to interpolate and map LAI. The decrease in resolution by merging pixels led to an increase in the value of the r 2 and to a decrease in root mean-squared error (RMSE) values. The accuracy of kriged estimates from the variogram of the measured LAI and that from the image derived variograms was estimated by cross-validation. There was no difference in the accuracy of the estimates using either variograms from measured LAI values or from those of converted SVIs. Maps of LAI from ground-based measurements made by kriging the data with image-derived variogram parameters were similar to those obtained by with kriging with the variogram of measured LAI. Similar coarse spatial trends of high, medium and low LAI were evident for both maps. Variogram parameters from ground-based measurements of LAI compared favorably with those derived from remotely sensed imagery and could be used to provide reasonable results for the interpolation of LAI measurements.  相似文献   

12.
A near-infrared (NIR) spectroscopic sensing system was constructed on an experimental basis. This system enabled NIR spectra of raw milk to be obtained in an automatic milking system (milking robot system) over a wavelength range of 600–1050 nm. Calibration models for determining three major milk constituents (fat, protein and lactose), somatic cell count (SCC) and milk urea nitrogen (MUN) of unhomogenized milk were developed, and the precision and accuracy of the models were validated. The coefficient of determination (r2) and standard error of prediction (SEP) of the validation set for fat were 0.95 and 0.25%, respectively. The values of r2 and SEP for lactose were 0.83 and 0.26%, those for protein were 0.72 and 0.15%, those for SCC were 0.68 and 0.28 log SCC/mL, and those for MUN were 0.53 and 1.50 mg/dL, respectively. These results indicate that the NIR spectroscopic system can be used to assess milk quality in real-time in an automatic milking system. The system can provide dairy farmers with information on milk quality and physiological condition of an individual cow and, therefore, give them feedback control for optimizing dairy farm management. By using the system, dairy farmers will be able to produce high-quality milk and precision dairy farming will be realized.  相似文献   

13.
The propagation of laser light in kiwifruit (Actinidia deliciosa) tissue was measured by backscattering imaging and modelled with the Monte Carlo (MC) method. The parameters of the vision system (8 bit/channel camera, 27.42 μm/pixel resolution) and the laser module (785 nm, 45 mW, Ø1 mm) were utilized in simulation. The required number of the photons was optimized with time-resolved MC model. The injected photon pulse travelled further than the beam radius and the calculated intensity fell below the noise level of the camera within 1 ns time. This short pulse contains 2.49 × 108 photons and its application reduced computation load compared to the amount emitted within the integration time of 0.5–8.3 ms. The statistical effects of the optical properties of the tissue, scattering coefficient (μs) absorption coefficient (μa) and anisotropy factor (g), on photon flux was evaluated within ±20% range relative to expected mean values of μa = 0.9 cm−1 and μs = 40 cm−1. The anisotropy factor was taken into account using the Heyney–Greenstein phase function and was adjusted to g = 0.8 ± 20%. Because individual significance of each optical property was also analysed, scattering (μs) and transport corrected reduced scattering coefficients (μs=[1−g]μs) must be distinguished. The multi-factor ANOVA test pointed out the highest importance (p < 0.001) of the anisotropy factor amongst scattering and absorption coefficients.In the kiwi backscattering images, rotation of the intensity profiles was observed as a result of changing anisotropy. The measured and calculated profiles were compared to estimate the anisotropy factor of kiwifruits. Significant difference (p < 0.01) was found between anisotropy of premium quality and overripe pieces with respect to the fruit texture properties.  相似文献   

14.
One of the most important tasks in precision farming is the site-specific application of fertilisers and pesticides in heterogeneous large-area fields. For such site-specific crop management, effective remote sensing methods for the detection of crop diseases and nutrient deficiencies are required. The aim of the present work was to compare laser-induced fluorescence (LIF) parameters from nitrogen-deficient and pathogen (rust and mildew)-infected winter wheat (Triticum aestivum L.) plants and to assess the potential of LIF to detect and discriminate between these types of stress. Both long term nitrogen deficiency and pathogen infection resulted in an increase of the ratio of fluorescence at 686 and 740 nm (F686/F740) accompanied by a reduction of leaf chlorophyll content to approximately 35 μg cm−2. A linear negative correlation between chlorophyll content and F686/F740 ratio (r= 0.78) was found for leaves with chlorophyll content ranging between 17 and 52 μg cm−2. Since chlorophyll breakdown appeared an unspecific symptom to both nitrogen deficiency and pathogen infection, it was not possible to discriminate between these types of stress only by means of the F686/F740 ratio. Specific for the pathogen-infected leaves was a large heterogeneity in the records of their spectral parameters caused by inhomogeneous, discrete lesions of fungi infection. Nitrogen-deficient plants with homogeneous reduction in chlorophyll content showed, in contrast, more uniform readings of the spectral parameters. Thus, mildew- and rust-infected plants, grown under sufficient nitrogen fertilisation could be distinguished from those grown under reduced nitrogen supply by the higher variance of their spectral readings. The simultaneous scanning multipoint mode measurements of LIF and laser light reflection characteristics with parallel estimation of their heterogeneity is proposed for the discrimination between nitrogen deficiency and pathogen infection under field conditions.  相似文献   

15.
Precise management of nitrogen (N) using canopy color in aerial imagery of corn (Zea mays L.) has been proposed as a strategy on which to base the rate of N fertilizer. The objective of this study was to evaluate the relationship between canopy color and yield response to N at the field scale. Six N response trials were conducted in 2000 and 2001 in fields with alluvial, claypan and deep loess soil types. Aerial images were taken with a 35-mm slide film from ≥1100 m at the mid- and late-vegetative corn growth stages and processed to extract green and red digital values. Color values of the control N (0 kg N ha−1) and sufficient N (280 kg N ha−1 applied at planting) treatments were used to calculate the relative ratio of unfertilized to fertilized and relative difference color values. Other N fertilizer treatments included side-dressed applications in increments of 56 kg N ha−1. The economic optimal N rate was weakly related (R 2 ≤ 0.34) or not related to the color indices at both growth stages. For many sites, delta yield (the increase in yield between control N and sufficient N treatments) was related to the color indices (R 2 ≤ 0.67) at the late vegetative growth stage; the best relationship was with green relative difference. The results indicate the potential for color indices from aerial photographs to be used for predicting delta yield from which a site-specific N rate could be determined.  相似文献   

16.
Equine training methods, and consequently, performance times have improved little since the last decades. With advances in measuring signals on-line by means of several new technologies and analytical procedures, and processing these signals immediately with strong and compact processors, it may be possible to develop new training methods. In this research, the objective was to explore the possibilities of using modern model-based algorithms to control the heart rate of horses (bpm) on-line by means of the control input running speed (km/h). Forty-five experiments with five horses and four riders were carried out to generate measurements of physiological status during running. The dynamical characteristics of each horse were quantified using linear discrete transfer function models. The dynamic response of heart rate to step changes in running speed were accurately described. In 90% of the cases, a first-order model gave the best fit. For 69% of the models, the r2 was higher than 0.90 and for 34% of the models, the r2 was even higher than 0.95. In a next step, the model-based algorithm was evaluated by controlling cardiac responses of two horses (horses 2 and 4) to a pre-defined trajectory. The model parameters were kept constant. On average, the error between the defined target trajectory in heart rate and the actual controlled heart rate ranged between 0.2 and 1.4 bpm for the whole target heart rate trajectory. During the steady-state part of the trajectory the average error was maximum 1.1 bpm. In the transient from one steady-state heart rate to another level, the error could increase on average up to 5 bpm. In the future, the combination of on-line measured bioresponses with real-time analysis can be used for adjusting the work load of the horse, during training, directly to the immediate needs of horse (welfare) and trainer (performance).  相似文献   

17.
The main objective of this study was to calibrate a commercial capacitance probe for measuring pasture dry matter yields under Mediterranean conditions. The standard method of assessing pasture biomass is based on cutting all the forage within a specified area and requires great effort and expense to collect enough samples to accurately represent a pasture. The field tests were carried out in 2007, 2008 and 2009 on different dates (phenological stages), and on five dairy farms, representing typical pastures in the region (grasses; legumes; and bio-diverse flora, mixture of grasses, legumes and others species). The linear regression techniques used in 2007 to relate the weight of the herbage (direct measurements) to the meter reading of capacitance (indirect measurements) led to high regression coefficients in grasses (R2 = 0.90; P < 0.01) and heterogeneous botanical composition (R2 = 0.87; P < 0.001) and moderate regression coefficient in legumes species (R2 = 0.48; P < 0.05). The validation of the calibration equations in 2008 and 2009 in two sites showed RSME values of 130 kg ha−1 in heterogeneous botanical composition and 456 kg ha−1 in legumes. The results indicated that the capacitance probe together with a GPS receiver might support site-specific management of pastures which would be useful in large areas.  相似文献   

18.
为明确井窖内部空气受外界气流的影响及井窖维持适宜水热条件的机制,通过建立未移栽作物条件下井窖的三维数值模拟模型,利用CFD计算流体力学软件分析在1.50、2.70和3.90m/s近地表风速条件下,对井窖内部空气流速和流向进行数值模拟计算,并进行试验验证。模拟试验结果表明:近地表风速设为1.50、2.70和3.90m/s时,模拟的井窖纵切面平均空气流速分别为0.25、0.48和0.72m/s,井窖内的平均空气流速较近地表下降81.54%~83.34%;近地表风向由右向左时,井窖内纵切面的空气呈逆时针流动。验证试验结果表明:井窖内空气流速与地表风速成线性相关,模拟方程为y=0.220 9 x-0.176(R2=0.925 3);近地表风速为2.70m/s时,井窖内实测空气流速为0.42m/s,模拟值为0.48m/s。井窖内部空气受外界大气扰动较弱,减少热量和水分向外散失,有利于保持烟苗生长适宜的水热条件。  相似文献   

19.
为研究猪粪(Pig manure,PM)与稻秆(Rice straw,RS)的组配比例与进料的固形物(Total solid,TS)浓度对中温条件下厌氧产甲烷特性的影响,通过批次厌氧发酵试验摸清不同挥发性固体(Volatile solids,VS)配比(PM/RS=1:0、4:1、2:1、1:1、1:2、1:4、0:1)下的原料产甲烷规律,并选择VS配比(均以PM/RS计)为1:1、4:1的混合原料开展进料浓度(TS分别为4.6%、7.1%、9.6%、12.1%)梯度提升的连续厌氧发酵试验。结果表明:批次发酵试验中VS配比为4:1时产甲烷性能表现最好,产甲烷潜力(P值)、反应动力常数(k)、最大产甲烷速率(Rm)及甲烷产率达到峰值时间(tmax)分别为380.3 mL·g-1 VS、0.098 d-1、37.2 mL·g-1 VS·d-1、4.4 d。连续发酵试验中,在水力停留时间为30 d、VS配比为4:1时连续产甲烷性能更优,甲烷产率、产甲烷潜力转化率和容积产甲烷率分别达到354.8 mL·g-1 VS、93.3%、0.88 L·L-1·d-1。但混合物料中猪粪比例越高,发酵系统的氨抑制风险也越高。在进料浓度达到12.1%条件下,VS配比为4:1时的游离氨浓度是VS配比为1:1时的1.47倍,达到223.2 mg·L-1。研究表明,猪粪与稻秆混合原料VS配比为4:1(配比后的C/N=22~23:1)时,可提高发酵原料转化效率和容积产甲烷率;同时,进料TS浓度低于12.1%(有机负荷率为2.87 g VS·L-1·d-1)可降低厌氧发酵中的氨抑制,保证沼气工程稳定运行。  相似文献   

20.
紫花松果菊(Echinacea purpurea L.)作为一种极具经济价值的药用植物,已引起人们广泛关注。在引种的基础上,通过对紫花松果菊物候期划分和其不同移栽期、种植密度、施肥种类和收获期等关键种植技术的研究,建立其规范化种植关键技术体系。结果表明,紫花松果菊物候期划分为7个阶段;在研究范围内,最佳移栽期为5月5日左右,最佳收获期为8月16日左右;当种植密度为30 cm×35 cm,基肥为农家肥时,其产量和菊苣酸含量均较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号