首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
基于GlobeLand30的大洋洲耕地利用格局变化分析   总被引:1,自引:0,他引:1  
【目的】大洋洲区域气候差异明显,地表覆盖和土地利用类型多样,耕地变化较为剧烈。分析大洋洲耕地利用格局的时空变化,科学把握其特征及规律,为耕地集约利用和粮食政策制定提供参考。【方法】采用最新研制的2000年和2010年全球30 m地表覆盖遥感数据产品(GlobeLand30),建立耕地面积数量、利用强度和转换特征3个指标群,在国家尺度、10 km网格和30 m像元尺度综合分析大洋洲2000-2010年耕地利用格局变化特征。【结果】(1)2000-2010年大洋洲耕地面积总体增加约3.79%,耕地面积增幅最大的国家为澳大利亚,增幅5.39%。新增耕地主要集中在澳大利亚大分水岭山脉以东墨累-达令河流域上游。耕地面积减少的区域主要在新西兰北部岛屿,澳大利亚东部沿海和巴布亚新几内亚东部岛屿。主要国家人均耕地平均减少21.47%,人均耕地减少幅度最大国家为新喀里多尼亚。(2)从耕地利用强度格局变化来看,主要国家复种指数平均增加20.63%,耕地破碎度平均减少22.83%。耕地面积-复种指数协调度弹性较大。新西兰与澳大利亚两国耕地破碎度变化驱动机制差异明显。(3)从耕地类型转换特征来看,2000年耕地转出和2010年耕地转入面积最大的国家均为澳大利亚,2000年共计转出630.25×104 hm2,其中转为草地占比所有其他转出地类的74.77%,2010年共计从草地转入544.95×104 hm2,占所有转入地类面积的59.72%;全大洲耕地与草地之间转换面积最大,但对净增加耕地贡献最大的是灌木地,转入耕地165.03×104 hm2。【结论】10年间大洋洲耕地面积变化较为剧烈,耕地利用强度整体提高,耕地与草地相互转换最为频繁。  相似文献   

2.
全球耕地利用格局时空变化分析   总被引:17,自引:3,他引:14  
【目的】分析2000-2010年全球耕地时空分布及变化特征,为中国粮食安全国际化战略决策制定以及全球生态环境监测等研究提供信息支撑。【方法】基于全球首套30 m地表覆盖产品数据集GlobeLand30,利用耕地总面积、面积变化量、人均耕地面积占有量、面积变化幅度、面积变化量标准差、复种指数、复种指数变化量和复种指数变化幅度等8个指标,从大洲、国家、1°×1°经纬网3个统计单元,分析2010年全球耕地空间分布现状、2000-2010年全球耕地时空变化特征以及全球耕地利用强度变化特征。【结果】2010年全球耕地面积总量为193 890.00×104 hm2,占全球陆表面积14.31%。全球人均耕地占有量为0.28 hm2。其中,大洋洲以人均1.71 hm2位列第一,亚洲以人均0.17 hm2排名最后。[10oN-45oN, 65oE-125oE]、[40oN-55oN, 15oE-55oE]和[15oS-45oS, 45oW-70oW]是全球耕地分布最密集的区域。耕地面积最大的前10名国家依次是:中国、美国、印度、俄罗斯、巴西、阿根廷、澳大利亚、加拿大、哈萨克斯坦和乌克兰,其中俄罗斯、加拿大、阿根廷和澳大利亚还是人均耕地占有量全球前10名的国家。2000-2010年,全球耕地面积总量略微变化,总体增加2.19%;美洲是耕地面积增长最大的大洲,增长达2 128.14×104 hm2;非洲是耕地面积和空间变化最剧烈的大洲,增长幅度为7.42%。全球耕地面积总量前10名国家中,中国是唯一出现耕地面积减少的国家,10年间减少0.95%,巴西和阿根廷是耕地面积增加和空间波动性最大的国家。美国是耕地面积变化总量和变化幅度均最小的经济大国。全球耕地高强度种植区域主要集中在东南亚、中美洲以及西非地区,复种指数均达200%以上。2000-2010年,全球耕地面积最大的10个国家中有5个国家复种指数呈上升趋势,其中巴西和哈萨克斯坦复种指数增加最显著,俄罗斯复种指数下降最明显。【结论】2000-2010年,全球耕地总量变化不大,但不同区域和国家的耕地变化差异较大。本研究利用30 m分辨率遥感数据产品揭示了全球耕地分布状况、10年变化特征和区域差异,研究结果可为全球水土资源利用、粮食产量和粮食安全分析研究提供重要数据和信息支持。  相似文献   

3.
【目的】探讨2000-2010年欧洲耕地的数量、幅度、空间、利用程度变化和类型转换特征,科学描述欧洲耕地10年变化的总体特征。【方法】基于GlobeLand30数据产品,采用数理统计、GIS空间分析、Python批量处理等方法,选取面积数量、垦殖指数、耕地类型转换等多维度指标分析2000-2010年欧洲耕地时空格局变化特征。【结果】2010年欧洲耕地总面积为42 820.84×104 hm2,不同区域耕地面积占欧洲耕地总面积比例依次为:东欧(51.17%)、南欧(19.07%)、中欧(13.62%)、西欧(13.31%)、北欧(2.83%)。欧洲的耕地分布相对集中,2010年耕地面积排名前10国家的耕地总面积约占欧洲耕地总面积的82.17%。2000-2010年,欧洲耕地面积总体增加约220.90×104 hm2,增加幅度约0.52%,海拔较低的山脚处、河流沿岸为耕地扩展区域,海拔较高处、气候寒冷带的耕地呈减少趋势。北欧(1.25%)、东欧(0.88%)、西欧(0.64%)的耕地面积呈不同程度的增加,南欧(-0.03%)、中欧(-0.34%)则减少。北欧、东欧国家内部耕地面积变化十分剧烈,西欧、中欧国家变化平缓,南欧各国变化则差异较大。2010年欧洲全域的总体垦殖指数为18.71%,各地理分区耕地垦殖指数从高到低依次为:西欧(61.17%)、中欧(57.64%)、南欧(49.24%)、东欧(12.20%)、北欧(9.16%)。10年间欧洲4%的耕地与其他地类之间发生转移。耕地与森林、草地、灌木地、人造地表等类型之间的转移最为明显。东欧地区广袤的草地转入为耕地的比例最大。南欧、西欧、中欧地区耕地大量转出为人造地表的现象最为明显。【结论】欧洲现有耕地分布相对集中在东欧区域,岛屿或山地地区或气候寒冷区国家耕地面积较小。10年间欧洲耕地的空间变化总体平缓,耕地不变的区域占绝大部分,部分区域有耕地的增减。各国内部耕地面积变化剧烈程度总体较低,但具有显著的区域差异性。10年间欧洲耕地垦殖指数略微增加。森林、人造地表细微增加,草地却大量减少,但具有区域差异性,这对生态环境保护和耕地可持续发展产生了潜在的压力。  相似文献   

4.
亚洲耕地利用格局十年变化特征研究   总被引:5,自引:0,他引:5  
【目的】亚洲作为全球人口最多、耕地面积最大、发展中国家众多的大洲,其耕地利用格局变化特征关系到各国乃至全球的粮食产量波动,影响世界粮食安全。本研究旨在通过分析亚洲耕地利用格局变化,加深对亚洲耕地利用现状的认识,科学把握其变化特征及规律,为亚洲的农业土地系统研究提供依据。【方法】采用中国最新研制的2000年和2010年两期全球30 m地表覆盖遥感数据产品(GlobeLand30)及FAOSTAT统计数据,建立耕地面积数量和耕地利用格局指标群,选取耕地面积及其变化幅度、复种指数及其变化幅度、耕地破碎度及其变化幅度等指标,在国家、地理分区和县级等三个尺度上,综合分析2000-2010年亚洲耕地的数量、复种指数及耕地破碎度变化特征。【结果】2010年亚洲耕地面积69 827.94×104 hm2,10年间面积增加62.62×104 hm2,增幅达到0.09%。除东亚耕地数量减少外,其他区域耕地增加;东南亚耕地涨幅最大,西亚是耕地增减最为活跃的地区。亚洲有60%的国家耕地增加,80%的国家耕地面积变化幅度为-5.00%-5.00%。2000-2010年,亚洲复种指数提升7.77%,增幅达9.00%,五大地理分区的复种指数均呈现增加状态。超过2/3的国家耕地复种指数增加,沙特阿拉伯、卡塔尔、塞浦路斯等国家耕地复种指数减少明显。亚洲耕地地块细碎的区域主要集中在中国南方、日本、菲律宾、阿富汗,而印度、中国华北平原及东北农垦区则耕地连片、地块大。亚洲耕地破碎度总体上增加1.12%,中亚和南亚耕地破碎度大幅下降,东南亚耕地破碎程度加剧。超过半数的国家耕地破碎度降低。2000-2010年,中国耕地面积减少0.95%,复种指数增幅较大,达到6.01%,耕地破碎度小幅增加,增幅达2.17%。中国南方地区耕地破碎度高,华北平原、东北农垦区、成都平原等粮食主产区耕地破碎程度低;东部及华北经济发达地区耕地破碎程度增加剧烈;湖南、江西等地耕地破碎度降低。【结论】总体来说,亚洲耕地面积变化平稳,略有增加。复种指数分布呈现“南高北低”的特点,复种指数变化“东南增西北减”,耕地利用程度有较大提升。亚洲的耕地破碎度10年间略有增长,半数以上国家的耕地向规模化发展。中国作为亚洲农业重点区域,10年间其耕地数量减少并伴有破碎化加剧的趋势,但耕地利用率大幅提升。  相似文献   

5.
中国耕地资源与粮食增产潜力分析   总被引:20,自引:3,他引:17  
【目的】分析未来中国耕地数量和粮食增产潜力,为国家粮食安全决策提供参考。【方法】以1980/1996-2013年耕地面积和粮食生产系列数据为样本,应用时间序列预测方法,基于中国第二次全国土地调查结果,预测2020年全国耕地面积、耕地复种指数、粮食作物与非粮食作物面积比、粮食作物种植结构,并从“高产示范区单产水平”、“品种区试单产水平”、趋势单产等多视角分析未来全国粮食增产潜力。【结果】到2020年,全国耕地面积为1.32×108 hm2,粮食作物与非粮食作物面积占比为66﹕34,粮食作物播种面积为1.12×108 hm2;从“高产示范区单产水平”看全国粮食总产有68.9%的增产潜力,从“品种区试单产水平”看全国粮食总产有35.5%的增产潜力,从趋势单产看2020年全国粮食总产潜力为6.34×108-6.53×108 t,与2013年相比增产5.3%-8.5%。【结论】未来中国耕地面积和粮食作物播种面积呈小幅减少之势,但在粮食作物单产不断提高的拉动下,未来中国粮食总生产能力继续呈上升之势。  相似文献   

6.
【目的】科学探明世界第二大洲--非洲的耕地资源禀赋、准确揭示2000-2010年耕地动态变化规律和过程,服务全球粮食安全。【方法】采用全球首套30 m空间分辨率地表覆盖数据GlobeLand30 的 2000年和 2010年耕地数据产品,在不同分析指标和空间尺度上分析10年间非洲耕地利用格局的总体变化、地理差异特征及其生态环境背景。【结果】2000-2010 年,非洲耕地总面积增加了1 540.63×104 hm2,变化率为 7.42%;5个区域10年间耕地面积变化率从大到小依次是:中非(10.42%)、东非(9.49%)、西非(7.55%)、北非(6.74%)和南部非洲(4.86%);耕地面积数量增加排在前10位的国家是尼日利亚、坦桑尼亚、苏丹、肯尼亚、莫桑比克、乍得、阿尔及利亚、赞比亚、津巴布韦和布基纳法索;耕地面积数量减少排在前10位的国家是科特迪瓦、马里、安哥拉、加纳、马拉维、突尼斯、布隆迪、卢旺达、刚果(金)和南非。2010年,非洲耕地复种指数为98.11%,10年间变化率为13.54%;2010年,5个区域的复种指数从大到小依次是西非(163.75%)、中非(148.01%)、东非(76.64%)、北非(75.20%)和南部非洲(57.56%)。耕地空间格局变化区域差异明显,耕地在各经纬度带上以增加为主,以东半球和北半球面积增加较多;新增耕地主要由林地、草地和灌木地等植被类型开发利用转入,分别占转出总量的 15.19%、66.37%和 11.20%,减少耕地主要转成为林地、草地和灌木地,转出面积分别占转出总量的 21.15%、61.19%和11.78%,新增的耕地面积远大于减少的面积。从耕地变化与生态环境因子之间的关系来看,耕地增减变化主要发生在年均温度为20-30℃区域和年均降水为600-1 200 mm的区域,以及500-1 000 m高原区间和坡度小于2°的平缓地带。【结论】2000-2010年,非洲耕地面积数量和空间变化剧烈,不同区域和国家的耕地变化存在明显差异。研究结果揭示了非洲耕地空间分布及时空变化特征,不仅可为分析全球耕地空间分布格局、揭示其地域差异和时空波动规律提供重要基础参考,也可为耕地增减变化比较集中的区域的政策导向、土地产权制度调整提供科学依据,服务全球粮食安全问题解决。  相似文献   

7.
中国陆地区土地利用/覆被时空格局变化及驱动力分析   总被引:1,自引:0,他引:1  
为了揭示21世纪初的10年,中国陆地区域土地利用格局的时空变化,基于全球30 m地表覆盖遥感数据产品(GlobeLand30),采用定性分析与定量分析相结合的方法,在中国陆地区域和流域尺度上,对10年间的土地利用转移矩阵与土地利用动态度进行实证研究。结果表明:研究区内土地利用类型主要以草地、森林和耕地为主,其中草地、耕地和湿地面积不断减少,分别减少了140413、20480、692 km 2,裸地和人造地表的面积增长的比较明显,增长了99645、26302 km 2;草地—裸地、草地—森林之间的转化较为剧烈,灌木地和人造地表的变化速率最大,达1.80%。各子流域内,土地利用类型时空格局变化不同,大部分流域以草地、耕地和森林为主。区域内草地、裸地和人造地表类型的变化明显,人为因素对土地利用格局的影响较大且活跃,自然因素的影响较为持久和稳定。  相似文献   

8.
天山大峡谷国家森林公园土地景观格局及生态风险分析   总被引:1,自引:0,他引:1  
【目的】研究土地景观格局变化和生态风险进行分析评价,为天山大峡谷国家森林公园生态建设提供依据。【方法】以研究区1990年、2000年、2010年和2018年4期土地利用数据,利用ArcGIS和Fragstats软件计算分析景观格局指数和生态风险指数,进行景观生态风险评价。【结果】1990-2018年,区域以耕地、林地和草地为主要生态景观类型,占总面积85.5%,草地和未利用地生态景观面积大幅增加(7 894.7 hm2和4 684.12 hm2),其中耕地、林地、水域面积减少(1 556、5 898.54和6 240.73 hm2);区域内景观格局指数中斑块数量、斑块密度、最大斑块指数、蔓延度及聚集度指数呈现上升的趋势;研究期内低、中低风险区面积增加(59.60和35.72 hm2),中、高和较高风险区面积减少(6.57 、32.14和56.62 hm2)。【结论】整体景观生态风险指数减小,生态环境呈现好的趋势发展;较高和高风险区向东南方向转移,低和较低风险区向南部和东北部转移。  相似文献   

9.
【目的】研究不同密度处理下对花生农艺性状及产量的影响,分析密度与产量的最佳配置。【方法】选取3种花育系列花生品种(花育25号、花育33号和花育36号),设置4个种植密度水平(1.2×105、1.5×105、1.8×105和2.1×105穴/hm2)处理进行列区设计试验,测定不同种植密度下各花生品种的主茎高、侧枝长等主要农艺性状以及产量,筛选最佳种植密度。【结果】密度为1.2×105~1.5×105穴/hm2主茎高要显著大于密度为1.8×105~2.1×105穴/hm2;密度处理为1.5×105穴/hm2的侧枝长比其他处理显著高出1~6.8 cm;单株果数和饱果数均在低密度下最大,随密度的增大而减小;种植密度对总分枝和结果枝影响差异不显著;花育33号在种植密度为1.5×105穴/hm2时产量为最大,为4 555.58 kg/hm2,其次是花育36号、密度为1.8×105穴/hm2处理,第三是花育25号、密度为1.5×105穴/hm2处理。【结论】花育系列花生品种种植密度为1.5×105~1.8×105穴/hm2。  相似文献   

10.
【目的】土地利用/覆盖变化(LUCC)是影响区域生态系统服务价值的重要因素,结合可持续发展框架分析土地利用演变对生态系统服务价值(ESV)的影响,有助于对区域生态文明建设提供科学参考。【方法】利用北京市2010和2020年的土地利用现状图,通过Markov-CLUE-S耦合模型模拟出2030年3种发展情景下的土地利用格局,结合可持续发展目标15(SDG 15)指标讨论土地利用变化对ESV总量的影响。【结果】(1)2010-2020年北京市土地利用变化总体呈耕地、草地和水域面积缩减,林地和建筑用地扩张的格局。2020-2030年,自然发展情景(NIS)下各地类变化趋势较2010-2020年幅度有所减缓;生态保护情景(EPS)下林地和水域面积较2020年涨幅分别为4.96%和14.26%;耕地保护情景(CPS)下耕地缩减和城市扩张情况得到有效遏制;(2)2010年、2020年和2030年(NIS、EPS、CPS)的ESV总量分别为418.4×108、409.9×108、403.6×108、432.4×108  相似文献   

11.
新疆渭干河—库车河三角洲绿洲耕地时空变化特征分析   总被引:2,自引:0,他引:2  
【目的】耕地资源的变化特征是土地利用与土地覆被变化研究的重要内容,也是关系到耕地安全与粮食安全的重大问题。新疆作为中国农业用地较多和后备耕地资源较大的省区,在中国耕地资源保护和持续利用中具有突出地位。渭库绿洲是新疆最典型的荒漠绿洲区,是阿克苏地区最大的灌溉区及新疆重要的产棉区之一,深入了解该绿洲耕地分布及其变化过程,对指导该绿洲农业发展,保障生态安全至关重要。【方法】本研究以遥感资料为数据源,选取动态度、区位指数和板块密度等地理计量模型揭示渭库绿洲近21 a来耕地的时空变化特征,分析其变化的主要原因。【结果】(1)近21a年渭库绿洲耕地发生了显著的时空变化。耕地面积从1994年的2 488km2增加到2015年的3 931 km2,研究期间增加了1 443 km2,耕地面积的比例从17%上升到26%,年均变化量68.71km2,年均变化率2.7%;耕地扩展中心逐渐由绿洲中上游转移到下游,并延伸到绿洲外围,主要表现以耕地为主的农业用地和建设用地为主的非农业用地增加,以及盐渍地和水域大面积减少;(2)从区位指数来看,各县的区位指数存在一定的差异,其中新和县的耕地区位指数均排在第一位,耕地聚集程度远高于全区平均和其他地区,沙雅县的耕地区位指数位于第二,聚集程度也高于全区平均值,库车县的耕地区位指数最小。【结论】经过近21 a的耕地扩展,耕地景观由已杂乱破碎斑块逐渐连接成片,耕地景观的优势进一步增加。降水和径流的增加为渭库绿洲耕地扩展提供了相对有利的气候条件,水利建设与人口增长是影响该绿洲耕地面积变化的主要原因。本研究提出的分析方法能快速、客观反映区域耕地格局的动态变化过程和差异特征,为耕地时空变化研究提供了一种新思路。  相似文献   

12.
 【目的】评价江苏省氮素化肥施用的适宜性,为合理施用氮肥提供依据。【方法】以自主研制的土壤氮素矿化模型、有机肥氮素释放模型和氮肥利用率模型为基础,将模型与GIS技术耦合,对江苏省2000年农田土壤、有机肥供氮量的空间变异状况及其成因进行分析,并将模拟农田需氮素化肥量与实际施氮量进行比较,分析2000年江苏省各地区氮肥施用的合理性。【结果】若以实际作物产量为标准,全省约有71.8%的农田氮肥过剩,过剩总量约7.66×108 kg,占总施氮量的41.5%,少部分地区施氮不足;若以现实最高产量为标准,则有64.3%农田氮肥不足,亏缺总量约8.06×108 kg。太湖地区、宁镇丘陵区、徐州等地氮肥盈余量较多,而滨海盐土区则施氮量不足。【结论】如果把施氮过量区的过剩氮肥投入到施氮不足区,做到资源的最优化利用,将会产生巨大的经济、环境效益。  相似文献   

13.
不同种植模式下的土地适宜载畜量   总被引:7,自引:0,他引:7  
【目的】规模化畜禽养殖的快速发展,造成畜禽生产废弃物的大量集中产生,对周边环境造成了巨大的压力,严重影响了畜牧业的可持续发展,本研究的目的是建立土地载畜量模型,为畜禽生产废弃物的合理使用提供科学依据;【方法】笔者在查阅大量资料和统计年鉴的基础上,以山东省2012年生猪统计数据和主要种植作物产量及氮磷需求量为例,根据农牧生态平衡和农田生态系统养分循环利用原则,分析了粮食种植(冬小麦-夏玉米)、果树种植(苹果)和蔬菜种植(菜椒-茄子、菜椒-西红柿、西红柿-黄瓜3种大棚种植模式以及茄子-大白菜、西红柿-大白菜、黄瓜-萝卜3种露地种植模式)3种土地利用模式下作物氮、磷养分的需要量,依据畜禽生产废弃物中氮磷养分含量,根据土地养分平衡原理,建立了土地养分平衡模型,确定了不同种植模式下单位面积土地消纳畜禽粪污的能力和载畜量,提出了土地不同种植模式下单位养殖规模需匹配的农田面积;【结果】以能繁母猪为基础建立了估测猪场粪尿养分(氮磷)年排出量的猪单位,折算成单个猪单位的氮、磷产生量分别为87.5和11.1kg/年。以此为基础估测了不同类型畜禽粪尿氮磷产生量。根据种植模式估测了土地氮磷输出量,以蔬菜种植模式下土地氮、磷输出量最高,粮食作物种植模式居中,苹果种植下氮、磷输出量最低。结果表明,蔬菜种植模式土地载畜量更高,大棚种植模式下平均为4.5猪单位/ hm2,露地种植模式下平均为3.8猪单位/hm2;果树种植(苹果)载畜量最低,为1.2猪单位/ hm2;冬小麦-夏玉米模式下,不考虑秸秆还田,载畜量可达3.9猪单位/hm2,如果考虑秸秆还田,则载畜量相应降低。以循环利用方式消纳1 000头能繁母猪规模的自繁自养猪场所产生的废弃物,蔬菜种植模式下所需匹配土地面积最少(西红柿-黄瓜轮作的大棚种植模式需要188.7 hm2),苹果种植所需的匹配土地面积最多,需要匹配833.3 hm2;不考虑秸秆还田,小麦-玉米轮作种植模式下,需要匹配的种植土地为256.4 hm2。【结论】根据“养殖-种植”循环利用模式确定了土地载畜量参数为1.2-4.5猪单位/hm2,该参数为畜禽养殖区域规划、养殖场废弃物处理与利用和土地养分管理提供了依据。  相似文献   

14.
【目的】土壤养分变化及碳积累过程是评价绿洲农田生态系统结构、功能和生产力演化的重要指标。本研究的目的是通过了解西北干旱区自然荒漠开垦为灌溉农田后该指标的变化,揭示干旱区新垦农田土壤发育及演变规律,为新垦沙地持续利用提供指导。【方法】选择河西走廊中段临泽边缘绿洲0—46年开垦时间序列的沙地农田,取样分析0—60 cm土壤剖面的物理、化学性状变化及碳积累特征,通过比较2008年与2014年的耕层土壤(0—20 cm)测定结果,分析近几年土壤性状的变化。【结果】耕层土壤砂粒含量随开垦利用年限的增加而逐渐降低,但显著的变化发生在开垦16年后的农田,且最近10年土壤粒级组成变化不明显;在沙地开垦后的最初20年,耕层土壤有机碳(SOC)及全氮含量呈线性增加,20年后增加趋势减缓。开垦46年后,SOC、全氮、碱解氮、速效磷含量分别增加了9.0倍、6.3倍、6.3倍和13.5倍,耕层土壤无机碳(SIC)含量增加了77.1%;速效钾随开垦年限的增加呈先降低而后增加的趋势。20—40 cm和40—60 cm土层SOC及氮、磷、钾养分含量随开垦年限延长而逐渐增加,但变化幅度小于耕层土壤。2008—2014年的6年间,不同开垦年限的同一地块耕层土壤粒级组成未发生变化,但SOC及氮、磷、钾养分有明显的积累。沙地开垦46年后0—60 cm土层SOC、SIC和全碳的年平均固存量分别为0.75、0.79和1.47 kg·hm-2·a-1;SOC的积累主要发生在0—20 cm耕作层,而SIC的积累在40—60 cm土层。荒漠沙地转变为灌溉农田后有巨大的碳固存潜力;土壤黏粉粒增加对SOC及养分的积累和保持起重要作用。【结论】沙地开垦为灌溉农田后,随利用年限的增加,土壤肥力显著改善,但开垦46年后土壤肥力仍处于较低水平。对新垦沙地农田,要实现土地可持续利用和生产力持续提高,须采取提升土壤肥力水平的农田管理措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号