首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
油菜耐盐相关性状的全基因组关联分析及其候选基因预测   总被引:2,自引:1,他引:1  
【目的】通过对甘蓝型油菜耐盐相关性状进行全基因组关联分析,寻找可能与油菜耐盐性相关的SNP位点,发掘与油菜耐盐性有关的候选基因。【方法】以1.2%NaCl溶液作为培养液,去离子水为对照,对307个不同品系的甘蓝型油菜进行发芽试验。播种后7 d测定幼苗根长、鲜重及发芽率,计算盐胁迫下各性状相对值,并作为评价耐盐的指标。结合油菜60K SNP芯片,利用SPAGeDi v1.4软件对该群体307份甘蓝型油菜进行亲缘关系分析,并计算亲缘关系值的矩阵。利用软件STRUCTURE v2.3.4对关联群体进行了群体结构分析。为有效排除假关联的影响,将群体结构和材料间的亲缘关系考虑进关联分析中,同时进行了PCA+K模型、Q+K模型以及K模型3种混合线性模型分析和比较,根据所有SNP的–lg(P)观察值和期望值,确定每个性状GWAS分析的最优模型。采用TASSEL 5.0软件,在最优模型下对307份材料耐盐各性状的相对值分别与SNP标记进行全基因组关联分析。利用油菜基因组数据库,在显著SNP位点侧翼序列200 kb范围内提取基因。根据拟南芥中已经明确功能的耐盐相关基因,筛选出目标基因组区段内与耐盐相关的油菜同源基因。【结果】全基因组关联分析共检测到164个与根长显著关联的SNP位点,23个与鲜重显著关联的SNP位点,38个与发芽率显著关联的SNP位点。其中与根长、鲜重、发芽率最显著关联的SNP位点分别位于染色体A08、A02和A06,贡献率分别为23.84%、18.59%和31.81%。在这些显著SNP位点侧翼序列200 kb范围内发掘出可能与油菜耐盐性有关的50个候选基因。这些候选基因主要包括转录因子MYB、WRKY、ABI1、b ZIP、ERF1、CZF1、XERICO等以及一些下游受转录因子调控的不同功能基因NHX1、PTR3、CAT1、HKT、CAX1、ACER、STH、STO等。在根长和发芽率2个不同耐盐性状的分析结果中均筛选出位于A03染色体上的耐盐基因BnaA03g14410D。另外,这些耐盐候选基因中包含两组串联重复基因,分别是位于A03染色体上的BnaA03g18900D和BnaA03g18910D,位于C09染色体上的BnaC09g19080D、BnaC09g19090D和BnaC09g19100D。除此之外,耐盐候选基因中还包含2个距离非常近(中间只间隔2个基因)的重复基因BnaC02g39600D和BnaC02g39630D。【结论】共检测到225个与耐盐性状显著关联的SNP位点,筛选出50个可能与油菜耐盐性有关的候选基因。  相似文献   

2.
甘蓝型油菜角果长度全基因组关联分析   总被引:2,自引:0,他引:2  
【目的】挖掘与油菜角果长度性状显著相关的SNP位点及候选基因,为揭示油菜角果长度性状的遗传基础和分子机制提供理论依据,为油菜产量分子标记辅助选择育种奠定基础。【方法】在江西农业大学试验地和江西省红壤研究所试验地2个环境下考察300份甘蓝型油菜自交系的角果长度性状,利用简化基因组测序技术(specific locus amplified fragment sequencing,SLAF-seq)对300份甘蓝型油菜自交系基因组DNA进行测序并分析,利用获得的均匀分布于甘蓝型油菜基因组上的201 817个群体SNP(single nucleotide polymorphism,SNP)对角果长度性状进行全基因组关联分析(genome-wide association study,GWAS),探测与油菜角果长度显著相关的SNP位点,并基于群体连锁不平衡分析结果搜寻显著SNP位点两侧100 kb范围内的基因,通过BLAST获得关联区域内基因的注释信息,根据注释信息找出与性状相关的候选基因。【结果】农大试验地角果长度表型变异幅度为46.35—107.07 mm;红壤所试验地角果长度表型变异幅度为39.41—101.35 mm,两性状在2个环境下均表现出广泛表型变异。通过一般线性模型(general linear model,GLM)关联分析,农大环境下共检测到121个角果长度显著关联的SNP位点,分布在A04、A06、A08、A09、C02、C03、C06和C09等8条染色体上,其中,A09染色体上分布最多(83个SNP),红壤所环境下检测到22个角果长度显著关联的SNP位点,其中,1个在C09染色体上,其余21个均分布于A09染色体,在两地探测到20个一致性SNP位点;通过混合线性模型(mixed linear model,MLM)分析,农大环境下共检测到5个角果长度显著关联的SNP位点,其中,3个SNP位点与红壤所环境下检测到3个SNP位点一致,所有位点均位于A09染色体上。对MLM关联分析得到的显著SNP位点两侧100 kb区域内基因进行搜寻并进行功能注释,发现多个候选基因参与调节碳水化合物的运输与合成、花器官和种子的发育、信号转导等,它们可能通过上述功能影响油菜角果的生长,导致角果长度的差异。【结论】通过GLM和MLM两种分析方法探测到多个与油菜角果长度性状显著关联的基因位点,并在显著性位点附近搜寻到相关候选基因。  相似文献   

3.
【目的】为进一步揭示VGLL2基因多态性与牦牛体尺性状的相关性,通过筛查候选基因SNP位点,为牦牛优良性状选育提供参考。【方法】选取四川麦洼牦牛,西藏类乌齐牦牛、申扎牦牛、帕里牦牛和斯布牦牛5个群体共238头个体,运用DNA池测序法筛选VGLL2基因SNP位点,直接测序法检测牦牛VGLL2基因的SNP位点,分析其与体尺性状的关联性。【结果】牦牛VGLL2基因第二内含子存在3个SNP位点(C4868T、C4872G和G4889A),第二外显子包含1个SNP位点G5000A;4个位点均处于Hardy-Weinberg平衡状态。遗传多态性分析显示,C4868T、C4872G和G4889A属于低度多态性,G5000A为中度多态性。4个SNP位点不同基因型与体高、体斜长、胸围、管围和体重等生长性状进行相关性分析结果表明,位点C4868T与体高、体斜长、胸围和体重显著相关;位点C4872G、G4889A和G5000A与体高、体斜长、胸围、管围和体重不相关。【结论】牦牛VGLL2基因的C4868T位点与体高、体斜长、胸围和体重显著相关,可将VGLL2基因作为影响牦牛生长性状的主效基因,为牦牛选育工作提供理论依据。  相似文献   

4.
【目的】对白耳黄鸡三叉冠性状进行分析,以期寻找与三叉冠性状相关的候选单核苷酸多态性(Single Nucleotide Polymorphisms, SNP)位点。【方法】60 只白耳黄鸡用于杂交试验,120 只白耳黄鸡用于受精率试验。对 82 只白耳黄鸡采集血样抽提 DNA,用 Illumina 鸡 60 k 芯片进行基因型分型,利用 PLINK 1.90 对分型结果进行质控后,采用 GEMMA 软件对 SNP 与性状进行全基因组关联分析(Genome-wide Association Analysis, GWAS),寻找与白耳黄鸡三叉冠性状显著相关的 SNP 位点。【结果】白耳黄鸡三叉冠呈现常染色体遗传,其种蛋受精率与单冠的白耳黄鸡差异不显著。由 82 只白耳黄鸡群体得到 55 023 个有效 SNP,群体内不存在明显的群体分层。与三叉冠相关的 SNP 位点有 10 个,分别位于第 1、2、3、4、5、12、14 号染色体上,邻近或座落于 SPRY2、NDFIP2、ITGA9、EMC2、TMEM17、EHBP1、SCAF8、TIAM2、HTT、STON2、PRKCD、RBBP6、TNRC6A、MAPK8IP3 基因上。【结论】通过 GWAS 分析发现 10 个 SNP 位点可能与白耳黄鸡三叉冠性状相关。研究结果将为白耳黄鸡的育种提供候选分子标记,为地方鸡标记辅助选择提供新的思路。  相似文献   

5.
【目的】盲肠是鸡进一步消化和吸收养分,尤其是纤维的器官,对鸡的生长及后期产蛋都具有重要作用,因此鸡的盲肠长度是一个重要的生理指标.【方法】通过对白来航鸡与东乡绿壳蛋鸡杂交所得F2代个体的盲肠长度进行测量,并运用单核苷酸多态性(SNP)芯片检测其基因分型,根据SNP检测数据运用SAS进行遗传评估,并用全基因组混合模型关联算法(GEMMA)进行单变量全基因组关联分析(GWAS).【结果】结果显示,盲肠长度表现出中等遗传力(0.39).GWAS鉴定出54个SNP与盲肠的长度显著相关,且1号染色体170 Mb附近对于盲肠长度来说是一个重要区域.在这个区域,覆盖26个SNP位点的18个基因被定为候选基因,其中2个分别在编码序列(CDS)和3'非翻译区(3'UTR),对应于NHLRC3和SIAH3,它们可能是影响盲肠长度的重要SNP位点和基因.【结论】利用GWAS筛选并鉴定出和鸡盲肠长度相关联的SNP位点及基因,将为揭示蛋鸡盲肠发育的机制和分子育种提供基础.  相似文献   

6.
【目的】挖掘与叶绿素含量显著关联的单核苷酸多态性(single nucleotide polymorphism, SNP)位点和候选基因,为甜瓜叶绿素含量改良提供分子靶点和基因资源。【方法】以118份具有广泛变异的甜瓜种质为自然群体,采用2 531 449个高质量SNP标记对叶片叶绿素含量进行全基因组关联分析,挖掘优异等位变异,并预测候选基因。【结果】甜瓜自然群体叶绿素含量趋向正态分布,包含5个明显的亚群。利用Q模型对2次试验的叶绿素含量及其最佳线性无偏预测(best linear unbiased prediction, BLUP)值进行关联分析,共检测到15个显著位点,分布在甜瓜第1、2、4、8、11、12号染色体上,表型贡献解释率为5.62%~6.69%。其中,8个位点的不同基因型之间存在显著表型差异。结合关联位点的候选区域和转录组数据,共鉴定到28个差异表达基因,其中MELO3C018513.2和MELO3C003666.2是改良甜瓜叶绿素含量的潜在候选基因。【结论】通过高质量SNP标记Q模型的全基因组关联分析,共检测到15个与叶绿素含量显著关联的位点,筛选出2个可能与叶绿素含...  相似文献   

7.
鸡胸腺重和脾脏重性状的全基因组关联   总被引:2,自引:2,他引:0  
【目的】全基因组关联分析(genome-wide association study,GWAS)是复杂性状和疾病相关基因定位的新策略。【方法】试验利用鸡60K SNP芯片对来自50个公鸡家系的728只北京油鸡进行SNP分型检测,采用全基因组关联分析方法对影响100日龄胸腺重和脾脏重的基因进行定位研究。【结果】结果发现24个达5%全基因组水平显著的位点,与100日龄胸腺重和脾脏重显著相关,并在这些位点附近发现Janus kinase 1(JAK1)、 zinc finger DHHC-type containing 8(ZDHHC8)、vav 3 guanine nucleotide exchange factor(VAV3)、SATB homeobox 1(SATB1)等候选基因;84个与这两个性状潜在关联同时达到5%染色体水平显著的位点。【结论】利用GWAS分析策略筛选和鉴定的重要突变位点及候选基因,将为揭示鸡免疫器官发育的分子调控机制和抗病育种分子标记辅助选择提供必要的分子基础。  相似文献   

8.
【目的】以秦川牛糖原磷酸化酶基因PYGM为候选基因,研究其在秦川牛生长和胴体性状形成中的作用。【方法】以300头(24±2)月龄纯种秦川牛为试验材料,通过DNA测序和PCR-RFLP技术,研究PYGM基因的多态性对秦川牛个体宰前活体质量、胴体质量、体高、体斜长和屠宰率共5个性状的影响;运用RT-PCR技术分析PYGM基因在秦川牛成体和4~5月龄胎牛2个阶段的肺脏、心脏、肝脏、舌、背最长肌及脾脏6种组织中的表达情况。【结果】半定量RT-PCR检测结果显示,PYGM基因在秦川牛胎儿和成年时期的心脏、舌及背最长肌组织中的表达量均显著高于其他组织。并在该基因中筛查到了2个新的单核苷酸变异(SNP)位点,分别为PYGM内含子1上的C→T突变和内含子6中的C→G突变。群体多态性分析结果表明,秦川牛群体在这2个位点处于Hardy-Weinberg平衡状态,并且处于中度多态。2个SNP位点中A和C等位基因为优势等位基因,SNP 1位点上AA和AB基因型个体的宰前活体质量和胴体质量显著高于纯合的BB基因型个体;SNP 2位点上CC基因型个体的体高显著高于DD基因型个体。【结论】PYGM基因可以作为秦川牛品种改良中与肌肉生长相关的候选基因。  相似文献   

9.
【目的】为加快高产香林麝群体的选育,本文通过分析FSHβ和LHβ基因多态性位点与产香性能的关联性,以期从遗传水平上寻找林麝产香性能标记位点。【方法】研究利用新一代测序技术,采用DNA混池测序方法对100个林麝血液样本进行SNP扫描,重点关注2个候选基因的基因区或上下游2 kb区域;运用质谱分析,对74只林麝的20个候选SNP位点进行定位分析;再结合生产实际,利用产香数据与这些SNP位点进行关联分析。【结果】位于FSHβ的2个SNP和LHβ的1个SNP位点与林麝泌香性能高度相关(P0.05);这3个SNP均位于基因的非编码区,提示这些突变位点可能与顺式调控作用有关。【结论】3个突变位点的发现可作为分子标记运用于林麝的人工选育,并为高产香林麝群体培育选种提供辅助依据。  相似文献   

10.
油菜主花序角果密度及其相关性状的全基因组关联分析   总被引:2,自引:2,他引:0  
【目的】油菜高产是育种工作的主要研究目标之一。角果密度、主花序有效角果数等性状与产量都有显著或极显著的正相关关系,是油菜高产育种考查的主要性状。为揭示油菜角果密度及其相关性状的遗传机理和分子机制奠定基础。【方法】以不同遗传背景和地理来源的213份甘蓝型油菜品种(系)构成的自然群体为研究对象,利用芸薹属60K Illumina Infinium SNP芯片对该群体进行基因型分型。分别于2015年和2016年在成熟期调查该群体主花序有效长和主花序有效角果数,计算主花序角果密度。利用Structure 2.3.4软件对该群体进行群体结构分析,Tassel 5.1.0软件分析亲缘关系和染色体连锁不平衡的衰减;然后基于最优模型对主花序角果密度及其相关性状进行全基因组关联分析(genome-wide association analysis,GWAS),依据关联SNP位点的LD区间序列,预测与性状相关的重要关联候选基因。【结果】群体结构分析显示,213份甘蓝型油菜分为P1和P2亚群,P1亚群包含50份材料(23.5%),P2亚群包含163份材料(76.5%),基本上和油菜的地理栽培属性一致;亲缘关系发现约89.74%材料之间的亲缘关系值小于0.2,其中约有59.91%材料的亲缘关系值为0。总体来看,整个自然群体材料之间的亲缘关系比较远。对A、C基因组进行连锁不平衡分析发现,A和C基因组的r2随着遗传距离的增加而下降,A基因组的衰减距离整体比C基因组的衰减距离小。GWAS分析两年数据共检测到17个SNP位点与主花序角果密度及其相关性状关联。其中与主花序角果密度和主花序有效长相关的SNP标记分别有7个和9个,并分别解释11.34%—15.96%和9.67%—13.10%的表型变异;与主花序有效角果数相关联的标记有1个,解释11.56%的表型变异。通过分析关联SNP位点的LD区间与甘蓝型油菜对应的区间序列,找到22个与主花序角果密度及其相关性状有关的候选基因,其中BnaA01g16940D、BnaC01g38800D和BnaA04g09170D等主要通过调控赤霉素和生长素等内源激素的合成和信号转导来控制主花序角果密度及其相关性状;BnaA01g16970D、BnaA03g29180D、BnaA03g29810D、BnaC01g39680D和 BnaC03g32770D通过对分生组织的调控来改变表型;BnaC09g18690D和 BnaC09g09210D等主要通过控制细胞分裂生长等过程改变表型。【结论】检测到17个SNP标记与油菜主花序角果密度、主花序有效长和主花序有效角果数关联,筛选出22个与主花序角果密度及其相关性状有关的候选基因。  相似文献   

11.
【目的】适合机械化收获是当今油菜育种改良和遗传研究的重要目标。该研究以一个自然变异产生的油菜有限花序(denterminate inflorescence 1,di1)突变体为研究对象,通过分析有限花序的遗传模式,开展有限花序性状的基因定位和克隆,以期发掘候选基因,为培育适合机械化收获的油菜新品种提供新思路和新材料,为揭示油菜有限花序遗传机制奠定基础。【方法】以一个稳定遗传的有限花序突变株系FM8与野生型自交系FM7开展正反交,观察F1和F2后代的花序形态,分析有限花序性状的遗传模式。在F2群体中挑选20个有限花序单株和20个野生类型单株构建混合池,对混合池和亲本开展20×和10×覆盖度的全基因组重测序,定位有限花序性状的关联区间。根据关联区间对应到拟南芥基因组的共线性区段和基因注释信息,预测候选基因,并对候选基因进行同源克隆,发掘序列变异,筛选关键基因。【结果】油菜有限花序突变性状表现为初花期主花序和侧枝花序顶部形成一个或若干个顶生花,花序无限生长受阻,导致结角期主枝和侧枝有封顶特征即有限花序。有限花序突变株系与野生型正反交F1均表现为野生型,F2代无限花序与有限花序的分离比符合13﹕3,说明有限花序的遗传受2对隐性基因和1对隐性上位抑制基因互作控制。对混合池及亲本开展全基因组重测序,得到30 123个单核苷酸多态性(SNPs)标记和107 636个插入缺失标记(In Dels)标记,用于有限花序性状的全基因组定位。定位结果共检测获得7个显著关联区间,分布于油菜A08、A09、A10、C08和C09共5条染色体。其中,A10染色体上的关联区间峰值最高,是控制有限花序性状的主效位点。并且,A10染色体关联区间内的14.36—15.07 Mb的区域与C09染色体2个关联区间显示高度同源性。候选基因预测发现位于A08、A09、A10、C08和C09的5个关联区间包含有8个候选基因,包括TERMINAL FLOWER 1(TFL1)、FLOWERING LOCUS C(FLC)、ATBZIP14(FD)、MULTICOPY SUPPRESSOR OF IRA1 4(FVE)和SCHLAFMUTZE(SMZ)。基因序列分析表明di1突变体TFL1、FVE和SMZ的基因编码区存在序列变异,并导致蛋白序列变异。【结论】油菜有限花序突变由2对隐性基因和1对隐性上位抑制基因互作控制。与有限花序性状显著关联的区间有7个,其中,位于染色体A10和C09的关联区间具有高度同源性。TFL1、FVE和SMZ被推断为有限花序性状的候选基因。  相似文献   

12.
【目的】利用甘蓝与甘蓝型油菜的六倍体杂交种为桥梁与甘蓝型油菜回交,从回交种的自交后代中选育理想的甘蓝型油菜个体,是将甘蓝遗传成分转入甘蓝型油菜的一种新策略。调查多份甘蓝型油菜与六倍体的可交配性及杂交种后代的育性,并以油菜菌核病抗性为例,以验证该策略在甘蓝型油菜遗传改良中的应用潜力。【方法】用菌核病抗性较强的野生甘蓝与甘蓝型油菜中双9号进行种间远缘杂交,采用胚挽救及染色体加倍技术创建A~nA~nC~nC~nC~oC~o六倍体。通过调查六倍体与9份甘蓝型油菜的杂交结实率,分析六倍体与甘蓝型油菜的可交配性。通过调查六倍体与9份甘蓝型油菜的杂交种F_1的自交、自由授粉结实率和菌核病抗性水平,反映杂交种F_1代的结实能力以及目标性状的改良情况。【结果】经鉴定,六倍体含有20条A基因组染色体和36条C基因组染色体,即染色体组成为A~nA~nC~nC~nC~oC~o。该六倍体同时具有甘蓝亲本和甘蓝型油菜亲本中双9号的遗传物质,其自交结实率和自由授粉结实率分别为5.6和8.6粒/角。六倍体与9份甘蓝型油菜杂交的结角率在69.1%—92.9%,每角粒数介于4.7-10.5,不同基因型的甘蓝型油菜与六倍体杂交结果率和每角粒数均存在显著差异(P0.01)。所调查的9份杂交种F_1的花粉育性达到正常水平,但自交结实率和自由授粉结实率分别为11.4-20.7粒和19.9-26.1粒,基因型间均存在显著差异(P0.0001),自交结实率和自由授粉结实率之间相关性显著(r=0.67*,P0.05)。综合2013和2014年的茎秆菌核病抗性鉴定数据,六倍体相对于中双9号的相对感病度为0.47,9份甘蓝型油菜的相对感病度在0.94—1.26,亲本基因型之间抗性水平差异显著(P0.0001)。9份杂交种F_1的相对感病度为0.56—1.10,均介于对应的双亲之间,且与甘蓝型油菜亲本的抗性水平显著相关(r=0.78*,P0.05)。其中5份杂交种F_1的相对感病度显著低于对应的甘蓝型油菜亲本(P0.05),即其抗性水平相对于原甘蓝型油菜亲本获得明显提高。【结论】A~nA~nC~nC~nC~oC~o六倍体有一定的结实能力,与甘蓝型油菜的可交配性受油菜基因型显著影响,但均易获得具有较好(一定)结实性的杂交种后代,目标性状在杂交种一代获得显著改良。  相似文献   

13.
【目的】细胞分裂素是调控植物花青苷合成的重要激素,从新疆红肉苹果杂种一代优系‘紫红3号’中克隆得到分裂素响应基因Md MYB308,研究其在细胞分裂素调控苹果花青苷合成中的作用,为进一步完善红肉苹果育种的理论与技术体系提供参考。【方法】以红肉苹果‘紫红3号’(新疆红肉苹果与‘富士’杂交1代)的红色幼嫩叶片为外植体诱导的红色愈伤组织为试材,设计引物利用PCR克隆Md MYB308,对其进行生物信息学分析;并用不同浓度细胞分裂素处理,采用荧光定量PCR分析Md MYB308及花青苷合成相关基因的表达;通过酵母双杂交试验、荧光双分子互补试验验证Md MYB308与Mdb HLH3的互作关系。【结果】在‘紫红3号’中克隆获得Md MYB308全长,其包含768 bp完整的开放阅读框,编码255个氨基酸,预测其编码蛋白质分子量为28.37 kD,等电点为8.94;系统进化树分析表明,Md MYB308与At MYB4、Fa MYB1、At MYBL2在同一个进化枝上,氨基酸序列比对发现,Md MYB308蛋白存在EAR抑制序列;提高6-BA浓度有利于苹果愈伤组织花青苷的累积,与无细胞分裂素处理相比,1 mg·L~(-1) 6-BA处理愈伤花青苷合成结构基因Md CHS、Md DFR、Md UFGT与转录基因Md MYB10、Mdb HLH3的表达量升高,而Md MYB308表达被抑制;酵母双杂交与荧光双分子互补试验表明,Md MYB308与Mdb HLH3能相互作用。【结论】细胞分裂素(6-BA)可能通过抑制Md MYB308的表达影响Md MYB308与Mdb HLH3的结合从而促进花青苷的累积。  相似文献   

14.
油菜株高QTL定位、整合和候选基因鉴定   总被引:1,自引:1,他引:0  
【目的】通过对油菜株高进行多环境QTL定位并与已报道的油菜株高QTL和植物株高基因分别进行整合和比对分析,揭示油菜株高的遗传结构和候选基因并为其分子改良提供依据。【方法】以油菜优良品种中双11(测序)和No.73290(重测序)衍生的含184个单株的Bna ZNF2群体为试验材料。首先,对Bna ZNF2群体进行基因型分析,利用Joinmap 4.0软件构建了一张含803个分子标记的高密度遗传图谱。其次,对F2:3和F2:4家系进行连续两年(2010—2011)两点(武汉和西宁)田间试验和表型鉴定。然后,利用Bna ZNF2群体的基因型数据和F2:3以及F2:4家系的株高表型数据,采用Win QTLCart 2.5软件的复合区间作图法进行QTL检测。最后,利用元分析的方法采用Bio Mercator软件对不同环境中检测到的株高QTL进行整合。【结果】对两年两点环境下分别检测到的株高QTL进行整合总共得到5个株高QTL的位点:q PH.A2-1、q PH.A2-2、q PH.C2-1、q PH.C3-1和q PH.C3-2,分布于A2、C2和C3染色体上,解释2.6%—55.6%的表型方差。其中,q PH.A2-1和q PH.A2-2只在武汉检测到,而q PH.C2-1、q PH.C3-1和q PH.C3-2只在西宁检测到。位于C2连锁群的主效QTL-q PH.C2-1只在西宁被重复检测到,而且LOD值、加性效应和贡献率(分别为23.4、-16.0和55.6%)均高于前人报道,是目前发现的效应最大的一个油菜株高QTL。基于油菜基因组物理图谱对本研究和已报道的油菜株高QTL和植物株高基因分别进行整合和比对分析,获得了一个由183个QTL和287个候选基因组成的相对完整的油菜株高遗传结构图。其中,有18个株高QTL簇能在不同研究中被共同检测到,分布在A1、A2、A3、A6、A7、A9、C6和C7染色体上。另外,本研究定位到的5个油菜株高QTL的物理位置和已报道的油菜株高QTL均不重叠,因而是新的株高QTL位点。其中,q PH.A2-2、q PH.C3-1和q PH.C3-2物理区间内总共找到了15个株高同源基因,而11个在2个亲本中存在序列变异,被选作候选基因进行进一步研究。【结论】QTL定位和整合获得5个油菜株高QTL,均为首次报道而且都只在武汉或西宁被检测到。其中位于C2连锁群的主效QTL效应值超过以往报道,表现出极强的QTL与环境的互作。通过与已报道的油菜株高QTL和植物株高基因分别进行整合和比对分析,较为全面地揭示了油菜株高的遗传结构和候选基因,生物信息学分析还鉴定到11个位于本研究定位到的3个株高QTL区间内的候选基因。  相似文献   

15.
玉米籽粒淀粉粒密度基因tw1的精细定位   总被引:1,自引:1,他引:0  
【目的】淀粉粒密度影响籽粒容重,通过对一个玉米籽粒淀粉粒密度突变体Mrd进行鉴定和精细定位,为容重相关基因的克隆和功能验证奠定基础。【方法】以育种选系过程中发现的一个淀粉粒密度突变体Mrd为材料,利用近红外光谱分析仪检测其籽粒内部化学成分的变化,用扫描电镜观察授粉后18-45 d正常籽粒和突变籽粒中淀粉粒形态的差异;于2014-2016年分别在河南郑州和原阳以及海南三亚种植Mrd与B73的杂交组合及F2和BC1分离群体,并对其进行遗传分析;使用来自maizeGDB(http://www.maizegdb.org)的覆盖全基因组的1 000对SSR引物,通过集团分离分析法(bulked segregation analysis,BSA)筛选与目的基因紧密连锁的标记,实现目的基因的初步定位;并在该定位区间内开发新的标记,对从38 000 BC1分离群体中筛选出的交换单株进行基因型分析,实现目的基因的精细定位;通过候选基因序列分析、功能预测和等位性测验确定首选候选基因。【结果】该突变体籽粒较正常籽粒体积变小,比重增加;细胞学和化学组份分析结果表明,与野生型籽粒相比,突变体籽粒中的粗蛋白含量降低,粗淀粉含量没有显著变化,淀粉粒形状不规则且变小、密度增加,可能是导致籽粒容重变大的原因;对授粉后不同天数籽粒内部淀粉粒结构的观察显示,突变体籽粒淀粉粒的密度比正常籽粒密度大,并随发育进程不断增加;对Mrd与B73的F2及测交后代分离群体的遗传分析结果表明,Mrd籽粒突变是由单隐性基因(命名为tw1)控制的;该基因首先被定位在第6染色体的SSR标记umc1105和bnlg1154之间,物理距离为22 Mb;利用上述2个标记对BC1群体进行交换单株筛选,并开发标记,将该基因定位于SSR标记B3和A47之间,物理距离为0.2 Mb;在该候选区段内有包含su2在内的3个候选基因,等位性测验结果表明,tw1su2不是等位基因;候选基因序列分析和功能预测结果表明GRMZM2G042607编码的蛋白具有碳水化合物识别结构域,在种子中对碳水化合物的储藏起沉积作用,是tw1最可能的候选基因。【结论】实现了籽粒淀粉粒密度突变性状基因tw1的精细定位,并确定了候选基因为编码一种β-1,3半乳糖基转移酶的GRMZM2G042607。  相似文献   

16.
水稻黄绿叶突变体ygl13的鉴定及候选基因分析   总被引:2,自引:0,他引:2  
【目的】对水稻黄绿叶突变体ygl13 (yellow-green leaf 13 )进行表型鉴定和候选基因检测,以便了解水稻叶色形成和调控的分子机制。【方法】经甲基磺酸乙酯(EMS)诱变籼稻恢复系缙恢10号(Jinhui 10),从中筛选出1份遗传稳定的黄绿叶突变体命名为ygl13,对突变体的表型进行系统观察,调查其成熟期的主要农艺性状,分别测定野生型和突变体苗期和孕穗期的叶片光合色素含量,同时利用透射电镜观察野生型和突变体ygl13的叶肉细胞及叶绿体结构。将表型正常的不育系西农1A与突变体ygl13杂交,根据F1和F2群体的性状表现与分离情况,分析该突变性状的遗传行为,并以F2作为基因定位群体,对突变体ygl13进行候选基因遴选和突变位点测序验证。【结果】突变体ygl13的植株叶片在整个生育期均呈现黄绿色,与野生型缙恢10号相比,突变体ygl13苗期和孕穗期叶片叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低。透射电镜观察结果显示,与野生型相比,突变体ygl13叶绿体结构异常,基质片层减少退化,类囊体片层减少,不规则的散乱分布。农艺性状调查结果表明,突变体ygl13穗总粒数增加了26.06%,株高和结实率分别降低了12.33%和18.82%,但穗长、有效穗、穗实粒数和千粒重无显著差异。F2群体正常叶色的植株数与黄绿叶植株数分离比经χ2测验符合3﹕1分离比例(χ2=2.35<χ20.05=3.84),表明ygl13的黄绿叶性状由1对隐性核基因控制。YGL13被定位于第8染色体短臂InDel标记ID43和ID69之间,遗传距离分别为4.0和0.5 cM,区间物理距离约为318 kb,共有52个基因。经测序比对分析发现,ygl13突变体在OsSIG1编码区的第1 005个碱基G突变为碱基A(位于第三外显子),造成编码色氨酸(Trp或W)的密码子突变为终止密码子,导致蛋白翻译提前终止,则该基因编码520个氨基酸的蛋白质突变为334个氨基酸的截短蛋白。qRT-PCR结果表明,突变体ygl13部分光合色素代谢途径和光系统相关基因表达紊乱。【结论】水稻突变体ygl13的黄绿叶性状由1对隐性核基因控制,该基因与已报道的水稻质体σ因子OsSIG1为等位基因。  相似文献   

17.
【目的】对水稻甲磺酸乙酯(EMS)诱变产生的雄性不育突变体oss125进行遗传分析,并利用改进的MutMap方法克隆突变基因,为进一步探讨该基因功能及在农业生产上的应用奠定基础。【方法】用化学诱变剂EMS处理籼稻品种黄华占,通过观察表型,从突变体库中筛选出一株雄性不育突变体,记为oss125。将oss125与野生型黄华占进行杂交,调查F1的育性和F2群体的育性分离情况。随机挑取F2中30个雄性不育表型的株系,提取DNA后等量混合形成DNA池,采用Illumina Hiseq 2000进行高通量测序。利用改进的MutMap方法分析测序数据获得候选突变位点,并进一步采用高分辨率溶解(HRM)方法确定突变基因与不育表型的连锁关系。对候选基因进行序列分析,同时利用RT-PCR分析该候选基因的表达模式。【结果】oss125突变体在营养生长期表型与野生型黄华占相同,进入生殖生长后,花粉经1% I2-KI染色显示,以碘败为主(85%),15%能正常染色,但植株表现为完全雄性不育。oss125作为花粉受体与野生型黄华占杂交能够正常结实,F1表现为可育,F2群体的可育植株与不育植株分离比为3﹕1,表明雄性不育表型由1对隐性核基因控制。利用改进的MutMap方法分析突变体测序数据,得到4个候选位点,其中3个位于基因间区,1个位于OsRPA1a的第二个外显子区,编码区A663位点突变为C,导致其编码的氨基酸从谷氨酰胺(Q)突变成脯氨酸(P),HRM分析显示该突变与雄性不育性状紧密连锁。【结论】OsRPA1a是控制突变体oss125表型的基因,OsRPA1a编码区A663位点突变为C,导致花粉发育异常,植株表现为雄性全不育,但雌性发育正常。OsRPA1a参与水稻雄配子和雌配子发育过程,为水稻减数分裂和体细胞DNA修复所必需。前人报道OsRPA1a的T-DNA插入突变体表现为雌性全不育而雄性半不育,但oss125突变体表现为雄性全不育而雌性可育,说明该基因控制雄性发育和雌性发育的功能可能分布在蛋白质的不同区域,oss125突变体中的OsRPA1a点突变可能坐落于雄性发育功能区,不影响雌性发育功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号