首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
This study used cytogenetic stocks to investigate the chromosomal location of genes responsible for polyphenol oxidase (PPO) activity in common and durum wheat seeds. Substitution lines of chromosome 2A of hexaploid varieties ‘Cheyenne’, ‘Thatcher’ and ‘Timstein’ in ‘Chinese Spring’ showed significantly higher PPO activity than all other substitution lines of the same variety, with the exception of substitutions of ‘Cheyenne’ chromosome 3A and ‘Thatcher’ chromosome 4B. Substitution lines of chromosome 2A of Triticum turgidum var. dicoccoides and of chromosome 2D of ‘Chinese Spring’ into the tetraploid variety ‘Langdon’ showed a significant increase in PPO activity relative to all other substitution lines in Langdon. The gene(s) responsible for high PPO activity in chromosome 2D from ‘Chinese Spring’ was mapped on the long arm within a deletion that represents 24% of the distal part of the arm. This study shows that genes located in homoeologous group 2 play a major role in the activity of PPO in wheat.  相似文献   

2.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

3.
Multiplex-PCR typing of high molecular weight glutenin alleles in wheat   总被引:26,自引:0,他引:26  
W. Ma  W. Zhang  K.R. Gale 《Euphytica》2003,134(1):51-60
In Australian commercial cultivars, each high molecular weight glutenin (Glu-1) homoeologous locus consists of one of two predominant alleles: Glu-A1a (subunit Ax1) or Glu-A1b (subunit Ax2*) at the GluA1 locus, Glu-B1b (Bx7 and By8 subunits) or Glu-B1i (Bx17 and By18 subunits) at the Glu-B1 locus, and Glu-D1d (Dx5 and Dy10 subunits) or Glu-D1a (Dx2 and Dy12 subunits) at the Glu-D1 locus. PCR-based assays have been developed in this study to discriminate between these common alleles at each locus. Primers specific for the Glu-A1 Ax2* gene give a single fragment of 1319 bp only in the presence of this gene. Primers targeting the Glu-B1 locus resulted in a co-dominant marker for which the Bx7 genotype produced two fragments (630 bp and 766 bp) and the Bx17 genotype a single fragment (669 bp). The third pair of primers was specific for the Dx5 gene and resulted in a single band of 478 bp. A multiplexed PCR assay was established which permitted the discrimination of the major HMW glutenins in a single PCR reaction and agarose gel assay. As the HMW glutenin composition of a wheat line is extremely important in determining the functional properties of wheat gluten, these markers are useful for the purposes of marker-assisted breeding. These markers may also be useful for the purpose of DNA-based identification of wheat varieties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Resistance to Pseudocercosporella herpotrichoides in five wheat cultivars, accession W6 7283 of Dasypyrum villosum, and ‘Chinese Spring’ disomic addition lines of the D. villosum chromosomes IV, 2V, 4V, 5V, 6V and 7V, was evaluated in seedlings by measuring disease progress 6 weeks after inoculation with a β—glucuronidase—transformed strain of the pathogen and by visual estimates of disease severity. D. villosum and the disomic addition line of chromosome 4V were as resistant as wheat cultivars ‘VPM—1’ and ‘Cappelle Desprez’, but less resistant than ‘Rendezvous’. Resistance of the chromosome 4V disomic addition line was equivalent to that of D. villosum.‘Chinese Spring’ and disomic addition lines of IV, 2V, 5V, 6V and 7V were all susceptible. These results confirm Sparaguee's (1936) report of resistance in D. villosum to P. herpotrichoides and establish the chromosomal location for the genes controlling resistance. The presence of chromosome 4V in the addition line and its homocology to chromosome 4 in wheat were confirmed by Southern analysis of genomic DNA using chromosome group 4-specific clones. This genetic locus is not homoeologous with other known genes for resistance to P. herpotrichoides located on chromosome group 7, and thus represents a new source of resistance to this pathogen.  相似文献   

5.
Powdery mildew resistance in Czech and Slovak barley cultivars   总被引:5,自引:0,他引:5  
Fifteen powdery mildew resistance genes and the gene MlaN81 derived from ‘Nepal 81’were found in 76 Czech and Slovak spring and winter barley cultivars when tested for reaction to a set of powdery mildew isolates. Nine cultivars (‘Donum’, ‘Expres’, ‘Jubilant’, ‘Orbit’, ‘Primus’, ‘Progres’, ‘Stabil’, ‘Vladan’ and ‘Zlatan’) are composed of lines with different resistance genes. The Mlat gene is present in nine cultivars and was transferred from the Anatolian landrace ‘A‐516′. The resistances derived from ‘KM‐1192’and ‘CI 7672’were identical and designated Ml(Kr). Five winter barley cultivars possess the Ml(Bw) resistance. The winter barley line ‘KM‐2099’carries the mlo gene. The parental cultivar ‘Palestine 10’was also tested in which the genes Mlk1, MlLa were identified. The German cultivar ‘Salome’, a parent of seven cultivars tested, probably carries the gene MlLa in addition to mlo and Mla7. The gene mlo6 may be present in the cultivar ‘Heris’. Most of the results were confirmed by the pedigrees of the cultivars.  相似文献   

6.
To identify homoeologous group-3 chromosomes that carry genes for vernalization, day-length responses, and earliness per se, a series of aneuploid lines (mono-somics and tetrasomics) and chromosome-substitution lines in ‘Chinese Spring’ (CS) were surveyed under different vernalization and day-length regimes in controlled environments. The results indicated that genes on all three chromosomes of group 3 can have striking effects on ear-emergence time. The replacement of CS 3B by its homologues in ‘Lutescens 62’ and ‘Cheyenne’ produced an increased insensitivity to vernalization, while 3B homologues from ‘Ceska Presivka’ gave CS a remarkable sensitivity to vernalization. This provided evidence for multiple allelism at a new Vrn locus on chromosome 3B. A negative association between gene dosage and day-length response was found in CS 3D which was thought to carry a gene for promoting insensitivity to day-length. The behaviour of CS monosomic 3A and CS (Timstein 3A), in reducing numbers of days to heading independently of environmental stimuli, suggested the presence of earliness per se genes on this chromosome.  相似文献   

7.
G. Galiba    R. Tuberosa    G. Kocsy  J. Sutka 《Plant Breeding》1993,110(3):237-242
The relationship between frost tolerance and abscisic acid (ABA) accumulation was studied in callus cultures of three wheat cultivars differing in the level of frost-tolerance, and of the 5A and 5D chromosome substitution lines from the frost-tolerant variety ‘Cheyenne’ into frost-sensitive ‘Chinese Spring’. Following cold hardening, the increase in ABA level in the calli of the two frost tolerant cultivars was significantly higher than in those of the frost-susceptible cultivar. Similarly, in 5A and 5D substitution lines, significantly higher ABA levels were detected than in the recipient ‘Chinese Spring’. One week-long ABA treatment at 26 °C induced a significantly higher level of frost tolerance than that achieved by cold hardening, irrespective of the frost sensitivity of the examined genotypes.  相似文献   

8.
Chromosomal location of resistance to two virulent Argentinean isolatesof Septoria tritici was studied in two wheat (Triticum aestivumL.) cultivars (Cappelle-Desprez & Cheyenne), a synthetic hexaploid(Synthetic 6x) and Triticum spelta in seedlings. Substitution lines of these(resistant or moderately resistant) genotypes into (susceptible) ChineseSpring were selected from a previous screening. For Synthetic 6x,resistance was clearly located in chromosome 7D. Chinese Spring with the7D chromosome substituted by Synthetic 6x showed almost completeresistance, similar to the level of Synthetic 6x. For the substitutions withCappelle-Desprez, Cheyenne, and T.spelta there were no lines with abehaviour similar to the resistant parent. However, some substitutions weremore resistant than the susceptible parent suggesting that severalchromosomes could be involved in the resistance of these genotypes toSeptoria leaf blotch.  相似文献   

9.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

10.
G. Galiba  J. Sutka 《Plant Breeding》1988,101(2):132-136
The genetic control of frost resistance was studied in callus cultures using some of the chromosome substitution lines of the variety ‘Cheyenne’ into ‘Chinese Spring’. The survival of the calli derived from immature embryos was studied with triphenyltet-razolium chloride (TTC) and fluorescein diacetate (5DA) methods after hardening and freezing at a temperatures of -7 °C, -9 °C, -11 °C, -13 °C, and –15 °C. The donor ‘Cheyenne’ and the substitution lines 5A and 5D proved to be more frost resistant than the recipient ‘Chinese Spring1. These results are well correlated with the previously published studies when seedlings were tested under controlled conditions. Based on these results the tissue culture technique seems to be useful for testing varieties and lines for different levels of frost resistance and even for mutant selection.  相似文献   

11.
The leaf rust resistance gene on chromosome 7AL of ‘Chinese Spring’ transfer no. 12 derived from Thinopyrum ponticum, was transferred to durum wheat by standard backcrossing. In ‘Agatha’ and ‘Indis’ a leaf rust resistance gene from Thinopyrum ponticum and Thinopyrum ponticum respectively, is found on a translocated segment on chromosome arm 7DL. The use of the ‘Langdon’ disomic D-chromosome substitution lines for 7A and 7B resulted in the recovery of tetraploid leaf-rust resistant lines from the crosses with ‘Agatha’ in the B2F1 generation. Tetraploid lines carrying the ‘Indis’ translocation segment were recovered in the B2F2 generation. The F2 segregation ratios for rust resistance after selfing or back-crossing generally fitted a 1: 1 ratio indicating non-transmission of the translocation segments in the male gametes. Homozygous resistant plants were not obtained. Meiotic instability was observed in 28 chromosome B2 F2 derivatives of the crosses between ‘Chinese Spring’ transfer no. 12 and durum wheat.  相似文献   

12.
Genetic markers are a much faster and more practical alternative to classical methods for the identification of genes for scab resistance present in different apple cultivars. In our study, 28 scab-resistant cultivars, four wild sources of the resistance genes and 10 susceptible cultivars were screened for the presence of the RAPD fragments OPM18/900, OPD20/600 and OPA15/900, which are reported to be linked to the Vf gene. All three marker fragments were successfully amplified with different protocols in Vf-resistant cultivars including ‘M. floribunda 821’. No marker fragments were amplified in susceptible cultivars, three out of four Va-resistant cultivars, three out of four Vm-resistant cultivars, two Vr-resistant cultivars, ‘Antonovka PI 172612’ and ‘M. pumila R 12740-7A’. All three markers were found in the cv. ‘Nova Easygro’, reported to possess the Vr gene, and the cv. ‘Reglindis’, reported to be Va-resistant. M. atrosanguinea of unknown origin showed the presence of OPD20/600 and OPA 15/900 marker bands. The cvs. ‘Nova Easygro’, ‘Reglindis’ and M. atrosanguinea are probably carriers of the VF gene.  相似文献   

13.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

14.
Leaf segments from seedlings of 68 old barley varieties and 38 more recent cultivars of past or current importance in France were infected with 6—9 powdery mildew isolates in order to identify race-specific resistance genes. No resistance gene was apparent in the 21 old winter varieties, 43 of 47 old spring varieties, 10 recent winter and 3 recent spring cultivars. Two old spring varieties (‘Colmar S 142’ and ‘Johanna’) were postulated to have Mlg and Ml(CP), and two others (‘Pontrieux’ and ‘Finistère 62-5’) had an unidentified, weakly effective gene. Mlg, Ml(CP), Mlb, Mla6 and Mlal3 were the only genes detected in recent winter cultivars. Recent spring cultivars presented the greatest diversity; the presence of one or several genes among Mlal, Mla6, Mla9, Mla12, Mlg, Ml(CP), Ml(La), Mlk and mlo was postulated in several lines.  相似文献   

15.
Substitution Analysis of Plant Regeneration from Callus Culture in Wheat   总被引:1,自引:0,他引:1  
G. Galiba    G. Kovacs  J. Sutka 《Plant Breeding》1986,97(3):261-263
The genetic determination of the plant regeneration ability of tissue cultures arising from immature embryos was studied using a ‘Chinese Spring’/‘Cheyenne’ substitution series. Plant regeneration proved to be polygenically determined. In tile current experiment the chromosomes 7B, 7D and ID were found to be effective, although the possibility of other chromosome effects cannot be excluded.  相似文献   

16.
Leaf‐rust resistance (Rph) genes in 61 Czech and Slovak barley cultivars and 32 breeding lines from registration trials of the Czech Republic were postulated based on their reaction to 12 isolates of Puccinia hordei with different combinations of virulence genes. Five known Rph genes (Rph2, Rph3, Rph4, Rph7, and Rph12) and one unknown Rph gene were postulated to be present in this germplasm. To corroborate this result, the pedigree of the barley accessions was analysed. Gene Rph2, as well as Rph4, originated from old European cultivars. The donor of Rph3, which has been mainly used by Czech and Slovak breeders, is ‘Ribari’ (‘Baladi 16’). Rph12 originates from barley cultivars developed in the former East Germany. Rph7 in the registered cultivar ‘Heris’ originates from ‘Forrajera’. A combination of two genes was found in 10 cultivars. Nine heterogeneous cultivars were identified; they were composed of one component with an identified Rph gene and a second component without any resistance gene. No gene for leaf rust resistance was found in 17 of the accessions tested. This study demonstrates the utility of using selected pathotypes of P. hordei for postulating Rph genes in barley.  相似文献   

17.
高分子量谷蛋白亚基Bx7的超量表达对提高小麦面筋强度有重要作用。利用反相高效液相色谱(RP-HPLC)和STS标记检测了163份中国和CIMMYT小麦品种(系)的高分子谷蛋白亚基Bx7超量表达基因(Bx7OE)。结果表明,TaBAC1215C06-F517/R964标记和TaBAC1215C06-F24671/R25515标记可分别在含有Bx7OE基因的材料中扩增出447 bp和844 bp的特异带,在不含Bx7OE基因的材料中无相应目标带,两个STS标记的检测结果完全一致。在163份小麦品种(系)中,11份品种(系)含有Bx7OE基因,占总数的6.7%。RP-HPLC与STS标记检测结果一致。利用这两个STS标记可以方便、快速、准确地检测Bx7OE基因。  相似文献   

18.
The inheritance of the red colour character in European pear (Pyrus communis L.) was studied over 3 years in seven progeny obtained by using the cultivars ‘Max Red Bartlett’, ‘Cascade’ and ‘California’ as red‐skinned fruit parental lines. One of these progeny (derived from the cross ‘Abbé Fétel’ × ‘Max Red Bartlett’, a red mutation of ‘Bartlett’) was already used to construct two linkage maps and, being ‘red colour’ a monogenic dominant trait, it was possible to locate it as morphological marker in the linkage group 4 of ‘Max Red Bartlett’. For the first time, this trait has been mapped out of linkage group 9 in a species belonging to the Maloideae subfamily moreover in a mutated sport. An improved knowledge of the genetic basis of production and accumulation of red pigments in the fruit skin will better support the pear breeding programmes aimed to select new cultivars carrying this appealing trait.  相似文献   

19.
K. Murai 《Plant Breeding》2002,121(4):363-365
A ‘two‐line system’ using photoperiod‐sensitive cytoplasmic male sterility (PCMS) caused by Aegilops crassa cytoplasm under a long‐day photoperiod ( 15 h) has been proposed as a new means of producing hybrid varieties in common wheat. The PCMS line is maintained by self‐pollination under short‐day conditions, and hybrid seeds can be produced through outcrossing of the PCMS line with a pollinator under long‐day conditions. Two kinds of fertility restoration systems against the PCMS are known. One is involved with a set of multiple fertility‐restoring (Rf) genes in the wheat cultivar ‘Norin 61’ located on (at least) chromosomes 4A, 1D, 3D and 5D. The other is controlled by a single dominant major Rf gene, Rfd1, located on the long arm of chromosome 7B in the wheat cultivar ‘Chinese Spring’. To examine the degree of fertility restoration by these two systems, nine PCMS lines were crossed with ‘Norin 61’ and ‘Chinese Spring’ as the restorer lines, and the F1 hybrids were investigated. The degree of fertility restoration was estimated by comparing the seed set rates in the F1 hybrids having the Ae. crassa cytoplasm and those with normal cytoplasm. The results revealed that the fertility restoration ability of a set of multiple Rf genes in ‘Norin 61’ was higher than that of the Rfd1 gene in ‘Chinese Spring’.  相似文献   

20.
Wheat, among all cereal grains, possesses unique characteristics conferred by gluten; in particular, high molecular weight glutenin subunits (HMW‐GS) are of considerable interest as they strictly relate to bread‐making quality and contribute to strengthening and stabilizing dough. Thus, the identification of allelic composition, in particular at the Glu‐B1 locus, is very important to wheat quality improvement. Several PCR‐based molecular markers to tag‐specific HMW glutenin genes encoding Bx and By subunits have been developed in recent years. This study provides a survey of the molecular markers developed for the HMW‐GS at the Glu‐B1 locus. In addition, a selection of molecular markers was tested on 31 durum and bread wheat cultivars containing the By8, By16, By9, Bx17, Bx6, Bx14 and Bx17 Glu‐B1 alleles, and a new assignation was defined for the ZSBy9_aF1/R3 molecular marker that was specific for the By20 allele. We believe the results constitute a practical guide for results that might be achieved by these molecular markers on populations and cultivars with high variability at the Glu‐B1 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号