首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Tan spot, caused by a necrotrophic fungus Pyrenophora tritici‐repentis (Ptr), has become an important foliar disease of wheat worldwide. Effective control of tan spot can be achieved by deployment of resistant wheat cultivars. An F2:3 population derived from a cross between synthetic hexaploid wheat (SHW), TA4161‐L1 (moderately resistant) and susceptible winter wheat cultivar, ‘TAM105’ was evaluated with race 1 of Ptr under controlled conditions. The population was genotyped using Diversity Arrays Technology (DArT). Presence of transgressive segregants indicated contribution of positive alleles from both parents. Two major QTLs were located on the short arm of chromosomes 1A and 6A and designated as QTs.ksu‐1A and QTs.ksu‐6A, respectively. Two additional QTLs were identified on chromosome 7A. Resistant alleles of all the QTLs were contributed by TA4161‐L1. Novel QTLs on 6A and 7A can be a valuable addition to known resistance genes and utilized in breeding programmes to produce highly resistant cultivars.  相似文献   

2.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

3.
S. R. Barman    M. Gowda    R. C. Venu  B. B. Chattoo 《Plant Breeding》2004,123(3):300-302
Analysis of near‐isogenic lines (NILs) indicated the presence of a novel resistance gene in the indica rice cultivar ‘Tetep’ which was highly resistant to the rice blast fungus Magnaporthe grisea.‘Tetep’ was crossed to the widely used susceptible cultivar ‘CO39’ to generate the mapping population. A Mendelian segregation ratio of 3 : 1 for resistant to susceptible F2 plants further confirmed the presence of a major dominant locus, in ‘Tetep’, conferring resistance to the blast fungal isolate B157, corresponding to the international race IC9. Simple sequence length polymorphism (SSLP) was used for molecular genetic analysis. The analysis revealed that the SSLP marker RM 246 was linked to a novel blast resistance gene designated Pi‐tp(t) in ‘Tetep’.  相似文献   

4.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

5.
Powdery mildew resistance in Czech and Slovak barley cultivars   总被引:5,自引:0,他引:5  
Fifteen powdery mildew resistance genes and the gene MlaN81 derived from ‘Nepal 81’were found in 76 Czech and Slovak spring and winter barley cultivars when tested for reaction to a set of powdery mildew isolates. Nine cultivars (‘Donum’, ‘Expres’, ‘Jubilant’, ‘Orbit’, ‘Primus’, ‘Progres’, ‘Stabil’, ‘Vladan’ and ‘Zlatan’) are composed of lines with different resistance genes. The Mlat gene is present in nine cultivars and was transferred from the Anatolian landrace ‘A‐516′. The resistances derived from ‘KM‐1192’and ‘CI 7672’were identical and designated Ml(Kr). Five winter barley cultivars possess the Ml(Bw) resistance. The winter barley line ‘KM‐2099’carries the mlo gene. The parental cultivar ‘Palestine 10’was also tested in which the genes Mlk1, MlLa were identified. The German cultivar ‘Salome’, a parent of seven cultivars tested, probably carries the gene MlLa in addition to mlo and Mla7. The gene mlo6 may be present in the cultivar ‘Heris’. Most of the results were confirmed by the pedigrees of the cultivars.  相似文献   

6.
Stem rust of wheat (caused by Puccinia graminis f.sp. tritici) gained high international attention in the last two decades, but does not occur regularly in Germany. Motivated by a regional epidemic in 2013, we analysed 15 spring and 82 winter wheat cultivars registered in Germany for their resistance to stem rust at the seedling stage and tested 79 of these winter wheat cultivars at the adult‐plant stage. A total of five seedling stem rust resistance genes were postulated: Sr38 occurred most frequently (n = 29), followed by Sr31 (n = 11) and Sr24 (n = 8). Sr7a and Sr8a occurred only in two spring wheat genotypes each. Four cultivars had effective seedling resistance to all races evaluated that could only be explained by postulating additional resistance genes (‘Hyland’, ‘Pilgrim PZO’, ‘Tybalt’) or unidentified gene(s) (‘Memory’). The three winter wheat cultivars (‘Hyland’ ‘Memory’ and ‘Pilgrim PZO’) were also highly resistant at the adult‐plant stage; ‘Tybalt’ was not tested. Resistance genes Sr24 and Sr31 highly protected winter wheat cultivars from stem rust at the adult‐plant stage in the field. Disease responses of cultivars carrying Sr38 varied. Mean field stem rust severity of cultivars without postulated seedling resistance genes ranged from 2.71% to 41.51%, nine of which were significantly less diseased than the most susceptible cultivar. This suggests adult‐plant resistance to stem rust may be present in German wheat cultivars.  相似文献   

7.
Aegilops variabilis no. 1 is the only known source of resistance to the root‐knot nematode Meloidogyne naasi in wheat. Previous studies showed that a dominant gene, Rkn‐mn1, was transferred to a wheat translocation line from the donor Ae. variabilis. Random amplified polymorphic DNA (RAPD) analysis was performed on the wheat cultivar ‘Lutin’, on Ae. variabilis, on a resistant disomic addition line and on a resistant translocation line. For genetic and molecular studies, 114‐117 BC3F2 plants and F3‐derived families were tested. Five DNA and one isozyme marker were linked to Rkn‐mn1. Three RAPD markers flanking the Rkn‐mn1 locus were mapped at 0 cM (OpY16‐1065), 0.8 cM (OpB12‐1320) and 1.7 cM (OpN20‐1235), respectively. Since the Rkn‐mn1 gene remained effective, its introduction into different wheat cultivars by marker‐assisted selection is suggested.  相似文献   

8.
C. He  G. R. Hughes 《Plant Breeding》2003,122(4):375-377
Common bunt caused by Tilletia tritici and T. laevis has occurred worldwide and reduces yield and quality in common and durum wheats. The development of DNA markers linked to bunt resistance to race T1 in the cross, ‘Laura’(S) בRL5407’ (R), was carried out in this study based on the single head derived F4:5 and single seed derived F4:6 populations. Bulked segregant analysis was used to identify two random amplified polymorphic DNA (RAPD) markers linked to the gene for resistance to race T1 in the spelt wheat ‘RL5407′. The two markers identified, UBC548590 and UBC274988, flanked the resistance gene with a map distance of 9.1 and 18.2 cM, respectively. The former was linked in repulsion phase to bunt resistance while the later was in coupling phase. The two RAPD markers and the common bunt‐resistance gene all segregated in Mendelian fashion. Use of these two RAPD markers together could assist in incorporating the bunt‐resistance gene from spelt wheat into common wheat cultivars by means of marker‐assisted selection.  相似文献   

9.
A total of 59 old wheat cultivars grown in Germany prior to 1960 were tested for mildew response using a collection of 12 differential isolates of Erysiphe graminis DC f. sp. tritici Marchal (Blumeria graminis (DC) Speer f. sp. tritici). Nineteen cultivars did not possess any major resistance gene and 25 were characterized by susceptible or intermediate responses. Fifteen cultivars revealed isolate-specific response patterns that could not be attributed to known major resistance genes or gene combinations. Many of the old German cultivars inherited a mildew-resistance gene from the Canadian cultivar ‘Garnet’ which is tentatively designated M1-Ga. Cultivars ‘Bretonischer Bartweizen’ (designated M1-Br) and ‘Adlungs Alemannen’ (designated M1-Ad) appeared to carry unknown resistance genes. Among 18 winter wheat cultivars released in the former GDR. eight showed susceptibility to all isolates used. Cv. “Borenos” carries resistance gene Pm3c. Five cultivars possess gene Pm4b. two cultivars gene pm5 and one cultivar a combination of genes Pm2 and Pm4b. Cultivar ‘Zentos’ was resistant to almost all isolates used. Its resistance might be conditioned by different unknown major resistance genes.  相似文献   

10.
Resistance to Mycosphaerella graminicola causal agent of Septoria tritici blotch, was identified in progenies of crosses with European winter wheat cultivars, Tadorna and Cleo. This resistance was used to develop the resistant spring wheat cultivar Tadinia, selected from ‘Tadorna’/‘Inia 66’ released in 1985. Evaluation of the progeny of intercrosses between ‘Tadorna’, ‘Cleo’, ‘Tadinia’, and two short-statured resistant lines derived from hybrids with ‘Tadinia’ as one parent indicate the resistance was inherited as a single gene showing partial to strong dominance. The gene in ‘Tadinia’ was designated Stb4. Crosses between another resistant cultivar, ‘Bulgaria 88’, and ‘Tadinia’ suggest that ‘Bulgaria 88’ does not have Stb4. Successful introgression of Stb4 into Rht1+Rht2 short-statured lines revealed that plant stature and resistance to M. graminicola segregated independently. The Stb4 gene has been effective since 1975 against M. graminicola extant in California. A high positive correlation between seedling and adult plant disease scores, based on scoring of lesions producing pycnidia, indicated that the Stb4 gene is expressed throughout the life cycle under both field and greenhouse conditions, confirming that disease screening can be carried out on seedling plants. Separate assessment of necrotic lesions with and without pycnidia indicated that leaf necrosis without pycnidia, observed, especially under greenhouse conditions, can confound disease evaluations and lead to inaccurate genotype classification.  相似文献   

11.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):520-522
Recessively inherited gene Sr2 has provided the basis of durable resistance to stem rust (caused by Puccinia graminis tritici) in wheat (Triticum aestivum L.) worldwide. The associated earhead and stem melanism or ‘pseudo‐black chaff’ is generally used as a marker for this gene. Sr2 has been postulated in many wheat cultivars of India including ‘Lok 1’, based on associated pseudo‐black chaff in adult plants, and leaf chlorosis in seedlings. However, dominant inheritance of the resistance factor operating in ‘Lok 1’, and a 13 : 3 (resistant : susceptible) F2 segregation in the ‘Sr2‐line’ (‘Chinese Spring’6 × ‘Hope’ 3B) × ‘Lok 1’ cross confirmed that Sr2 was absent in ‘Lok 1’. Susceptible plants with a pseudo‐black chaff phenotype were observed in F2 populations of ‘Agra Local’ (susceptible) × ‘Lok 1’, and the ‘Sr2‐line’ × ‘Lok 1’ crosses. Most of the F3 families derived from the susceptible F2 segregants with pseudo‐black chaff phenotypes were true breeding for the expression of pseudo‐black chaff with susceptibility to stem rust. Thus, linkage of pseudo‐black chaff with Sr2 in wheat can be broken, and hence, caution may be exercised in using pseudo‐black chaff as a marker for selecting Sr2 in breeding programmes.  相似文献   

12.
Phytophthora drechsleri causes stem blight, which is one of the most serious diseases of pigeonpea. Eight races of this fungus have been identified, but the inheritance of resistance to all these races is not clear except for race P2. This study examined the inheritance of resistance to race ‘Kanpur’ (KPR) of P. drechsleri in eight crosses involving four resistant parents, viz.‘KPBR 80‐2‐1′, ‘KPBR 80‐2‐2′, ‘Hy 3C and ‘BDN 1′, and two susceptible parents, viz.‘Bahar’ and ‘PDA 10′. The reactions of the parental lines, and their F1, F2 and backcross generations were studied in an infected plot. In the F1 generation of all crosses, a susceptible reaction was observed that indicated dominance of susceptibility over resistance. The segregation pattern in F2 indicated that two homozygous recessive genes (pdr1pdr1pdr2pdr2) were responsible for imparting resistance in the parents, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2′, and that a single homozygous recessive gene (pdrpdr) was responsible for resistance in the parents ‘Hy 3C and ‘BDN 1′. Therefore, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2’ with two genes for resistance are better donors because the resistance transferred from them will be more durable compared with ‘Hy3C and ‘BDN1’ with only one gene for resistance.  相似文献   

13.
Eight spring barley accessions from the gene bank in Gatersleben, Germany, and 10 cultivars were tested for stripe rust resistance. Tests were performed at the seedling stage in the growth chamber and as adult plants in the field. All accessions and six cultivars were scored as resistant against race 24 under all test conditions, with very few plants as exceptions, while the susceptible control cultivars ‘Karat’ and ‘Certina’, and four other cultivars were attacked in all cases. Differences between accessions and between cultivars were detected after infection with isolates from ‘Trumpf’ and ‘Bigo’ (seedling tests only). Infection structures within seedling leaves without pustules and for the first time within leaves of adult plants from the field were analysed by fluorescence microscopy. With this method additional genetic Differences in the resistance reaction could be detected which could not to be seen in the resistance test. Crosses between the accessions and the susceptible cultivar ‘Karat’ led to segregating F2 progenies. The percentage of resistant plants varied between the accessions. This also indicates a different genetic basis of resistance in the accessions. The infection structures observed by fluorescence microscopy stopped earlier in leaves of the two accessions HOR 8979 and HOR 8991 than in leaves of other accessions in all the tests. These accessions were the only ones with more than 50% resistant plants in all F2 tests. In general, the accessions from the gene bank can be used as new resistance sources against stripe rust.  相似文献   

14.
M. T. Assad 《Plant Breeding》2002,121(2):180-181
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a major economic pest of small grains in many countries. An experiment was therefore conducted to determine the inheritance of gene(s) controlling resistance to RWA in a resistant tetraploid durum wheat line. This resistant line,‘1881′, was crossed to a susceptible line, ‘Orejy‐e‐Kazeroon’, and then F1 F2 and BCF1 (backcross to susceptible line) seedlings were screened in a greenhouse for RWA resistance following artificial infection. Resistance in ‘1881’ was apparently controlled by one dominant gene. Since Dnl, Dn2, dn3, Dn4 and Dn5 have been reported to be located on genome D, it was reasoned that the resistance gene in ‘1881’ is not allelic to them.  相似文献   

15.
Genes for Powdery Mildew Resistance in Cultivars of Spring Wheat   总被引:1,自引:0,他引:1  
M  Heun  G. Fischbeck 《Plant Breeding》1987,99(4):282-288
Twenty-three cultivars of spring wheat were inoculated with nineteen different powdery mildew isolates; their ruction patterns hive been compared with those of twenty-two cultivars/lines carrying identified powdery mildew resistance genes. Applying the gene-for-gene hypothesis, it is evident that three cultivars have none of the resistance genes used, seven others (including ‘Solo’) may carry Pm4b, only. The resistance pattern of ‘Selpek’ is identical to A/-1 resistant cultivars of winter wheat and may be explained by the presence of Pm5. The resistance pattern of Pm5 (Mt-i) cultivars is very different from a number of ‘Kolibri’-related cultivars of spring wheat. Since either all or nothing of that specific pattern has been transferred to all cross progenies of ‘Kolibri’, a single gene is assumed to oe responsible for it, preliminarily designated as Ml-k. The cultivar ‘Mephisto’ carries the ‘Normandie’ resistance (Pwl 2, 9). In five cultivars to spring wheat the combined effects of at least two of the above-mentioned sources have been found. Despite the fact that ‘Normandie’ and ‘Sappo’ are not closely related. ‘Sappo’ shows the complete ‘Normandie’ resistance pattern plus that of Pm4b. The same is true for ‘Planet’ and ‘Walter’.  相似文献   

16.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

17.
The resistance of soybean (Glycine max L. Merr.) cultivars varies with the different races of the soybean cyst nematode (SCN), Heterodera glycines, referred to as HG types (biotypes). Resistant cultivars with durable resistance are emphasized in recent years. The aim here was to identify quantitative trait loci (QTLs) for resistance to two SCN HG types (HG type 2.5.7, race 1; and HG type 1.2.3.5.7, race 4) in resistant cultivar ‘L‐10’ and to analyse the additive and epistatic effects of the identified QTLs. A total of 140 F5‐derived F10 recombinant inbred lines (F5:10 RILs) were advanced via single‐seed‐descent from the cross between ‘L‐10’ (broadly resistant to SCN) and “Heinong 37” (SCN‐susceptible). For SCN HG type 2.5.7 and HG type 1.2.3.5.7 resistance, three and six QTLs for resistance to SCN HG type 2.5.7 and HG type 1.2.3.5.7 were identified, respectively, most of which could explain <10% of the phenotypic variation. Among these QTLs, five were identified over 2 years, while the other QTLs were detected in either 2009 or 2010. QSCN1‐2, located near the SSR marker Sat_069 of linkage group D1b (Chromosome, 2), was responsible for the largest proportion of phenotypic variation (16.01% in 2009 and 18.94% in 2010), suggested that it could effectively be used as a candidate QTL for the marker‐assisted selection (MAS) of soybean lines resistant to SCN. Additionally, for SCN HG type 2.5.7 and HG type 1.2.3.5.7 resistance, two and four QTLs showed an additive effect (a), respectively. One epistatic pair of QTLs (QSCN1‐1‐QSCN1‐3) for SCN HG type 2.5.7 resistance and eight epistatic pairs of QTLs for SCN HG type 1.2.3.5.7 resistance were found to have significant aa effects, among which one pair of QTLs (QSCN4‐4 and QSCN4‐5) contributed a large proportion of aa effects (3%). The results indicated that additive and epistatic effects could significantly affect SCN resistance. Therefore, both of a and aa effects should be considered in MAS programmes.  相似文献   

18.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

19.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

20.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号