首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In the Mediterranean area, early-season citrus fruit reach acceptable internal maturity standards for marketing, while the fruit are still green. A degreening treatment is widely used as a postharvest practice to improve the external color. Nevertheless, the application of ethylene during this treatment can be associated with calyx senescence. The aim of this study was to evaluate new degreening treatments in order to reduce this disorder. ‘Clemenules’ mandarins and ‘Navelina’ oranges, harvested at different external colors, were submitted to different degreening treatments, combining periods with and without ethylene exposure. In both cultivars, the periods without ethylene exposure during degreening reduced the incidence of calyx disorders. To obtain a typical ‘Clemenules’ variety color with the lowest incidence of calyx alteration, the optimum degreening treatment was based on 72 h with ethylene and 48 h without ethylene when fruit were harvested with a color index of between −9 and −3. On the other hand, a treatment of 24 h with ethylene plus 48 h without ethylene is recommended for fruit with an external color index higher than −2. For ‘Navelina’ oranges, highly sensitive to calyx senescence during degreening, a treatment consisting of 24 h with ethylene plus 48 h without ethylene is recommended, which involves harvesting the fruit with a color index of over 0.  相似文献   

2.
The effect of commercial degreening with ethylene gas on fruit susceptibility and quality and development of postharvest green (GM) and blue (BM) molds on early season citrus fruit was investigated. Each cultivar was harvested with different peel color indexes (CI). Fruit were exposed for 3 d to 2 μL L−1 ethylene at 21 °C and 95–100% RH before or after artificial inoculation with Penicillium digitatum or Penicillium italicum. Control fruit were kept at the same environmental conditions without ethylene. Fruit were stored at either 20 °C for 7 d or 5 °C for 14 d and disease incidence (%) and severity (lesion diameter) were assessed. No significant effect of commercial degreening was observed on fruit susceptibility to both GM and BM on citrus cultivars inoculated after degreening. Likewise, no significant effect was observed on disease incidence on citrus cultivars inoculated before degreening and stored at either 20 °C for 7 d or 5 °C for 14 d. In contrast, in cultivars like ‘Clemenules’ mandarins and ‘Navelina’ oranges, degreening significantly increased the severity on fruit with higher initial CI (−3.6 and 1.7, respectively). GM and BM severity on degreened and control ‘Clemenules’ mandarins incubated at 20 °C for 7 d was 146 and 118 mm and 56 and 46 mm, respectively. In general, commercial degreening did not significantly affect external and internal quality attributes of citrus cultivars. Commercial degreening after inoculation of less green (more mature) fruit showed a trend to increase mold severity, presumably through an aging effect (acceleration of peel senescence).  相似文献   

3.
Ethylene is related to senescence but also induces protective mechanisms against stress in plants. The citrus industry only applies the hormone to induce fruit degreening. The aim of this work was to determine the effect of ethylene on the quality of colored citrus fruit stored under commercial conditions to extend postharvest life, since it protects them from stress causing postharvest disorders such as chilling injury (CI) and non-chilling peel pitting (NCPP). The effect of conditioning mature Navelate and Lane Late sweet oranges (Citrus sinensis L. Osbeck) for 4 days with 2 μL L−1 ethylene at 12 °C, rather than at higher temperatures used for degreening, on the quality of fruit stored at 2 or 12 °C, was examined. The ethylene conditioning (EC) treatment did not increase color but reduced calyx abscission and NCPP in fruit of both cultivars stored at 12 °C, and also CI in Navelate fruit at 2 °C. Lane Late fruit did not develop CI but showed a new disorder in EC fruit held at 2 °C. This disorder began as scalded areas around the fruit stem end and extended over the fruit surface during storage. EC had no deleterious effect on the quality of Navelate oranges stored at either 2 or 12 °C. Similar results were found in Lane Late fruit although EC slightly increased off-flavor perception at 2 °C and the maturity index at 2 and 12 °C. Moreover, EC slightly increased the content of bioactive flavonoids in the pulp of Navelate fruit but significant differences between control and EC fruit were only found after prolonged storage at 2 °C. In Lane Late fruit, EC avoided the initial decrease in flavonoid content found in control samples. Results show, therefore, that EC at 12 °C may be a tool to extend postharvest life of NCPP and CI-sensitive oranges, and that the tolerance of citrus cultivars to the combined effect of EC and non-freezing low temperature (2 °C) should be tested to select the proper storage temperature.  相似文献   

4.
The development of red color in the peel of red Chinese sand pears (Pyrus pyrifolia Nakai) is influenced by temperature and light; however, the response patterns vary among different cultivars. In this study, we systematically investigated the influence of postharvest treatment with various temperatures (low, high, variant and constant) on detached mature fruit of red Chinese sand pear ‘Mantianhong’ and ‘Meirensu’. Fruit of red apple (Malus domestica Borkh.) ‘Royal Gala’ and red European pear (P. communis L.) ‘Cascade’ received the same treatments for comparison. Furthermore, the effects of light quality and irradiance level on ‘Mantianhong’ pears were evaluated at the optimum temperature for anthocyanin accumulation. Fruit firmness and concentrations of total soluble sugars and organic acids were measured to determine fruit quality. The effect of temperature on red Chinese sand pear fruit color was similar to that of apples, but not European pear. Moreover, low temperature more effectively induced red coloration in ‘Mantianhong’ and ‘Meirensu’ pears than high temperature; anthocyanin levels increased with increasing irradiance level from 0 to 532 μmol m−2 s−1, and UV-B and visible light synergistically improved the red color of the fruit. Therefore, a combination of low temperature and high intensity of UV-B/visible light could improve the postharvest coloration of red sand pear fruit. The results will contribute to an improved understanding of the mechanism responsible for the coloration of red Chinese sand pears and will aid development of new techniques to improve color in postharvest fruit.  相似文献   

5.
There is increasing public interest in development of edible natural biodegradable coatings to replace the currently used commercial synthetic waxes for maintaining postharvest quality of citrus fruit. We tested the efficacy of a newly developed polysaccharide-based edible bilayer coating comprising carboxymethyl cellulose (CMC) and chitosan in preserving postharvest quality of various citrus fruit, including ‘Or’ and ‘Mor’ mandarins, ‘Navel’ oranges, and ‘Star Ruby’ grapefruit after simulated storage and marketing. In all citrus species, it was found that the CMC/chitosan bilayer coating was equally effective as the commercial polyethylene wax in enhancing fruit gloss. Furthermore, the CMC/chitosan bilayer coating slightly increased fruit firmness, especially of oranges and grapefruit, but was mostly not effective in preventing post-storage weight loss. Both the CMC/chitosan bilayer coating and the commercial wax had no significant effects on juice total soluble solids and acidity levels, and had similar effects on gas permeability, as indicated by only slight increases in internal CO2 levels and in juice ethanol accumulation after storage. Sensory analyses revealed that neither the CMC/chitosan bilayer coating nor the commercial wax coating had any deleterious effects on flavor preference of ‘Navel’ orange and ‘Star Ruby’ grapefruit. However, application of the commercial wax, and moreover the CMC/chitosan bilayer coating, resulted in a gradual decrease in flavor acceptability of ‘Or’ and ‘Mor’ mandarins because of increased perception of off-flavors. Overall, we showed that the CMC/chitosan bilayer edible coating sufficiently enhanced fruit gloss, but was not effective in preventing postharvest weight loss. Furthermore, flavor quality was slightly impaired in mandarins but not in oranges and grapefruit.  相似文献   

6.
Two citrus types (‘Fallglo’ and ‘Lee × Orlando’) exhibiting differential fruit degreening response when treated with ethylene were selected. Fruit were harvested at commercial maturity but at different developmental periods (Harvest I, II and III). Rate of color change was greater in ‘Fallglo’ than in ‘Lee × Orlando’ when fruit were treated with 5 μL L−1 of ethylene for 24 h. After 24 h of transfer of fruit to ethylene-free storage, rate of change decreased in ‘Fallgo’ and exhibited varied response in ‘Lee × Orlando’ depending on harvest date. ‘Fallglo’ fruit from Harvests I and II were completely degreened at the end of storage for 7 d; however ‘Lee × Orlando’ were not and were green in color. No difference in seedling triple response was observed between ‘Fallglo’ and ‘Lee × Orlando’ and sequences of the four ethylene receptors were identical between them. Expression of genes involved in ethylene biosynthesis and signaling pathways were studied in flavedo to test if differences in these pathways were correlated with differential ethylene sensitivity of the citrus types. Basal levels of ACS2 and ACO expressions declined as maturity progressed, and ethylene-induced expression of ACS1 and ACO were influenced by fruit maturity. At Harvests I and II, ethylene-induced increase in ACS1 and ACO expressions and ACC levels were greater in ‘Fallglo’ than in ‘Lee × Orlando’. Ethylene treatment influenced MACC content only during Harvest I in ‘Lee × Orlando’. MACC levels were generally higher in ‘Lee × Orlando’ than in ‘Fallglo’. Expressions of ETR1 and ETR2 were ethylene responsive in ‘Fallglo’ and only ETR1 expression was ethylene responsive in ‘Lee × Orlando’. Ethylene had more impact on ETR1 expression in ‘Fallglo’ than in ‘Lee × Orlando’. Ethylene had a negative effect on ETR3 expression which was more pronounced in ‘Lee × Orlando’ than in ‘Fallglo’. Expressions of ERS1, CTR1, EIN2, EIL1 and EIL2 were not affected by ethylene in both citrus types. Expression of chlorophyllase gene and rate of total chlorophyll degradation were higher in ‘Fallglo’ than in ‘Lee × Orlando’ during ethylene treatment. Differential degreening behavior of ‘Fallglo’ and ‘Lee × Orlando’ correlated with peel maturity, and factor(s) downstream of ethylene signaling but upstream of ethylene biosynthesis play a role in the differential sensitivity.  相似文献   

7.
8.
A strain of Bacillus amyloliquefaciens HF-01, isolated from citrus fruit surfaces, was screened for in vitro antagonism toward Penicillium digitatum and identified, based on Biolog identification and phylogenetic analysis of 16S rDNA sequences. The isolate was further evaluated alone, or in combination with tea saponin (TS) on artificially inoculated ‘Wuzishatangju’ mandarin fruit. The results showed that the isolate performed significantly better than the water control in reducing the incidence of green and blue mold and sour rot, but was not as effective as the fungicide treatment. Biocontrol activity of B. amyloliquefaciens HF-01 was significantly improved by addition of TS, which might influence the formation of a bacterial biofilm and stimulate the antagonist population in wounds. The treatment comprising HF-01 combined with 50 μg mL?1 TS was as effective as the fungicide treatment, which gave more than 90% control of green and blue mold and sour rot. B. amyloliquefaciens HF-01 alone or in combination with a low dosage of TS significantly reduced postharvest decay without impairing any of the other fruit quality parameters. The combination of B. amyloliquefaciens HF-01 and TS could be an alternative to synthetic fungicides for the control of citrus postharvest diseases.  相似文献   

9.
We investigated the relationship between postharvest life of cranberry (Vaccinium macrocarpon Ait. cv. Stevens) fruit and ripeness stage at harvest. Wet harvested, mature fruit were sorted into four ripeness stages and rated for quality after 4 and 7 weeks of cold storage at 3 °C. In addition, CO2 and ethylene production as well as anthocyanin content were measured. After 7 weeks of storage, the marketable fruit among dark-red, light-red, blush, and white were 82, 74, 63, and 44%, respectively. The ethylene production was nearly the same for all the ripeness stages. However, white, blush, and light-red fruit had significantly higher respiration rates than dark-red fruit. We also found that cuticle thickness was significantly higher for red fruit as compared to other ripeness stages. There were stomata present at the calyx end of the fruit, which became impregnated with wax in red fruit. Furthermore, a compact cell layer in the calyx opening accumulated anthocyanins in red fruit only. Our studies suggest that red fruit have longer postharvest life, possibly because (i) red fruit have lower respiration rates, (ii) thicker cuticle and wax accumulation (especially at the calyx end) on these fruit may retard the entry of microorganisms into the fruit during wet harvest and may mitigate mechanical injury by harvesting equipment.  相似文献   

10.
11.
A new approach to the control of postharvest pathogens, while maintaining fruit quality, has been implemented by the application of essential oil amended coatings to citrus. This approach eliminates the need for synthetic fungicides, thereby complying with consumer preferences, organic requirements and reducing environmental pollution. In vitro studies indicated that the essential oils and some of the terpenoid components tested were active against Penicillium digitatum. In a series of subsequent semi-commercial and commercial trials, Mentha spicata and Lippia scaberrima essential oils, as well as pure (d)-limonene and R-(−)-carvone were incorporated into a variety of commercial citrus coatings. These amended coatings were applied postharvest to ‘Tomango’ oranges in the absence of the standard fungicide dip. Excellent disease control was achieved with the amended coatings, while measured quality parameters indicated that overall fruit quality was maintained. Moreover, moisture loss was decreased significantly in fruit treated with essential oil enriched coatings. The efficacy of amended coatings as a viable alternative or supplement to existing fruit protection strategies was demonstrated in a commercial trial.  相似文献   

12.
Potassium sorbate (PS) is a well-known and widely used food preservative. Among other applications, it is used as a GRAS fungistatic postharvest treatment for citrus, although its use is not free of significant adverse effects. In this paper, we study in detail the efficacy of wax containing increasing concentrations of PS to control Penicillium digitatum decay in citrus fruit, and its effect on fruit weight loss. Decay control and weight loss increased with the concentration of PS in the wax. Wax with typical amounts of 2–5% PS showed poor decay reduction indices (DRI), between 26% and 32%, whereas fruit weight loss increased compared with non-waxed controls. Waxing of fruit reduced weight loss by up to 40%, depending on wax formulation, but the addition of just 2% PS to the wax caused an increase in fruit weight loss of up to 65% compared with the waxed fruit. Similar results were observed for all the types of wax formulations tested. The hygroscopic effects of PS are even more damaging for citrus fruit with leaves. The leaves lose weight very rapidly when PS is added to the wax and they become desiccated in 24 h.We also present the results of a similar study where PS was applied to citrus as an aqueous treatment. When applied in water, PS was far more effective for decay control than when applied in wax, but there was also a considerable increase in fruit weight loss. A treatment combining aqueous PS with Fortisol® Ca Plus biostimulant completely solved the problem of weight loss, these mixtures being commercially feasible treatments.  相似文献   

13.
梨果实的“公梨”与“母梨”分析   总被引:2,自引:1,他引:1  
为了探明梨果实“公梨”“母梨”产生的原因和二者之间的差异,对梨花萼脱落、宿存与“公梨”、“母梨”进行分析。从品种特性、授粉品种和授粉量、植物生长调节剂、光照、树龄和树势、修剪和负载、花序序位等方面综述了影响梨花萼脱落的因素;从果形、病虫发生情况、矿质元素和植物激素含量、组织结构、品质等方面综述了脱萼果与宿萼果之间存在的差异;分析了形成“公梨”与“母梨”品质差异的原因,并对今后开展“公梨”、“母梨”研究进行展望。  相似文献   

14.
Degreening with ethylene is a common postharvest practice in citrus fruit. In this work we have examined the effect of ethylene treatment on carotenoid content and composition, and on the expression of carotenoid biosynthetic genes in the flavedo of Navelate orange (Citrus sinensis L.) harvested at two ripening stages. The ethylene-induced fruit coloration and carotenoid content in the flavedo increased with the ripening stage of the fruit. Analysis of the changes in individual carotenoids revealed that ethylene stimulated an increase in phytoene, phytofluene, (9Z)-violaxanthin which is the main carotenoid in fully ripened orange peel, and the apocarotenoid β-citraurin, and decreased the concentration of chloroplastic carotenoids. These changes are consistent with the effect of ethylene on the expression of carotenoid biosynthetic genes, since it up-regulated the expression of phytoene synthase, ζ-carotene desaturase and β-carotene hydroxylase genes, sustained or transiently increased accumulation of phytoene desaturase, plastid terminal oxidase, β-lycopene cyclase and zeaxanthin epoxidase mRNAs, and decreased the expression of the ɛ-lycopene cyclase gene. These data indicate that exogenous ethylene reproduces and accelerates the physiological and molecular changes in the carotenoid biosynthesis naturally occurring during maturation of citrus fruit. On the other hand, gibberellic acid, which delays fruit degreening, reduced the ethylene-induced expression of early carotenoid biosynthetic genes and the accumulation of phytoene, phytofluene and β-citraurin.  相似文献   

15.
The effects of postharvest application of fruit hardening chemical agents on fig (Ficus carica L. cv. Poona) fruit were compared with untreated figs during storage. The impact of calcium chloride (4%) was notable in terms of retention of fruit color, texture and increased accumulation of ascorbic acid, compared to untreated control figs. Pretreatment with calcium chloride (4%) was found to be most effective in checking the growth of both mesophilic aerobic bacteria and yeast and molds at low temperature (1 ± 0.5 °C; 95–98% RH) storage and it further delayed ripening and senescence of figs and was beneficial in prolonging the postharvest life twofold. Treated figs without microbial spoilage could be used for short term storage, transportation, distribution and marketing for long distance domestic markets in India.  相似文献   

16.
Four cultivars of tomato fruit (‘Cherry’, ‘Daniela’, ‘Patrona’ and ‘Raf’) were harvested at two ripening stages (S1 and S2), treated with 0.5 μl l−1 of 1-methylcyclopropene (1-MCP) for 24 h and stored at 10 °C for 28 days. For all cultivars, control fruit deteriorated very rapidly (due to weight loss, softening, colour changes and decay) with an estimated shelf life of 7 days (‘Cherry’ and ‘Patrona’) and 14 days (‘Daniela’ and ‘Raf’), independently of the ripening stage at harvest. All quality parameters for all cultivars were delayed and/or inhibited in treated fruit, the efficacy of 1-MCP being higher in tomatoes harvested at the S2 ripening stage. At this stage, the organoleptic properties had already developed in fruit on the plant and tomatoes could thus reach consumers with optimal postharvest quality.  相似文献   

17.
Preventive and curative activities of postharvest treatments with selected chemical resistance inducers to control postharvest green (GM) and blue (BM) molds on oranges (cvs. ‘Valencia’ or ‘Lanelate’) artificially inoculated with Penicillium digitatum and Penicillium italicum, respectively, were evaluated. In vivo primary screenings to select the most effective chemicals and concentrations were performed with benzothiadiazole (BTH), β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA), sodium silicate (SSi), salicylic acid (SA), acetylsalicylic acid (ASA) and harpin. INA at 0.03 mM, SA at 0.25 mM, BABA at 0.3 mM and BTH at 0.9 mM were selected and tested afterwards as dips at 20 °C for 60 or 150 s with oranges artificially inoculated before or after the treatment and incubated for 7 d at 20 °C. Although it was an effective treatment, SSi at 1000 mM was discarded because of potential phytotoxicity to the fruit rind. Preventive or curative postharvest dips at room temperature had no effect or only reduced the development of GM and BM very slightly. Therefore, these treatments cannot be recommended for inclusion in postharvest decay management programs for citrus packinghouses.  相似文献   

18.
The postharvest life and flavor quality of three strawberry (Fragaria x ananassa D.) cultivars (Aromas, Diamante and Selva) kept at 5 °C in air or air+20 kPa CO2 for up to 15 days were investigated. ‘Diamante’ and ‘Selva’ had better flavor quality than ‘Aromas’ strawberries, as indicated by levels of titratable acidity and total soluble solids, organic acids, sugars and some aroma compounds and by a consumer preference test. Flesh firmness was maintained in ‘Aromas’ and increased in ‘Diamante’ and ‘Selva’ strawberries during storage at 5 °C in both air and air+20 kPa CO2. Fruit color was not affected by CO2 treatments. The postharvest life based on appearance was 7, 9 and 9 days for ‘Aromas’, ‘Diamante’ and ‘Selva’ fruits stored in air and it was extended by 2, 2 and 4 days, respectively, by the CO2-enriched atmosphere. However, the level and proportion of flavor components (sugars, organic acids, aroma compounds) and fermentative metabolites, as well as the results of sensory evaluations, indicated that the flavor life was shorter than postharvest life based on appearance in ‘Aromas’ fruit stored in air (5 vs. 7 days) and in CO2-stored ‘Aromas’ (7 vs. 9 days) and ‘Selva’ (11 vs. 13 days) fruit. ‘Selva’ and ‘Diamante’ strawberries retained their flavor quality during storage at 5 °C in air for 9 days and CO2-stored ‘Diamante’ fruit for 11 days.  相似文献   

19.
Degreening caused by chlorophyll degradation is the most important feature that determines postharvest loss of quality in broccoli. Chlorophyll molecules are assembled to several thylakoid proteins, from which chlorophylls must be released in order to be catabolized. Stay-Green (SGR), a chloroplast-located protein, specifically interacts with light harvesting complex subunits helping toward their destabilization and to the release of chlorophylls. In this work, a fragment of a gene encoding a SGR from broccoli (BoSGR) was cloned. The expression of BoSGR was analyzed and detected an important increment during postharvest senescence, simultaneously with chlorophyll degradation. In order to analyze the effect of different growth regulators, different groups of broccoli heads were treated with cytokinins, ethylene and 1-MCP. Cytokinins and 1-MCP delayed the increment of BoSGR expression whereas ethylene accelerated the process. In addition, several postharvest treatments that delay degreening in broccoli florets were applied to evaluate their effects on BoSGR expression. Samples treated with modified atmosphere, hot air, UV-C or white lights showed a delay in chlorophyll degradation and degreening. In most cases, the treatments also delayed the increment of BoSGR expression during senescence, reaffirming the relationship between the expression of this gene and chlorophyll degradation.  相似文献   

20.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号