首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了解黑龙江省侵染马铃薯的早疫病菌菌株的遗传特性,利用RAPD和ISSR分子标记对来自黑龙江省马铃薯主产区不同地点的67株早疫病菌的遗传多样性进行分析,结果表明,用5条RAPD引物共扩增出53个条带,多态性位点占75.4%;用10条ISSR引物共扩增出93个条带,多态性位点占88.2%。聚类分析结果显示,RAPD和ISSR分子标记均可将供试早疫病菌株划分为不同的组,说明早疫病菌具有明显的遗传分化现象,但菌株聚类组群的划分与地理来源关系不大。研究结果可为黑龙江省马铃薯抗病育种和早疫病防治提供理论依据。  相似文献   

2.
富贵竹种质资源遗传多样性的ISSR分析   总被引:1,自引:0,他引:1  
利用ISSR分子标记技术对10份富贵竹(Dracaena sanderiana)材料进行了遗传多样性研究。从 36个引物中筛选出 8个有效引物,共扩增出125条带,其中多态性条带为69条,多态性比率为55.2%,遗传相似性系数范围在0.64~0.95之间。根据ISSR标记的结果,采用UPGMA聚类分析方法,可将供试材料分为3大类群。研究结果表明, 供试富贵竹材料的遗传多样性相对较低,迫切需要拓宽富贵竹的遗传基础。  相似文献   

3.
部分烟草种质遗传多样性与亲缘关系的ISSR标记分析   总被引:33,自引:3,他引:33  
烟草遗传资源多样性与亲缘关系研究,是烟草遗传育种与起源演化研究的重要基础,本文首次应用ISSR标记,对烟草属(Nicotiana)4个种30份材料的遗传多样性进行分析。从70个ISSR引物中共筛选出16个多态性明显、条带清晰、反应稳定的引物,对30个样品DNA共扩增出309条谱带,平均每个引物扩增出19.31条带,多态性条带比率(PPB)达93.20%。种间遗传相似系数在0.26~0.96之间,表现出丰富的遗传多态性。系统聚类结果显示,N. glutinosa、N. suaveolens、N. gossei 3个野生种间存在较大的遗传差异,遗传相似系数在0.29~0.52之间;27份栽培品种种内遗传相似性相对较高,在0.54~0.96之间,显示出栽培种内的遗传基础相对比较狭窄,但其中白肋21、台烟7号与其他供试材料有较大的遗传差异。ISSR聚类分析表明,当L1取值为D = 0.475时,可将3个野生种与27份烟草栽培品种明显区分开,反映出种间的遗传差异;当L2取值为D = 0.776时,可将30份材料分为2个大类、3个小类和6个独立的个类,较好地揭示了烟草属种间或栽培种品种类型间的遗传多样性与亲缘关系,可为烟草遗传育种和遗传连锁图谱构建的杂交亲本选择提供科学依据。本研究还表明ISSR标记比RAPD标记具有更高的稳定性,在植物遗传多样性的分子标记或克隆研究中,可优先使用ISSR标记。  相似文献   

4.
8份剑麻种质亲缘关系的ISSR和RAPD分析   总被引:1,自引:0,他引:1  
为了揭示剑麻栽培品种的遗传多样性,利用ISSR和RAPD分子标记技术对8份剑麻种质的亲缘关系进行分析。结果表明,筛选后选用的8条ISSR引物和8条RAPD引物,分别产生了53条和66条扩增条带,其中多态性条带分别为44条和61条,多态性条带百分率分别为83.02%和92.42%。根据2种标记的扩增结果,用UPGMA法对8份剑麻种质进行聚类分析,供试材料之间具有较高的遗传多样性,其品种间遗传相似系数分别为0.59~0.80和0.52~0.76。2个标记的聚类结果基本一致,但有点差异,可将供试的8份剑麻种质划分为2类群,而且2个标记聚类结果呈显著相关性,相关系数为0.70。可见,剑麻种质资源的遗传多样性丰富。  相似文献   

5.
利用RAPD分子标记分析玉米种质遗传多样性   总被引:1,自引:0,他引:1  
以RAPD分子标记技术对玉米的10个品种的全基因组DNA进行PCR扩增,再用Popgene32软件和SPSS 13.0软件分析扩增结果,研究10个玉米的种质资源遗传关系。结果表明:(1)所选20个引物可扩增出214条RAPD条带;(2)所选引物扩增条带的多态性比率为86.4%,RAPD分子标记扩增10个玉米品种间的相似性系数分别在0.316-0.654之间;(3)用RAPD-PCR扩增条带的分析结果建立了遗传相关系数矩阵、构建了分子树状图、可将10个玉米品种分为3个类群;(4)RAPD分子标记适合于构建玉米的DNA指纹图谱,进行品种鉴定和遗传分析。  相似文献   

6.
采用ISSR分子标记技术,对贵州都匀、广西南宁及福建漳平马尾松良种种子园内的132个优良无性系进行了遗传多样性分析.结果表明,以筛选出的稳定性强、多态性丰富及条带清晰的12条ISSR引物进行PCR扩增,共获得185条谱带,其中多态性谱带为183条,多态性比率高达98.9%;引物UBC 840标记指纹能区分18份马尾松红心材种质材料;聚类分析显示,供试种质的遗传相似性系数为0.57~0.90,表明供试马尾松种质遗传多样性丰富;以相似性系数0.68为阈值,可将其大致按地域分为3大类,且同一地域内种质聚类结果与特异性状一致.  相似文献   

7.
旨在分析不同地区野生驯化白芨居群间亲缘关系,为白芨资源保护和利用提供支撑。利用RAPD和ISSR标记技术从分子层面鉴别源于湖南、湖北、贵州、云南、江西等地的12个白芨资源遗传多样性差异,并通过UPGMA对该差异性进行了聚类分析。结果表明,在36条供试RAPD引物中有13条扩增带型清晰、多态性高,15条供试ISSR引物中有2条扩增带型清晰、多态性高,共获得40条多态性条带;通过UPGMA聚类分析表明,12份供试白芨种质资源间具有较高的遗传多样性,遗传距离最大可达0.975,供试材料总体上可分为两个支系,湖南、江西为一个支系,湖北、贵州和云南为一个支系。利用ISSR和RAPD标记可以从分子水平上揭示白芨的种质资源遗传多样性,同时,研究还发现ISSR标记能比RAPD标记扩增出更多的多态条带和获得更高的多态比率,且分析不受时间和地点限制,结果更稳定、可靠。本研究结果显示白芨居群间遗传差异性与地理距离呈现一定的相关性,对研究白芨物种的演化及遗传多样性提供了相关数据和理论支持。  相似文献   

8.
利用ISSR分子标记对高羊茅(Festuca arundinacea)杂交后代进行遗传多样性及亲缘关系分析.19个ISSR引物共扩增出255条重复性好、清晰的条带,其中200条是多态条带,多态条带比率(PPL)为78.4%,平均每个引物扩增多态条带数为10.5条,扩增片段大小范围为100~2 000 bp.结果表明,高羊茅杂交后代的多态性较高,遗传多样性较丰富.高羊茅杂交后代遗传相似性系数为0.647 1~0.851 0,聚类分析将高羊茅杂交后代划分为4个大类,有相同亲本的杂交后代先聚类.总之,ISSR标记可以有效地对高羊茅杂交后代进行“亲缘跟踪”和定向选择,为杂交育种提供分子依据.  相似文献   

9.
葡萄炭疽病菌SRAP遗传多样性分析   总被引:3,自引:2,他引:1  
探讨葡萄炭疽病菌的变异和群体结构,为进一步深入研究葡萄炭疽病的发生、流行及防控技术提供理论依据。采用SRAP分子标记技术对不同地区的25个葡萄炭疽菌(Colletotrichum gloeosporioides)菌株进行遗传多样性分析。利用4个菌株从100对引物组合中筛选出6对扩增条带多样性丰富、稳定性较好的引物组合;对供试的25个菌株进行SRAP扩增,共得到164条清晰可辨的条带,其中多态性条带为156条,多态性比率为95.12%;利用NTSYS-2.1软件进行病原菌的聚类分析,其相似性系数在0.61~0.95之间。不同地区葡萄炭疽菌的亲缘关系较近,遗传多样性丰富,但各菌株间存在遗传差异,且菌株之间的差异与地理来源无明显相关性。  相似文献   

10.
白菜种质遗传多样性与亲缘关系的ISSR标记分析   总被引:1,自引:0,他引:1  
摘要:从分子水平用ISSR标记法对白菜遗传多样性进行分析,从100个ISSR引物中共筛选出11个多态性明显、条带清晰、反应稳定的引物,对65个样品DNA共扩增出107条谱带,平均每个引物扩增出9.72条带,其中多态性位点102个(93.5% )。种间遗传相似系数在遗传距离在0.40~0.65 之间,表明白菜栽培种内品种间的遗传基础相对较宽,存在较大的遗传变异性。利用UPGMA聚类分析表明:能将65个白菜地方品种划分为四大类。由ISSR标记聚类结果所表现出的大多种质之间的亲缘关系与其来源地有较大的相关性,但也有地理差别很大的白菜资源遗传关系较近的情况。本研究还表明,ISSR 标记比RAPD 标记具有更高的稳定性,在植物遗传多样性的分子标记或克隆研究中,可优先使用ISSR 标记。  相似文献   

11.
贺学勤  刘庆昌  翟红  王玉萍 《作物学报》2005,31(10):1300-1304
用RAPD、ISSR和AFLP标记对系谱关系明确的7个甘薯品种进行了亲缘关系分析。24个RAPD引物、14个ISSR引物和9对AFLP引物分别扩增出173、174和168条多态性带。3种分子标记在检测甘薯品种间遗传差异上相关程度高,其中RAPD与ISSR之间的相关系数最大为0.9328。用ISSR标记估计的品种间遗传距离为0.1286~1.0932,平均0.4883,大于其余2个标记的估计值。3种分子标记皆可揭示甘薯品种的亲缘关系,其中ISSR标记产生的聚类图与系谱图最吻合,认为ISSR标记更适于分析甘薯品种的亲缘关系。  相似文献   

12.
为揭示湖南省饭豆地方品种的遗传多样性,促进种质资源的有效保护和利用。本研究利用RAPD和ISSR标记分析了源于湖南省各地36份古老饭豆地方品种的遗传多样性,并采用UPGMA方法进行了遗传聚类分析。结果表明:12个RAPD引物和4个ISSR引物在供试材料中共扩增产生81条带型清晰的条带,平均每个引物扩增产生5.06个条带;其中59个为多态性条带,占总扩增条带的72.84%,具有多态性引物的PIC值在0.397~0.968之间;通过UPGMA法进行聚类分析表明供试材料的遗传相似系数在0.605~0.877之间,供试材料被分为4大类,且聚类结果表现明显的地域特征。本研究结果可为本省饭豆种质资源保护和育种研究提供理论依据。  相似文献   

13.
利用RAPD(Random Amplified Polymorphic DNA)和ISSR(Inter-simple Sequence Repeat)两种分子标记技术对20份韭菜栽培品种进行了遗传多样性研究。结果表明,筛选后选用的12个ISSR引物和15个RAPD引物分析分别产生了258和101条扩增产物带,其中多态性条带(即20个韭菜品种中一个或多个但不是全部具有的带)分别为132和40条,分别占总数的51.2%和39.6%。,也就是说12个ISSR引物和15个SSR引物对韭菜不同品种的扩增可分别产生51  相似文献   

14.
利用基因组DNA的RAPD、ISSR与SRAP等3种分子标记技术,以日本芜菁品种作为外类群,对来自于温州不同地区具有代表性的10个盘菜品种进行品种鉴定与遗传多样性分析。10个RAPD引物共产生多态性条带70条,多态率为71.7%;12个ISSR引物共产生142条清晰带,其中多态性条带70条,多态率为49.3%;8个SRAP引物组合共产生105条谱带,其中多态性谱带78条,多态性比率为74.3%,表明品种间存在较高的多态性。用单个引物NAURP299、NAUISR43以及SRAP引物组合mel/em2,都可以将11个品种完全区分开来。基于3种标记的聚类分析结果表明,11个材料可以分为3大类,一定程度上能够揭示品种之间园艺学性状的相似性及亲缘关系远近。  相似文献   

15.
利用RAPD和ISSR标记分析苎麻野生种质资源的遗传多样性   总被引:4,自引:0,他引:4  
本文以8个地方栽培品种为参照,应用RAPD和ISSR标记从DNA水平分析了来自于不同生态区域的30份苎麻野生种质的遗传背景.在31条RAPD引物中,共扩增出358个条带,平均产率为11.5条带/条引物;而在18对ISSR引物共扩增出266个条带,平均产率为14.8条带/条引物.用NTSYs 2.0软件进行UPGMA法聚类.聚类分析结果表明:在0.73的相似系数水平上,均可将38份材料分成8大类群,对两种标记的比较和混合分析得出:RAPD和ISSR标记适用于苎麻野生材料的遗传多样性分析,但ISSR比RAPD标记更适合苎麻野生种质资源亲缘关系分析.这为我们以后的苎麻杂交育种提供了重要的依据.  相似文献   

16.
旨在分析不同地区国兰间的亲缘关系,为国兰资源的开发及新品种的选育提供分子水平的参考依据。利用RAPD和ISSR分子标记技术,对7种国兰的21个品种资源进行遗传多样性和亲缘关系分析。结果表明:39个RAPD和ISSR引物在供试材料中共扩增出96条带型清晰的谱带,其遗传中31条为多态性条带;通过UPGMA聚类分析表明,21个国兰品种资源间遗传距离在1.91~6.60之间,其中春兰资源的遗传距离在1.91~4.38之间,建兰资源的遗传距离在2.60~6.20之间,寒兰资源的遗传距离在2.20~5.80之间,墨兰资源的遗传距离在3.52~6.60之间,表现出了较高的遗传多样性。聚类分析结果与传统的形态学分类结果基本一致,也说明分子标记可以在分子水平反映遗传资源的遗传多样性,具有灵敏度高、结果真实可靠等优点。本研究结果显示国兰品种间的亲缘关系与地理位置分布相关,为兰属植物的分类及遗传多样性研究提供了一定的理论支撑。  相似文献   

17.
The genetic relationship among 42 genotypes of finger millet collected from different geographical regions of southern India was investigated using random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR), and simple sequence repeats (SSR) markers. Ten RAPD primers produced 111 polymorphic bands. Five ISSR primers produced a total of 61 bands. Of these, 23 bands were polymorphic. The RAPD and ISSR fingerprints revealed 71.3 and 37.4% polymorphic banding patterns, respectively. Thirty-six SSR primers yielded 83 scorable alleles in which 62 were found to be polymorphic. Out of 36 SSR primers used, 14 primers (46.6%) produced polymorphic bands. The SSR primer UGEP7 produced a maximum number of six alleles. Mean polymorphic information content (PIC) of RAPD, ISSR and SSR were 0.44, 0.28, and 0.14, respectively. Molecular variances among the population were 2, 11, and 1% for RAPD, ISSR, and SSR markers, respectively. SSR produced 99% molecular variance within individuals. RAPD and ISSR markers produced a low level of molecular variance within individuals. The STRUCTURE (model-based program) analysis revealed that the 42 finger millet genotypes could be divided into a maximum of four subpopulations. Based on the Bayesian statistics, each RAPD and SSR marker produced three subpopulations (K=3), while ISSR marker showed four subpopulations (K=4). This study revealed that RAPD and SSR markers could narrow down the analysis of population structure and it may form the basis for finger millet breeding and improvement programs in the future.  相似文献   

18.
Genetic diversity of four new yellow single crosses, five new yellow three-way crosses, and five yellow inbred lines of maize (Zea mays L.) was studied using different molecular (SSR, ISSR, and RAPD) and biochemical markers (seed storage protein content). All markers were able to clearly separate the inbred lines in one cluster from the different types of hybrids. The correlation among the different types of molecular markers was moderately high according to the Mantel’s test (e.g. 0.67 between SSR and ISSR, 0.42 between SSR and RAPD, and 0.65 between ISSR and RAPD), indicating that the three techniques are efficient for evaluating genetic diversity in the maize genotypes. The correlation of biochemical markers (seed storage protein SDS-PAGE) with SSR, ISSR, and RAPD markers was 0.61, 0.74, and 0.48, respectively. It can be concluded that both molecular and biochemical markers are efficient to study the genetic diversity in maize. Among the different types of molecular markers, SSR is a more accurate marker-type because of its co-dominance and stability of results. It can also be said that biochemical and molecular markers are positively correlated and the correlation ranged between moderate to high. This could suggest using both marker types, separately or together, for genetic diversity studies in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号