首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fodder sorghum (M. P. Chari) was grown at varying populations to examine its influence on light interception, leaf area index and biomass production. DMY, CGR and IPAR depending on LAI reached maximum at LAI 5 of 150 000 plants ha−1 stand and thus yielded higher biomass. Therefore, physiological potential of fodder sorghum crop was found to be maximum at a population density of 150 000 plants ha−1. Further increases in population developed mutual shading and adversely affected the crop growth rate and dry matter accumulation. Significant linear relationships of dry matter yield with IPAR, plant population densities, LAI and CGR clearly indicate the interdependence of these characters.  相似文献   

2.
We introduce a method to measure leaf area from plant leaves using a personal computer, and a handy scanner with corresponding software. Measurement of standard areas revealed a very high correlation (r = 0.999) between the number of measured pixel (1540 pixel/cm2) and the tested areas. Comparisons of scanner derived measurements with those from a standard area meter instrument revealed a high correlation (r = 0.998). Our method is a cheap and efficient alternative to the conventional area meters and can also replace more laborious 'home-made' methods of measuring plant leaf areas.  相似文献   

3.
Allometric relationship (W1=αW2β, where α and β are the parameters) was fitted among growth components in two maize cultivars viz., Decani hybrid and Deccan 101 in order to obtain estimates of other components of the plant system which are time consuming measurements. The results of the agronomic field trial conducted at the University of Agricultural Sciences, Bangalore were used. This model's predictability was compared with linear regression model. In both the cultivars, allometric model using leaf area (LA - W2.) and leaf dry matter (LDM - W2) simulated total dry matter production (DMP - W2) by 79 to 98 % of actual values. Further allometric model fitted well to predict stem dry matter by 91 to 93 % using LDM and LA 89 to 92 % using LDW. Whereas linear regression model estimated total DMP by 95 to 96 % using cob dry matter. In case of LDM - LA association, linear regression model was found to be the best than other model. The leaf area decreased after silking in both the cultivars and the ratio of growth rates of DMP – LA ( β 2) was negative. Between cultivars, cv. Deccan 101 had higher R2 values in most of the relationships than cv. Deccan hybrid indicating the varietal difference.  相似文献   

4.
萝卜叶面积测定方法研究   总被引:20,自引:4,他引:16  
以春萝卜品种“韩国白玉”作为试验材料,以叶长、叶宽、叶干重、叶鲜重等作为指标,计算出叶面积与有关指标的回归方程。结果表明这些回归方程与指标的关系均达极显著水平。这为萝卜叶面积的测定提供了一个简单实用的测定方法,特别是通过叶长、叶宽与叶面积的回归方程可不破坏植株从而测出田间萝卜植株的叶面积。  相似文献   

5.
Black pepper (Piper nigrum L.) is an important spice used in cooking and medicine. It is cultivated in more than 20 countries in Asia, Africa and Latin America. India is a major producer, consumer and exporter of black pepper. Leaf area (LA) is an indicator of crop growth and productivity. This study was undertaken to develop a method of estimating the individual LA of black pepper directly without the necessity for time‐consuming area measurements. Ten black pepper lines were used in the study. Ninety matured leaves were collected from each line and an allometric relationship was derived by logarithmic transformation between actual leaf area (ALA) measured using the electronic leaf area meter LI‐3000 A (LI‐COR, Inc., Lincoln, NB) and leaf length (LL). The correlation coefficient (r) between ALA and LL ranged between 0.8692 and 0.9644 and the standard error (S.E.) between 0.0822 and 0.1149. The allometric models for 10 lines were: Panniyur 1, LA=0.7114 (LL)1.8409; Panniyur 2, LA=0.3692 (LL)2.067; Panniyur 3, LA= 0.6148 (LL)1.8838; Panniyur 4, LA=0.8355 (LL)1.7694; Sreekara, LA=0.8984 (LL)1.6692; Subhakara, LA=0.8384 (LL)1.738; Panchami, LA=0.3691 (LL)2.0749; Pournami, LA=0.4487 (LL)1.9718; Kottanadan, LA=0.3474 (LL)2.0634; P‐24, LA=0.7579 (LL)1.654. These allometric models were used to calculate LA, which was then compared with the actual LA, and the correlation coefficient (r) between them was found to be > 0.99. These allometric models can be used to estimate the LA of individual leaves of black pepper. The approximate total LA of a vine can be obtained using following formula: total leaf area of black pepper vine (cm2) = number of laterals per vine × number of leaves per lateral × leaf area of individual leaf.  相似文献   

6.
Two cultivars of Okra ( Abelmoschus esculentus [L.] Moench) were used to compare the relationship between linear dimensions of leaf and leaf area. Formula A = eL2 (where A = leaf area, e = enlargement quotient and L = midrib length of leaf) determined leaf area more accurately.  相似文献   

7.
Winter rape (cv.'Falcon') grown under different nitrogen regimes (N0, N120; 0 and 120 kg.ha−1, respectively) in northern Germany was investigated over the 1996 spring–summer season. Using a CO2, H2O diffusion porometer, diurnal courses or net photosynthesis and respiration were measured in situ and were related to microclimatic conditions and leaf water relations. Photosynthesis was modelled and daily CO2 gain was calculated. In contrast to the N120 plants, plants of the low nitrogen plot (N0) grew less densely and their leaves behaved more like sun leaves. Increased nitrogen supply had little influence on photosynthetic capacity but it increased productivity through higher leaf area index and an extended period of photosynthetic activity. N120 plants also appeared to be better acclimated to hot, summer conditions. Higher nitrogen supply substantially increased seed production with the yield of the N120 plants being 16% of the N0 plants.  相似文献   

8.
The effect of plant water stress on net photosynthesis and leaf growth were investigated in order to determine to what extent leaf water potential during vegetative growth and silking affects maize development.
Two commercial maize hybrids grown in pots in a glasshouse were subjected to leaf water potentials of -1300 and -1700 kPa during the eighth leaf stage and during silking to -1700 and -2300 kPa to previously unstressed, moderately and severely stressed plants. The effect of stress on inhibiting CO2 uptake rates and leaf areas, as well as the recovery after alleviating stress, were compared to that of unstressed plants.
No substantial differences in CO2 uptake rates were found between medium and long seasoned cultivars. The CO2 uptake rates per unit leaf area decreased to negative values under both moderate and severe stress conditions during both growth stages. During silking, the recovery of CO2 uptake rate was much lower than during the eight leaf stage. Leaf area decreased proportionally with increased stress but did not recover after alleviating stress on plants stressed during both the eighth leaf and silking stages.  相似文献   

9.
研究不同施磷条件下棉花叶片叶绿素含量的变化规律,旨在建立基于高光谱的叶片磷含量估测模型,实现棉花叶片磷含量快速监测。在盆栽试验条件下,设置不同的磷肥量,测定棉花功能叶叶绿素含量与磷含量,并利用植被指数和叶绿素含量的相关性构建磷含量的光谱变量,从而实现利用高光谱对棉花叶片磷含量的定量监测。结果表明:(1)棉花播种后100天左右,叶片磷含量与叶绿素呈现显著关系(决定系数R2=0.96)。(2)利用多个植被指数(X)和叶绿素含量(I)的相关性构建倒一叶、倒二叶、倒三叶、倒四叶的磷含量光谱变量,其中各叶片相关性最优的模型:倒一叶(L1)为I1=2.6131XRENDVI-0.4275,XRENDV为红边归一化植被指数,R2=0.71,RMSE=0.2;倒二叶(L2)为I5=0.0142XTVI+0.3274,XTVI为三角植被指数,R2=0.76,RMSE...  相似文献   

10.
为快速获取大田油菜长势监测信息,针对不同栽种方式和施肥水平对油菜叶片生长的影响,建立单株油菜叶面积和叶鲜重估计模型。分别于2013—2015年的2个油菜种植季,设置不同施肥水平下直播和移栽油菜试验小区。在油菜叶片形态差异最大的六叶期和蕾薹期,测量样株所有叶片的长、宽、面积和鲜重,采用方差分析对比栽种方式和施肥水平对油菜叶片生长的影响,运用麦夸特法+通用全局优化法建立叶面积和叶鲜重的长宽估计模型。在不同施肥水平和栽种方式下,2个生长期的油菜叶面积和叶鲜重与叶宽关系均比叶长更明显;相同条件下蕾薹期油菜叶片变异程度比六叶期要大,2个时期不同施氮水平、栽种方式下油菜叶面积、叶鲜重差异均达到极显著水平,但两者对叶片的交互作用未达到显著水平。叶宽线性模型估算叶面积和叶鲜重的预测R2为0.89、0.84,RMSEP为32.40 cm2、2.54 g,长宽幂函数模型与常规的长宽线性模型相比,叶面积和叶鲜重的预测R2为0.97、0.94,RMSEP为 12.92 cm2、0.86 g。不同生长条件下,叶宽线性模型可用于快速获取油菜单片叶面积和叶鲜重,长宽幂函数模型受施肥水平、栽种方式、叶形、生长期等因素影响较小,适用于精确估计单株油菜叶面积和叶鲜重。  相似文献   

11.
Twenty-two genotypes of grain sorghum were grown under drought conditions by omitting one irrigation during stages of before flowering period, kernel filling period, and physiological maturity period at Assiut Univ. Farm in 1987 and 1988 seasons. The results obtained revealed that considerable variation existed among genotypes for all the studied traits. The most effective moisture stress treatment in reducing grain yield, panicle weight and plant height was during flowering stage. While 1000-kernel weight was much affected by moisture stress during grain filling period. The genotype x year interaction (σ2gy) was large compared to genotype x irrigation treatment (σ2gl) indicated that genotypes responded differently when they were grown from year to year. The genotypic variance (σ2g) for all traits were large reflecting the importance of genetic variability. Both phenotypic and genotypic correlations among traits showed that plant height and 1000-kernel weight were highly correlated with grain yield, while leaf area index was low associated with plant height.  相似文献   

12.
干旱区不同品种中华钙果光合特性比较研究   总被引:2,自引:2,他引:0  
不同中华钙果品种在西北干旱区叶片形态及光合特性的研究可为该区域高产优质节水品种筛选提供理论依据。通过测定叶片光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci)等光合性能指标及形态,分析不同中华钙果品种的叶片形态特征与光合特征及其相关关系。结果表明:(1)不同中华钙果品种叶长和叶宽均存着较大差异,叶面积大小表现为‘农大5号’>‘农大7号’>‘农大6号’>‘生态晚熟种’>‘生态早熟种’;(2)‘农大7号’的净光合速率及蒸腾速率均最大,其净光合速率显著高于‘农大6号’和‘生态早熟种’,蒸腾速率均显著高于其他品种,5种中华钙果的气孔导度及胞间CO2浓度均无显著性差异;(3)5种中华钙果净光合速率、蒸腾速率、气孔导度与叶面积之间存在正相关线性关系,胞间CO2浓度与叶面积之间存在负相关线性关系;(4)5种中华钙果的光合速率与气孔导度、蒸腾速率、叶片蒸汽压亏缺、叶片温度呈极显著正相关,与胞间CO2浓度呈极显著负相关。  相似文献   

13.
南方草莓叶面积计算方法的研究   总被引:15,自引:2,他引:13  
本文基于对江苏南部6个草莓主栽品种叶面积的测量试验,用DPS数据处理系统对其 “叶长-叶宽-叶面积”之间的回归关系进行分析,得出这6个草莓品种的叶长×叶宽与叶面积回归方程;并经过数据合并建立了一个通用的回归方程。试验数据显示:各种草莓所得到的回归方程的决定系数均在0.97以上,相关性极为显著,通用回归方程的决定系数为0.98以上,相关性检验也达到极显著水平。本文为草莓叶面积的活体测量提供了一个简便、快捷、可行的活体测量方法。  相似文献   

14.
Growth and yield responses to plant density (6.75 × 104, 9.75 × 104 and 12.75 × 104 plants ha–1) and stage of transplanting (30, 35 and 40 days after sowing) of winter oilseed rape cultivar HO 605 were investigated in two field trials in the 1996/97 and 1997/98 growing seasons at Zhejiang University Farm, Huajiachi Campus, China. Results revealed a progressive decrease in leaf area per plant in response to increasing plant density and delayed transplanting, though leaf area m–2 and leaf area index were higher in high-density plants. Number of effective branches and pod per branch decreased with increasing plant density and delayed transplanting. There were no significant differences in the mean seed weight among treatments. Although the average number of seeds per pod was significantly lower for high-density plants and delayed transplanting, the economically highest seed yields were realized in relatively high-density plants. Seed oil content was negatively affected by increasing plant density, but no significant differences were observed with delayed transplanting. The highest seed yields of 1730.7 and 1748.1 kg ha–1 with no significant differences were observed for plant densities of 9.75 × 104 and 12.75 × 104 plants ha–1, respectively, transplanted at 35 and 30 days after sowing.  相似文献   

15.
不同灌水施氮方式对玉米叶片生理特性和产量的影响   总被引:1,自引:0,他引:1  
为了研究不同灌水施氮方式对玉米叶片生理特性、产量及其构成的影响。以春玉米‘宜单629’为供试材料,监测不同灌水方式下玉米生育期内的叶面积指数(LAI)、生理特性指标和籽粒产量。结果表明,与均匀灌水均匀施氮(CICN)相比,交替灌水均匀施氮(AICN)和交替灌水交替施氮水氮协同供应(AIANS)显著提高玉米抽雄期及以后第7、14、21、28和35天的LAI和叶绿素含量及抽雄期、灌浆期和乳熟期叶片的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性、可溶性蛋白含量、玉米行数、行粒数、穗粒数、千粒质量和籽粒产量(P<0.05),但显著降低相应生育期叶片的MDA、可溶性糖和脯氨酸含量(P<0.05)。可见,AICN和AIANS有利于提高玉米的LAI和抗氧化酶活性,改善活性氧产生与清除之间的关系,从而使玉米产量增加。  相似文献   

16.
The heterosis of leaf photosynthesis was studied on the main characters included in the range from CO2exchange rate (CER) to enzymatic activity using a remote cross F, rice. The CER was significantly higher than those of the parental strains, showing a 111 % heterosis effect on average; at the same time strong heterosis was observed for the leaf area production and growth. Also stomatal and mesophyll conductances increased in the F1 rice, which may contribute to the increase in CER. Chlorophyll content (Ch1), soluble protein content (SPC) and ribulose 1,5-bisphosphate (RuBP) carboxylase activity (RCA) were measured as the internal factors related to photosynthesis, and compared between the F1, rice and the parents. For all these factors, the F1 rice showed low values compared to the parents. Positive heterosis was not expressed here. On the other hand, the specific activity of RCA (RCA/SPC) increased in the F1, rice, showing a 120% heterosis effect. This may be regarded as one of the main causes for the increase in CER of the F1, rice. High CER expressed as heterosis concurrently with large leaf area production is one of the important findings in our study, and this may suggest a high possibility of further improvement in biomass production or yield of rice by gathering the advantageous elements into a hybrid plant.  相似文献   

17.
为明确春大豆鼓粒期冠层翻叶原因及翻叶对粒重的影响。在大田条件下,以28份大豆品种为材料,采用随机区组试验设计,研究了鼓粒初期植株顶部4片叶的单叶面积、比叶重、叶型指数、叶片含水量与翻叶率的关系;比较了翻叶与对照叶片的净光合速率、百粒重及粒重的差异。结果表明,不同大豆品种间翻叶率在0~26.5%之间,且差异显著,其中以‘中黄313’、‘中黄42’和‘中黄13’最高;单叶面积在46~151 cm2之间,其中以‘中黄39’、‘中黄42’和‘中黄13’最大;比叶重在0.536~1.64 mg/cm2之间,其中以‘中黄322’、‘中黄313’和‘中黄13’最低;叶型指数在1.35~3.51之间,其中以‘中黄70’、‘中黄80’和‘中黄42’最低。供试大豆品种分为3个类群,第I类群品种单叶面积小,比叶重高,叶型指数大,翻叶率为1.03%;第III类群品种单叶面积大,比叶重小,翻叶率高达19.7%;第II类群共4个品种,单叶面积、比叶重、叶型指数、翻叶率介于第I类和第III类群之间。翻叶后显著降低叶片净光合速率,平均降幅31.7%,粒数较多的‘新大豆27号’百粒重降低10.38%~22.4%,而粒数少的‘吉育60’粒重没有降低。大豆上层叶片单叶面积大、比叶重小及叶型指数低的叶片翻叶率高,翻叶降低叶片净光合速率,进而降低同节位百粒重及单节粒重,不利于大豆高产。  相似文献   

18.
Experiments were conducted in two consecutive years to investigate the response of two corn (Zea mays, L.) cultivars, Eperon and Challenger, to timing of N fertilizer in a desert climate. Fertilizer was applied three times (at planting, 6 weeks after sowing (6WAS) and at 9WAS) to give a seasonal total of 180 kg N ha-1 The N treatments were Nooo (control), NLOH (60 kg N ha-1 at planting, none at 6WAS and 120 kg N ha-1 at 9WAS), NLLL (60 kg N ha-1 at sowing, 6WAS and at 9WAS) and NLOH, (60 kgN ha-1 at planting, 120 kg N ha-1 at 6WAS and none at 9WAS). Generally, N ha-1 was associated with the highest grain and dry matter yields. Plants in N treated plots had significantly larger number of leaves and ear leaf N contents than the control at mid-silk. High ear leaf N was associated with high leaf area index and dry matter yield. Based on these results, it would appear that the application of 60 kg N ha-1 at planting, followed by 120 kg N ha at 6WAS (NLHO) is the most suitable for enhancing corn yields in the desert climate.  相似文献   

19.
几种茎叶除草剂防除高粱田杂草药效和安全性研究   总被引:1,自引:0,他引:1  
为筛选出高粱田除草效果好、价格适宜的苗后茎叶除草剂。在高粱苗后6叶期采用茎叶施药进行田间药效试验,比较了6种茎叶除草剂的药效、安全性及成本。结果表明,6种除草剂对高粱均无明显药害;38%莠去津SC 1 500mL/hm 2+增效剂450mL/hm 2对高粱田难防禾本科杂草有特效,株防效和鲜重防效分别为91.41%和93.54%,成本为330元/hm 2;38%莠去津SC 3 000mL/hm 2+50%二氯喹啉酸WP 750g/hm 2+57% 2,4-滴丁酯EC 450mL/hm 2对阔叶杂草防效显著,且对杂草的综合防除效果最好,鲜重防效和株防效分别为92.76%和91.52%,成本为300元/hm 2。高粱田苗后防除一年生禾本科杂草可选用38%莠去津SC 1 500mL/hm 2+增效剂450mL/hm 2;防除一年生禾本科和阔叶杂草可选用38%莠去津SC 3 000mL/hm 2+50%二氯喹啉酸WP 750g/hm 2+57% 2,4-滴丁酯EC 450mL/hm 2。  相似文献   

20.
In a field experiment with fertilized and irrigated winter wheat the above-ground crop was sampled once a week. Phenological development, plant density and canopy height were recorded and the green surface areas of leaves, stems and ears were measured. Soil mineral nitrogen was sampled and the field climate monitored. There were four treatments. The daily irrigated/fertilized (IF) and daily irrigated (I) treatments were both irrigated by a drip-tube system. Liquid fertilizer was applied to IF following a logistic function according to calculated plant uptake. A total of 200 kg N ha−1 was applied. Treatment I, control (C) and drought (D) were all fertilized once in spring with 200 kg N ha−1. In treatment D transparent screens were used to divert rainwater. Dry matter production ranged between 1400 in D and 2352 g m−2 in IF. The corresponding amount of nitrogen uptake ranged between 15.8 and 24.6 g m−2. After harvest, soil mineral nitrogen was lowest in IF.
An increase in the availability of nitrogen and water enhanced total biomass production as well as grain yield and leaf area. The daily supply of nitrogen according to crop demand delayed nitrogen uptake and increased total uptake. The results suggest that when the nitrogen is supplied in accordance with crop demand, the efficiency with which the applied fertilizer is utilized increases and the risk for nitrogen leaching decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号