首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
我国茶树无性系品种遗传多样性和亲缘关系的ISSR分析   总被引:32,自引:0,他引:32  
利用ISSR分子标记分析了我国36个主要茶树无性系品种的遗传多样性和亲缘关系。结果表明20个ISSR引物在供试品种中共扩增出368条谱带,其中多态性条带占总条带的99.7%,引物的多态性信息指数(PIC)平均达0.90。供试品种的基因多样性(H)和Shannon信息指数(I)分别为0.23和0.38。茶区内茶树品种的遗传多样性低于总体水平,江南和华南茶区主栽无性系品种的多样性高于西南茶区。AMOVA分析表明区域因素引起的变异(占5.6%)远小于品种因素(占94.4%)。供试品种间的相似系数介于0.58~0.84,平均为0.69,显示出我国茶树主栽品种的遗传基础已相对比较狭窄。ISSR聚类分析表明,中国台湾品种金萱与大陆品种的遗传距离较远,形成单独的个类。35个大陆品种聚成一个大类群,其中除宜红早形成独立的个类外,其他品种又聚为3个亚类群。亲缘关系树状图在分子水平上显示了我国主要茶树无性系品种间的亲缘关系,为今后茶树育种亲本的选配提供了理论依据。  相似文献   

2.
M. Z. Yao    L. Chen    Y. R. Liang 《Plant Breeding》2008,127(2):166-172
Tea plant [Camellia sinensis (L.) O. Kuntze] is an important beverage crop in the world. In recent years many clonal tea cultivars have been released, and they play major roles in improving the production and quality of tea. It is important to understand the genetic diversity and relatedness of these cultivars to avoid inbreeding and narrow genetic basis in future tea breeding. In the present study, genetic diversity and relationship of 48 tea cultivars from China, Japan and Kenya were evaluated by inter‐simple sequence repeat (ISSR) markers. A total of 382 ISSR bands were scored, of which 381 (99.7%) were polymorphic. The ISSR primers showed high ability to distinguish between tea cultivars according to their high Resolving Power (RP) with an average of 7.4. The mean of Nei’s gene diversity (H) and Shannon’s information index (I) were 0.22 and 0.35, respectively. More abundant diversity was revealed among cultivars in China than those in Japan and Kenya. Within Chinese populations, the level of diversity in east China was higher than that in other regions. The coefficient of genetic differentiation (GST) was 0.202, which indicates a high degree of genetic variation within populations. This result was further confirmed by analysis of molecular variance, which revealed the variance component within the populations (92.07%) was obviously larger than that among populations (7.93%). The level of gene flow (Nm) was estimated to be 2.0. This could be explained by frequent natural cross‐pollination and seed dispersal among tea populations. The pairwise similarity coefficient between the cultivars varied from 0.162 to 0.538. A dendrogram of 48 tea cultivars was constructed where all the tested cultivars were divided into two groups. Our data show that the genetic relationship among tea cultivars can be determined by the ISSR markers. This will provide valuable information to assist parental selection in current and future tea breeding programmes.  相似文献   

3.
In this study, two microsatellite-based methodologies (SSR and ISSR) were evaluated for potential use in fingerprinting and determination of the similarity degree between 41 commercial cultivars of apple previously characterised using RAPD and AFLP markers. A total of 13 SSR primer sets was used and 84 polymorphic alleles were amplified. Seven ISSR primers yielded a total of 252 bands, of which 176 (89.1%) were polymorphic. Except for cultivars obtained from somatic mutations, all cultivars were easily distinguishable employing both methods. The similarity coefficient between cultivars ranged from 0.20 to 0.87 for SSR analysis and from 0.71 to 0.92 using the ISSR methodology. Dendrograms constructed using UPGMA cluster analysis revealed a phenetic classification that emphasises the existence of a narrow genetic base among the cultivars used, with the Portuguese cultivars revealing higher diversity. This study indicates that the results obtained based on the RAPD, AFLP, SSR and ISSR techniques are significantly correlated. The marker index, based on the effective multiplex ratio and expected heterozygosity, was calculated for both analyses (MI = 1.7 for SSR and MI = 8.4 for ISSR assays) and the results obtained were directly compared with previous RAPD and AFLP data from the same material. The SSR and ISSR markers were found to be useful for cultivar identification and assessment of phenetic relationships, revealing advantages, due to higher reproducibility, over other commonly employed PCR-based methods, namely RAPD and AFLP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Twenty two RAPD and 22 ISSR markers were evaluated for their potential use in determination of genetic relationships in chickpea (Cicer arietinum L.) cultivars and breeding lines. We were able to identify six chickpea cultivars/breeding lines by cultivar-specific markers. All of the cultivars tested displayed a different phenotype generated either by the RAPD or ISSR primers. Though ISSR primers generated less markers than RAPD primers, the ISSR primers produced higher levels of polymorphism (% of polymorphic markers per primer) than RAPD primers. A high level of within cultivar homogeneity was observed in chickpea. Cultivars/breeding lines originating from a common genetic background showed closer genetic relationship. Chickpea lines with similar seed type(kabuli or desi) had a tendency to cluster together. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Tree tomato (Solanum betaceum) is an Andean small tree cultivated for its juicy fruits. Little information is available on the characterization of genetic resources and breeding of this neglected crop. We have studied the molecular diversity with AFLP markers using 11 combinations of primers of a collection of 25 S. betaceum accessions belonging to four cultivar groups, most of which had been previously morphologically characterized, as well as one accession of the wild relative S. cajanumense. A total of 197 AFLP fragments were scored, of which 84 (43 %) were polymorphic. When excluding S. cajanumense from the analysis, the number of polymorphic AFLP fragments was 78 (40 %). Unique AFLP fingerprints were obtained for every accession, but no AFLP fragments specific and universal to any of the four cultivar groups were found. The total genetic diversity (H T ) of cultivated accessions was H T  = 0.2904, while for cultivar groups it ranged from H T  = 0.1846 in the orange group to H T  = 0.2498 in the orange pointed group. Genetic differentiation among cultivar groups (G ST ) was low (G ST  = 0.2248), which was matched by low values of genetic distance among cultivar groups. The diversity of collections from Ecuador, which we hypothesize is a center of diversity for tree tomato, was similar to that from other origins (H T  = 0.2884 and H T  = 0.2645, respectively). Cluster and PCoA analyses clearly separated wild S. cajanumense from the cultivated species. However, materials of different cultivar groups and origins were intermingled in both analyses. The Mantel test correlation coefficient of the matrices of morphological and AFLP distances was low (−0.024) and non-significant. Overall, the results show that a wide diversity is present in each of the cultivar groups, indicate that Ecuador may be regarded as a center of accumulation of diversity for this crop, and confirm that AFLP and morphological characterization data are complementary. The results obtained are of value for the conservation of genetic resources and breeding of tree tomato, as an assessment of the genetic diversity and relationships among different cultivar groups and geographic origins is obtained.  相似文献   

6.
旨在分析不同地区国兰间的亲缘关系,为国兰资源的开发及新品种的选育提供分子水平的参考依据。利用RAPD和ISSR分子标记技术,对7种国兰的21个品种资源进行遗传多样性和亲缘关系分析。结果表明:39个RAPD和ISSR引物在供试材料中共扩增出96条带型清晰的谱带,其遗传中31条为多态性条带;通过UPGMA聚类分析表明,21个国兰品种资源间遗传距离在1.91~6.60之间,其中春兰资源的遗传距离在1.91~4.38之间,建兰资源的遗传距离在2.60~6.20之间,寒兰资源的遗传距离在2.20~5.80之间,墨兰资源的遗传距离在3.52~6.60之间,表现出了较高的遗传多样性。聚类分析结果与传统的形态学分类结果基本一致,也说明分子标记可以在分子水平反映遗传资源的遗传多样性,具有灵敏度高、结果真实可靠等优点。本研究结果显示国兰品种间的亲缘关系与地理位置分布相关,为兰属植物的分类及遗传多样性研究提供了一定的理论支撑。  相似文献   

7.
部分烟草种质遗传多样性与亲缘关系的ISSR标记分析   总被引:33,自引:3,他引:33  
烟草遗传资源多样性与亲缘关系研究,是烟草遗传育种与起源演化研究的重要基础,本文首次应用ISSR标记,对烟草属(Nicotiana)4个种30份材料的遗传多样性进行分析。从70个ISSR引物中共筛选出16个多态性明显、条带清晰、反应稳定的引物,对30个样品DNA共扩增出309条谱带,平均每个引物扩增出19.31条带,多态性条带比率(PPB)达93.20%。种间遗传相似系数在0.26~0.96之间,表现出丰富的遗传多态性。系统聚类结果显示,N. glutinosa、N. suaveolens、N. gossei 3个野生种间存在较大的遗传差异,遗传相似系数在0.29~0.52之间;27份栽培品种种内遗传相似性相对较高,在0.54~0.96之间,显示出栽培种内的遗传基础相对比较狭窄,但其中白肋21、台烟7号与其他供试材料有较大的遗传差异。ISSR聚类分析表明,当L1取值为D = 0.475时,可将3个野生种与27份烟草栽培品种明显区分开,反映出种间的遗传差异;当L2取值为D = 0.776时,可将30份材料分为2个大类、3个小类和6个独立的个类,较好地揭示了烟草属种间或栽培种品种类型间的遗传多样性与亲缘关系,可为烟草遗传育种和遗传连锁图谱构建的杂交亲本选择提供科学依据。本研究还表明ISSR标记比RAPD标记具有更高的稳定性,在植物遗传多样性的分子标记或克隆研究中,可优先使用ISSR标记。  相似文献   

8.
应用ISSR标记对32份洋葱种质资源的遗传多样性进行了分析。从31个ISSR引物中筛选出4条扩增产物条带清晰、多态性高的引物,在32份资源样品中共扩增出39条带,其中31条带为多态性位点,平均每个引物扩增的多态带数为7.75条,多态性条带比率(PPB)为79.48%。资源间的遗传相似系数在0.552~0.960之间,具有较为丰富的遗传多样性。ISSR聚类分析表明,在L取值为D=0.68时,可将32份洋葱资源分成5类:第一类包括18份种质资源,主要以Yellow Sweet Spanish系统为主;第二类包括1份种质资源,为Bejo Daytona;第三类包括3份种质资源,为Yellow Globe系统;第四类包括9份种质资源,为Yellow globe danvers系统;第五类包括1份种质资源,为Yellow Danvers system系统。较好地揭示了洋葱种质资源间的遗传多样性与亲缘关系,可为洋葱遗传育种和杂交亲本选择提供科学依据。  相似文献   

9.
The genetic variability and relationships among 11 cowpea genotypes representing two cultivars and nine elite genotypes were analyzed using 22 random amplified polymorphic DNA (RAPD) and nine inter-simple sequence repeat (ISSR) markers. ISSR markers were more efficient than RAPD assay with regards to polymorphism detection. But the average numbers of polymorphic loci per primer and resolution power were found to be higher for RAPD than for ISSR. Also, the total number of genotype specific marker loci, Nei’s genetic diversity, Shannon’s information index, total heterozygosity, and average heterozygosity were prominent in RAPD as compared to ISSR markers. The regression test between the two Nei’s genetic diversity indices showed low regression (0.3733) between ISSR and RAPD + ISSR-based similarities but maximum (0.9823) for RAPD and RAPD + ISSR-based similarities. The RAPD- and ISSR-generated cultivar- or genotype-specific unique DNA fingerprints able to identify the most diverse genotypes. A dendrogram constructed based on RAPD and ISSR combined data indicated a very clear pattern of clustering according to the groups (cultivars and elite genotypes). The results of principal coordinate analysis were comparable to the cluster analysis. Cluster analysis showed that most diverse genotypes (GP-125 — small size with good seed quality; GP-129, GP-90L — big size with poor seed quality) were separated from moderately diverse cultivars and genotypes. The genetic closeness among GP-129 and GP-90L, JCPL-42, and JCPL-107 could be explained by the high degree of commonness in these genotypes.  相似文献   

10.
应用SSR和ISSR标记分析栽培香稻品种的遗传多样性   总被引:27,自引:0,他引:27  
本研究利用24对SSR引物和36个ISSR引物,分析33份来源于亚洲10个国家的香稻品种的遗传多样性。分别获得93条和181条多态性片段,每个SSR座位可检测3~8个等位基因,平均为4.23个;每个ISSR引物可检测3~8个多态性位点,平均为5.03个。根据SSR和ISSR标记计算的品种间遗传相似系数分别在0.294~0.884之间和0.595~0.867之间。聚类分析表明,利用两种标记所得的聚类结果基本上一致,与品种所处的3种气候类型变化基本相符。进一步证实SSR和ISSR标记是研究水稻种质资源分类有效的工具。  相似文献   

11.
为了探讨中、日春兰优良种质资源的生物遗传多样性,本研究通过L9(34)正交试验,确立ISSR-PCR最佳扩增反应体系,筛选ISSR引物对4个类群96份中、日春兰种质材料进行标记扩增。结果表明:本试验筛选出的ISSR-PCR最佳扩增反应体系中主要影响因子的浓度为:Mg2+浓度2 mmol/L,引物浓度0.4μmol/L,Taq聚合酶用量1.5 U/20μL,d NTPs浓度0.2μmol/L;筛选出的13条引物在93份材料中扩增出126个条带,每条引物平均扩增条带数为9.69,多态性比例(PPB)为100%,种群总等位基因数(Na)为2.000 0,有效等位基因数(Ne)为1.304 5,Nei’s基因多样性(He)为0.203 3,Shannon’s信息多样性指数(Ⅰ)为0.334 0,种群水平上的遗传多样性较高;在类群水平上PPB平均值为82.94%,Na平均值为1.829 4,Ne平均值为1.301 1,He平均值为0.193 8,Ⅰ平均值为0.311 9;类群间的遗传分化系数(Gst)为0.052 1,基因流水平(Nm)为9.089 6,类群间的基因交流程度很高,类群间的变异低于类群内的变异;各类群的遗传多样性水平由高到低依次为Ⅰ类群(中国春兰正格花品种)>Ⅲ类群(中国春兰杂交种)>Ⅱ类群(中国春兰蝶花品种)>Ⅳ类群(日本春兰品种),4个春兰类群两两之间的遗传相似性系数(GS)范围为0.966 1~0.995 1,总体上遗传距离较小。UPGMA聚类分析结果显示,ISSR分子标记能很好的鉴定表型性状相似的春兰原生种和杂交种,在遗传相似系数为0.82时,Ⅱ类(中国春兰蝶花品种)品种和Ⅳ类(日本春兰品种)品种能分组聚类,Ⅰ类(中国春兰正格花品种)品种和Ⅲ类(中国春兰杂交种)种质混合在一起。春兰是中国的传统特色花卉,春兰优良品种的产业化开发潜力大,中、日春兰种质资源的遗传多样性研究对春兰种质的保护、利用和创新有重要的意义。  相似文献   

12.
应用ISSR与SRAP两种分子标记,研究国内外96份烟草种质的遗传多样性及不同栽培类型种质的遗传演化关系。表明烟属种间具有丰富的遗传多样性,种间的遗传相似性(GS)在0.28~0.58之间,遗传分化系数(Gst)为0.83。普通栽培种品种间遗传多样性水平较低,品种间的遗传相似性在0.61~0.99之间,栽培种内的遗传多样性为烤烟>晒晾烟>白肋烟>香料烟。当相似系数在0.67作切割线时,基于2种标记的96份烟草种质资源的聚类结果为,(1)普通烟草栽培品种材料91份聚在同一大类,而黄花烟、黏烟草、浅波烟草、哥西氏烟草、香甜烟草5个种也分别为单独的个类,同普通烟草栽培种类群完全区别开来;(2)从进化上看,烤烟和晒晾烟间的遗传进化关系最近,香料烟和黄花烟之间的亲缘关系较远;普通烟草栽培种中国内外来源的烟草品种亲缘关系极其相近,遗传分化现象甚微;(3)2种分子标记虽然原理不同,但分析结果趋势相近(r=0.68,P=1.000)。  相似文献   

13.
Genetic diversity of four new yellow single crosses, five new yellow three-way crosses, and five yellow inbred lines of maize (Zea mays L.) was studied using different molecular (SSR, ISSR, and RAPD) and biochemical markers (seed storage protein content). All markers were able to clearly separate the inbred lines in one cluster from the different types of hybrids. The correlation among the different types of molecular markers was moderately high according to the Mantel’s test (e.g. 0.67 between SSR and ISSR, 0.42 between SSR and RAPD, and 0.65 between ISSR and RAPD), indicating that the three techniques are efficient for evaluating genetic diversity in the maize genotypes. The correlation of biochemical markers (seed storage protein SDS-PAGE) with SSR, ISSR, and RAPD markers was 0.61, 0.74, and 0.48, respectively. It can be concluded that both molecular and biochemical markers are efficient to study the genetic diversity in maize. Among the different types of molecular markers, SSR is a more accurate marker-type because of its co-dominance and stability of results. It can also be said that biochemical and molecular markers are positively correlated and the correlation ranged between moderate to high. This could suggest using both marker types, separately or together, for genetic diversity studies in maize.  相似文献   

14.
中国甘薯主要亲本遗传多样性的ISSR分析   总被引:20,自引:0,他引:20  
用ISSR标记分析了中国62份甘薯主要亲本的遗传多样性, 明确了其遗传差异。结果表明, 17个ISSR引物共检测出490条多态性谱带, 平均每条引物检测出28.8条多态性谱带, 说明ISSR标记是评价甘薯遗传多样性的有效途径之一。62份中国甘薯主要亲本遗传距离为0.158~0.924, 平均为0.574, 通过UPGMA法, 可以聚为2大类, 一类为国内自育亲本, 一类为外引亲本, 说明中国甘薯主要亲本遗传多样性较丰富, 其中自育亲本与外引亲本之间遗传距离较远; 亚洲亲本遗传多样性高于非洲和美洲亲本, 并且与其他亲本间遗传距离较远; 亚洲品种中, 中国大陆亲本遗传距离最小, 为0.419, 与来自中国台湾的亲本差异较小, 但与外引亚洲亲本遗传距离较远。因此, 中国在未来甘薯育种中, 可以国内自育亲本与外引亲本以及外引亚洲亲本与外引其他亲本配制组合, 拓宽中国甘薯品种的遗传背景。  相似文献   

15.
16.
Random amplified polymorphic DNA (RAPD) markers were used to study the molecular characterization of 10 new radiomutants of chrysanthemum. The original cultivar ‘Richmond’ differed in genetic distance from its Lady group mutants. The analysis of genetic similarity indices revealed low diversity within the radiomutants. The dendrogram obtained after cluster analysis separated the new cultivars as a group that differed from the original cultivar ‘Richmond’. The Lady group cultivars, derived from one original cultivar by radiomutation, could be distinguished from each other by using RAPD markers of only a single primer or sets of two or three primers. Polymerase chain reaction analysis proved the efficiency of the RAPD method for DNA fingerprinting of the original cultivar ‘Richmond’ and its new radiomutants.  相似文献   

17.
利用基因组DNA的RAPD、ISSR与SRAP等3种分子标记技术,以日本芜菁品种作为外类群,对来自于温州不同地区具有代表性的10个盘菜品种进行品种鉴定与遗传多样性分析。10个RAPD引物共产生多态性条带70条,多态率为71.7%;12个ISSR引物共产生142条清晰带,其中多态性条带70条,多态率为49.3%;8个SRAP引物组合共产生105条谱带,其中多态性谱带78条,多态性比率为74.3%,表明品种间存在较高的多态性。用单个引物NAURP299、NAUISR43以及SRAP引物组合mel/em2,都可以将11个品种完全区分开来。基于3种标记的聚类分析结果表明,11个材料可以分为3大类,一定程度上能够揭示品种之间园艺学性状的相似性及亲缘关系远近。  相似文献   

18.
It is important to couple phenotypic analysis with genetic diversity for germplasm conservation in gene bank collections. The use of molecular markers supports the study of genetic marker-trait associations of biological and agronomic interest on diverse genetic material. In this report, 19 Greek traditional sweet cherry cultivars and two international cultivars, which were used as controls, were grown in Greece and characterized for 17 morpho-physiological traits, 15 simple sequence repeat (SSR) loci and 10 inter simple sequence repeat (ISSR) markers. To our knowledge, this is the first report on molecular genetic diversity studies in sweet cherry in Greece. Principal component analysis (PCA) of nine qualitative and eight quantitative morphological parameters explain over 77.33% of total variability in the first five axes. The SSR markers yielded a combined matching probability ratio (MPR) of 9.569 × e−12. The 15 SSR loci produced a total of 92 alleles. Ten ISSR primers generated 91 bands, with an average of 9.1 bands per primer. Expected heterozygosity (gene diversity) values of 15 SSR loci and 10 ISSR markers averaged at 0.683 and 0.369, respectively. Based on stepwise multiple regression analysis (MRA), SSR alleles were found associated with harvest time and fruit polar diameter. Furthermore, three ISSR markers were correlated with fruit harvest and soluble solids and four ISSR markers were correlated with fruit skin color. Stepwise MRA identified six SSR alleles associated with harvest time with a high correlation (P < 0.001), with linear associations with high F values. Hence, data analyzed by the use of MRA could be useful in marker-assisted breeding programs when no other genetic information is available.  相似文献   

19.
白菜种质遗传多样性与亲缘关系的ISSR标记分析   总被引:1,自引:0,他引:1  
摘要:从分子水平用ISSR标记法对白菜遗传多样性进行分析,从100个ISSR引物中共筛选出11个多态性明显、条带清晰、反应稳定的引物,对65个样品DNA共扩增出107条谱带,平均每个引物扩增出9.72条带,其中多态性位点102个(93.5% )。种间遗传相似系数在遗传距离在0.40~0.65 之间,表明白菜栽培种内品种间的遗传基础相对较宽,存在较大的遗传变异性。利用UPGMA聚类分析表明:能将65个白菜地方品种划分为四大类。由ISSR标记聚类结果所表现出的大多种质之间的亲缘关系与其来源地有较大的相关性,但也有地理差别很大的白菜资源遗传关系较近的情况。本研究还表明,ISSR 标记比RAPD 标记具有更高的稳定性,在植物遗传多样性的分子标记或克隆研究中,可优先使用ISSR 标记。  相似文献   

20.
D. H. Kim    G. Zur    Y. Danin-Poleg  S. W. Lee    K. B. Shim    C. W. Kang  Y. Kashi 《Plant Breeding》2002,121(3):259-262
Inter‐simple sequence repeats (ISSR) polymorphism was used to determine genetic relationships among 75 Sesamum indicum L. accessions of Korean and exotic sesame. Fourteen reliable ISSR primers were selected for the assessment of genetic diversity, yielding 79 amplification products. Of these polymerase chain reaction products, 33% revealed polymorphism among the 75 accessions. Genetic distances ranged from 0 to 0.255, with a mean genetic distance of 0.0687. The 75 accessions were divided into seven groups on the basis of unweighted pair‐group method with arithmetic averages (UPGMA) cluster analysis. The largest group consisted of 25 Korean cultivars, eight Korean breeding lines and 17 world‐wide accessions. The other groups included 25 accessions, several of which contained useful traits. The dendrogram did not indicate any clear division among sesame accessions based on their geographical origin. However, all Korean sesame cultivars except ‘Namsankkae’ were clustered in the same group, indicating a narrow gene pool. Some of the Korean breeding lines were spread along the dendrogram, showing enlargement of genetic diversity. The genetic diversity data uncovered in this study can be used in future breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号