首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potato crops were grown at seven sites across Europe to test the effects of elevated atmospheric carbon dioxide and/or tropospheric ozone concentrations on growth, yield and various aspects of potato tuber quality within the framework of the EC funded programme Changing Climate and Potential Impacts on Potato Yield and Quality (CHIP). Field exposure systems were used to enrich the atmosphere in CO2 and/or ozone. At five of the sites, nutrient element conconcentrations (macronutrients: nitrogen, phosphorus, potassium, calcium, magnesium, and micronutrients: mangenese, zinc, iron) in different parts of plants from the various treatments were analysed. Under elevated CO2, nearly all nutrient elements tended to decrease in concentration. At maximum leaf area, a significant reduction was observed for the concentrations of nitrogen and potassium both in aboveground biomass and in tubers, and for calcium in tubers. Since CO2 enrichment promoted early tuber growth, these effects could in part be attributed to tuber developmental stage. At maturity, potato grown under CO2 enrichment exhibited significantly lower concentrations of nitrogen, manganese and iron in aboveground organs, and of nitrogen, potassium and magnesium in tubers which means a reduction of tuber quality. In contrast to CO2, elevated ozone tended to increase tuber nutrient element concentrations. This was significant for nitrogen and manganese. CO2 effects on tuber biomass increase were more pronounced than CO2 effects on nutrient element decrease. Thus, the total amount of nutrient elements taken up by potato crops increased under elevated CO2. Fertiliser practice in a future, CO2-rich world will have to be adjusted accordingly.  相似文献   

2.
Spring wheat cv. Minaret was grown in open-top chambers at four sites across Europe. The effect of different treatments (CO2 enrichment, O3 fumigation, drought stress and temperature) on the chlorophyll content of the flag leaf was investigated using the MINOLTA SPAD-502 meter. Under optimum growth conditions the maximum chlorophyll content, which was reached at anthesis, was consistent among the sites ranging from 460 to 500 mg chlorophyll m−2. No significant effect of elevated CO2 or O3 was observed at anthesis. Leaf senescence, indicated by the chlorophyll breakdown after anthesis, was relatively constant in the control chambers. Under control conditions, thermal time until 50% chlorophyll loss was reached was 600°C day. Elevated CO2 caused a faster decline in chlorophyll content (thermal time until 50% chlorophyll loss was reduced to 500–580°C day) indicating a faster rate of plant development at two experimental sites. The effect of ozone on chlorophyll content depended on the time and dose of O3 exposure. During grain filling, high O3 concentrations induced premature senescence of the flag leaves (up to −130°C day). This deleterious effect was mitigated by elevated CO2. Drought stress led to faster chlorophyll breakdown irrespective of CO2 treatment.  相似文献   

3.
Spring wheat cv. Minaret crop stands were grown under ambient and elevated CO2 concentrations at seven sites in Germany, Ireland, the UK, Belgium and the Netherlands. Six of the sites used open-top chambers and one used a controlled environment mimicking field conditions. The effect of elevated CO2 for a range of N application regimes, O3 concentrations, and growth temperatures on flag leaf photosynthesis was studied. Before anthesis, flag leaf photosynthesis was stimulated about 50% by 650 compared with 350 μmol mol−1 CO2 at all sites, regardless of other treatments. Furthermore, there was no evidence of a decrease in photosynthetic capacity of flag leaves due to growth at elevated CO2 before anthesis, even for low N treatments. However, photosynthetic capacity, particularly carboxylation capacity, of flag leaves was usually decreased by growth at elevated CO2 after anthesis, especially in low N treatments. Acclimation of photosynthesis to elevated CO2 therefore appears to occur only slowly, consistent with a response to changes in sink–source relationships, rather than a direct response. Effect of elevated CO2 on stomatal conductance was much more variable between sites and treatments, but on average was decreased by ˜10% at 650 compared with 350 μmol mol−1 CO2. Carboxylation capacity of flag leaves was decreased by growth at elevated O3 both before and after anthesis, regardless of CO2 concentration.  相似文献   

4.
One of the major goals of the European Stress Physiology and Climate Experiment (ESPACE-wheat) was to investigate the sensitivity of wheat growth and productivity to the combined effects of changes in CO2 concentration, ozone and other physiological stresses. Experiments were performed at different sites throughout Europe, over three consecutive growing-seasons using open-top chambers. This paper summarizes the main experimental findings of the effects of CO2 enrichment and other factors i.e. ozone (O3), drought stress or nitrogen supply on the biomass and yield of spring wheat (Triticum aestivum cv. Minaret). Final harvest data from different sites and seasons were statistically analysed: (1) to identify main effects and interactions between experimentally controlled factors; and (2) to evaluate quantitative relationships between environmental variables and biological responses. Generally, ‘Minaret’ wheat did not respond significantly to O3, suggesting that this cultivar is relatively tolerant to the O3 levels applied. The main effect of CO2 was a significant enhancement of grain yield and above-ground biomass in almost all experiments. Significant interactions between CO2 and other factors were not common, although modifications in different N- and water supplies also led to significant effects on grain yield and biomass. In addition, climatic factors (in particular: mean air temperature and global radiation) were identified as important co-variables affecting grain yield or biomass, repectively. On average, the yield increase as a result of a doubling of [CO2] was 35% compared with that observed at ambient CO2 concentrations. However, linear regressions of grain yield or above-ground biomass for individual experiments revealed a large variability in the quantitative responses of ‘Minaret’ wheat to CO2 enrichment (yield increase ranging from 11 to 121%). Hence, CO2 responsiveness was shown to differ considerably when the same cultivar of wheat was grown at different European locations. Multiple regression analyses perfomed to evaluate the relative importance of the measured environmental parameters on grain yield indicated that although yield was significantly related to five independent variables (24 h mean CO2 concentration, 12 h mean O3 concentration, temperature, radiation, and drought stress), a large proportion of the observed variability remained unexplained.  相似文献   

5.
The increase of atmospheric concentration of carbon dioxide ([CO2]) has substantially had a huge impact on agricultural production. As the sole substrate for photosynthesis, the increase of atmospheric [CO2] stimulates the net photosynthetic rate, thus promoting the biomass accumulation and yield level in many crops. However, the ‘fertilization’ effect of the elevated atmospheric [CO2] on crop production is less than theoretical expectation, and elevated [CO2] increases the health risk due to the decline in grain quality. The relevant mechanism is still unclear. In this paper, we analyzed the effect of elevated [CO2] on crop photosynthesis system, reviewed various responses of key photosynthesis indicators, such as the leaf net photosynthetic rate, the intercellular [CO2] of leaves, maximum carboxylation rate of Rubisco (Vc, max), and the capacity of Rubp-regeneration (Jmax) in different crops, in response to the elevated atmospheric [CO2]. Based on the C-N metabolism of the whole plant, we summarized two prevailing hypotheses about the acclimation of photosynthetic capacity under elevated atmospheric [CO2], namely the source-sink regulation mechanism and N limitation mechanism, respectively. We summarized the influence of elevated [CO2] on the nutritional quality of the grain, such as the change in the protein, oil, mineral elements, and vitamin concentrations. Furthermore, we also reviewed the potential interactive effect of the elevated atmospheric temperature and [CO2] on crop growth. Finally, the main research directions of this field in the future are proposed. In summary, this review can provide theoretical reference for accurately assessing the changes in crop yield and quality under climate change conditions, maximizing the ‘fertilization’ effect of elevated [CO2], and mitigating the adverse effects of climate change on crop production.  相似文献   

6.
施氮量对小麦花后氮素分配及氮素利用的影响   总被引:3,自引:0,他引:3  
为研究黄淮海麦区化肥投入不断增加,而产量却徘徊不前的问题,以当地主栽品种矮抗58和周麦22为材料,采用4个施氮水平(0、120、240、360kg/hm 2)和品种的二因素分析方法研究了施氮量对小麦植株地上部各器官氮素分配及氮素利用的影响。结果表明:开花期至成熟期小麦植株地上部各营养器官氮含量和氮素积累量均下降。施氮量对开花期和成熟期小麦植株地上部各器官氮含量的影响均达显著水平,增加氮肥能显著促进小麦营养器官氮素向子粒转运和花后氮同化。开花期周麦22叶片氮素转运量优于矮抗58。矮抗58和周麦22花后氮同化量均以施氮量360kg/hm 2最高,花前氮素积累转运量对子粒贡献率达60.25%~97.55%,子粒氮收获指数为59.82%~79.48%,随施氮量的增加而呈下降趋势。施氮量120kg/hm 2处理的氮素养分利用效率、农学利用效率及生产效率均最高。增施氮肥对小麦子粒产量有显著促进影响,矮抗58在施氮量为360kg/hm 2时有最大子粒产量,周麦22在施氮量为240kg/hm 2时有最大子粒产量。推荐矮抗58和周麦22在黄淮海麦区的施氮量为240~360kg/hm 2。  相似文献   

7.
Phenological development, leaf emergence, tillering and leaf area index (LAI), and duration (LAD) of spring wheat cv. Minaret, grown in open-top chambers at different sites throughout Europe for up to 3 years at each site, were investigated in response to elevated CO2 (ambient CO2×2) and ozone (ambient ozone ×1.5) concentrations.

Phenological development varied among experiments and was partly explained by differences in temperature among sites and years. There was a weak positive relationship between the thermal rate of development and the mean daylength for the period from emergence to anthesis. Main stems produced on average 7.7 leaves with little variation among experiments. Variation was higher for the thermal rate of leaf emergence, which was partly explained by differences in the rate of change of daylength at plant emergence among seasons. Phenological development, rate of leaf emergence and final leaf number were not affected by CO2 and ozone exposure. Responses of tillering and LAI to CO2 and ozone exposure were significant only in some experiments. However, the direction of responses was consistent for most experiments. The number of tillers and ears per plant, respectively, was increased as a result of CO2 enrichment by about 13% at the beginning of stem elongation (DC31), at anthesis and at maturity. Exposure to ozone had no effect on tillering. LAI was increased as a result of CO2 elevation by about 11% at DC31 and by about 14% at anthesis. Ozone exposure reduced LAI at anthesis by about 9%. No such effect was observed at DC31. There were very few interactive effects of CO2 and ozone on tillering and LAI. Variations in tillering and LAI, and their responses to CO2 and ozone exposure, were partly explained by single linear relationships considering differences in plant density, tiller density and the duration of developmental phases among experiments. Consideration of temperature and incident photosynthetically active radiation in this analysis did not reduce the unexplained variation. There was a negative effect of ozone exposure on leaf area duration at most sites. Direct effects of elevated CO2 concentration on leaf senescence, both positive and negative, were observed in some experiments. There was evidence in several experiments that elevated CO2 concentration ameliorated the negative effect of ozone on leaf area duration. It was concluded from these results that an analysis of the interactive effects of climate, CO2 and ozone on canopy development requires reference to the physiological processes involved.  相似文献   


8.
Monoliths of a fertile, although N limited, C3 grassland community were subjected (or not) to an atmospheric CO2 enrichment (600 μmol mol−1), owing to the Mini-FACE system from August 1998 to June 2001, at two contrasting cutting frequencies (3 and 6 cuts per year). The present study reports the effects of elevated CO2 on the above-ground productivity and on the herbage quality. Elevated CO2 did not affect the dry matter (DM) yield of the swards in 1999. In 2000, the second year, there was a positive CO2 effect (+26%) both on the DM and on the nitrogen yields (+30%). With the frequently cut monoliths, the DM of the legume component of the sward was strongly increased by elevated CO2. This effect became also significant in July 2000 for the low cutting frequency treatment. These results are in good agreement with the concept of an increased legume development and symbiotic N2 fixation triggered by an increased ecosystem scale demand of N under elevated CO2. At a low cutting frequency, the DM of the forbs was strongly increased in elevated compared with ambient CO2. This increased development of the forbs apparently led to a competitive decline of the grasses. Therefore, the total DM yield response to CO2 was smaller at a low (+15%) compared with a high (+36%) cutting frequency in 2000. An increase in the water soluble sugar content of the bulk forage under elevated CO2 and a corresponding decline in cell wall contents (NDF) were observed. In June 1999, the decline in NDF was correlated with an increased in-vitro DM digestibility. The forage quality was also indirectly affected by elevated CO2 through changes in leaf:stem ratio and in botanical composition. At a low cutting frequency, the increased forb content favoured the herbage quality because of a higher digestibility of the forb shoots and, indirectly, through the reduction in the mass of the grass stems. These results emphasise the role of species dynamics for elevated CO2 impacts on semi-natural grassland productivity and herbage quality.  相似文献   

9.
综述了臭氧(O3)浓度升高、太阳辐射减弱、UV-B辐射、CO2浓度升高及其与O3复合作用对植物形态特征、光合作用、干物质累积及作物产量等生理生化机制的影响。交互作用的试验条件可以更好地模拟自然环境条件。O3和UV-B辐射对植物几乎没有积极作用。太阳辐射减弱、CO2浓度升高都会促进植物营养生长。但太阳辐射减弱降低干物质累积和产量,CO2浓度升高对其有促进作用。CO2浓度升高在与O3复合条件下,可部分缓解太阳辐射减弱对植物造成的伤害。而UV-B辐射与O3复合对植物造成的伤害更大。  相似文献   

10.
Potato (Solanum tuberosum L cv. Bintje) was exposed to ambient and elevated carbon dioxide (CO2), to ambient and elevated ozone (O3) and to elevated levels of both gases during two growing seasons, 1998 and 1999. Experiments in open-top chambers (OTC) were carried out in Finland, Sweden, Ireland, United Kingdom, Germany and Belgium and a FACE (Free Air Carbon dioxide Enrichment) experiment was carried out in Italy. In OTCs the plants were grown under ambient CO2 concentrations or with 550 and 680 μl l−1 CO2 alone or in combination with ambient or elevated O3 concentrations (target seasonal mean of 60 nl l−1 8 h per day). In the FACE systems the plants were exposed to ambient or 550 μl l−1 CO2. In the OTC experiments the reducing sugar content of potato tubers decreased significantly with increased concentration of O3. The starch content of potato tubers decreased, with negative impact on tuber quality, but the ascorbic acid concentration increased as a function of the AOT40 (The sum of the differences between hourly ozone concentration and 40 nl l−1 for each hour when the concentration exceeds 40 nl l−1 during a relevant growing season). However, simultaneous exposure to elevated CO2 counteracted the ozone effect. With increase in the CO2 exposure, glycoalkaloid and nitrate concentrations decreased yielding improved quality, while the citric acid concentration decreased causing a higher risk for discoloration after cooking. The amount of dry matter and starch increased significantly in the FACE experiment.  相似文献   

11.
This paper describes the effects of elevated CO2 (550 and 680 μl l−1) and O3 (60 nl l−1 O3 as an 8 h mean), alone or in combination, on canopy development and senescence in potato (Solanum tuberosum L. cv Bintje) across a range of European agro-climatic conditions. The assessments were made within the European CHIP project (CHanging climate and potential Impacts on Potato yield and quality) that was conducted for two growing seasons (1998 and 1999) in free air CO2 enrichment systems (FACE) and open-top chamber facilities (OTCs) at seven European sites. A comparison of chambered and unchambered experimental plots was included to examine the effects of chamber enclosure. Phenological growth stages, plant height, leaf area index (LAI) and the number of green and yellow leaves were recorded non-destructively throughout the growing season and by a destructive intermediate harvest at maximum leaf area (MLA). In the dynamic growth analysis CO2 and O3 effects were studied over three developmental stages: canopy expansion, full canopy and canopy senescence. Chamber enclosures promoted potato crop development (taller plants, more leaves) during the initial growth stages and led to a faster decline of LAI and a higher number of yellow leaves. The growth in ambient plots varied between sites and seasons, as did the scale of the treatment responses. Despite the large background variation, some overall treatment effects could be detected across all sites. Both levels of increased CO2 reduced final plant height in comparison to ambient concentrations, which indicates a premature ending of the active plant growth. At the stage of full canopy and crop senescence the average number of green leaves was significantly (P<0.05) decreased by 680 μl l−1 CO2 (OTC experiments) and LAI showed the same tendency (P=0.07). As there was however no indication of a decreased leaf formation during initial growth and at full canopy, this must have been due to an earlier leaf fall. In the FACE experiments LAI had already began to decline at the stage of full canopy at 550 μl l−1 CO2 but not in ambient CO2 (DAE×CO2, P<0.05). These observations strongly indicated that elevated CO2 induced a premature senescence during full canopy. O3 did not have an overall detrimental effect on crop development during initial growth nor at full canopy, but did induce a faster reduction of LAI during crop senescence (DAE×O3, P<0.05). Final plant height was not affected by O3. There were few CO2×O3 interactions detected. There was a suggestion (P=0.06) that O3 counteracted the CO2-induced decrease of green leaves at full canopy, but on the other hand during crop senescence the decline of LAI due to elevated O3 was faster at ambient compared to elevated CO2 (P<0.05). These responses of canopy development to elevated CO2 and O3 help to explain the treatment responses of potato yield within the CHIP project at sites across Europe.  相似文献   

12.
The response of crops to CO2 enrichment represents an issue of major concern both for scientists and for policy-makers. In a concerted programme funded by the Commission of the European Communities, a Europe-wide experimental and modeling study was carried out to investigate the effects of increasing atmospheric CO2 concentrations, and of environmental stresses such as ozone or water/nutrient shortage, under different climatic conditions on wheat (Triticum aestivum L.). This contribution describes the experimental network and the standard protocol set-up for the assessments which served to improve and to validate process-orientated wheat growth simulation models.  相似文献   

13.
为阐明大气CO2浓度升高和不同氮素水平对湿地植物光合生理特性和生长的影响,本研究以三江平原湿地优势植物小叶章(Calamagrostis angustifolia)为研究对象,通过野外原位控制试验,利用开顶式气室(OTC)模拟环境大气CO2浓度变化,设置E0(380 ±20 µmol/mol)、E1(550 ±20 μmol/mol)和E2(700 ± 20 μmol/mol)3个CO2浓度;在每个OTC内设置 N0(0 g N/m2)、N1(4 g N/m2)和N2(8 g N/m2)3个氮素水平。结果表明,N0条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率分别降低11%和12%(P<0.05),其叶片可溶性蛋白含量、氮素含量(CO2熏蒸72 天)、小叶章株高(CO2熏蒸86 天)均显著低于E0处理(P<0.05);N1条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率降低5%(P>0.05)和10%(P<0.05),其叶片氮素含量(P<0.05)、小叶章株高均低于E0处理;N2条件下,E1和E2处理(72 天)小叶章净光合速率均呈稍增加的趋势(P>0.05),其叶片可溶性蛋白含量显著增加(P<0.05),氮素含量和小叶章株高无显著变化(P>0.05)。N0、N1和N2条件下,CO2浓度升高均显著增加了小叶章叶片可溶性糖含量。本研究表明长期CO2浓度升高可能通过降低小叶章叶片光合酶活性,进而降低了其净光合速率,而施加高浓度的氮肥可以缓解长期高CO2浓度对湿地植物光合及生长的负面影响。  相似文献   

14.
The physiological effects of elevated CO2 and/or O3 on Solanum tuberosum cv. Bintje were examined in Open-Top Chambers during 1998 and 1999 at experimental sites across Europe as part of the EU ‘Changing Climate and Potential Impacts on Potato Yield and Quality’ programme (CHIP). At tuber initiation (≈20 days after emergence, DAE) elevated CO2 (680 μl l−1) induced a 40% increase in the light saturated photosynthetic rate (Asat) of fully expanded leaves in the upper canopy. This was 16% less than expected from short-term exposures of plants grown under ambient CO2 (360 μl l−1) to elevated CO2, indicating that photosynthetic acclimation began at an early stage of crop growth. This effect resulted from a combination of a 12% reduction in stomatal conductance (gs) and a decline in photosynthetic capacity, as indicated by the significant reductions in the maximum carboxylation rate of Rubisco (Vcmax) and light-saturated rate of electron transport (Jmax) under elevated CO2. The seasonal decline in the promotion of photosynthesis by elevated CO2 reflected the concurrent decrease in gs. Vcmax and Jmax were both reduced in plants grown under elevated CO2 until shortly after maximum leaf area (MLA) was attained. Although non-photorespiratory mitochondrial respiration in the light (Rd) increased during the later stages of the season, net photosynthesis was consistently increased by elevated CO2 during the main part of the season. Photosynthetic rate declined more rapidly in response to elevated O3 under ambient CO2, and the detrimental impact of O3 was most obvious after MLA was attained (DAE 40–50). Several exposure indices were compared, with the objective of determining the critical ozone level required to induce physiological effects. The critical O3 exposure above which a 5% reduction in light saturated photosynthetic rate may be expected (expressed in terms of cumulative exposure above 0 nl l−1 O3 between emergence and specific dates during the season (AOT0-cum)) was 11 μl l−1 h; however this value should only be extrapolated beyond the CHIP dataset with caution. The interaction between O3 and stomatal behaviour was more complex, as it was influenced by both long-term and daily exposure levels. Elevated CO2 counteracted the adverse effect of O3 on photosynthesis, perhaps because the observed reduction in stomatal conductance decreased O3 fluxes into the leaves. The results are discussed in the context of nitrogen deficiency, carbohydrate accumulation and yield.  相似文献   

15.
Sorghum hybrid CSH-6 was grown in fields in Delhi, India between July–November 1986 in order to study the effect of nitrogen nutrition and irrigation on dry matter accumulation, grain yield and water use. The treatments included 40 Kg Nha−1 combined with two irrigations (30 DAS, 60 DAS), one irrigation (60 DAS) and no irrigation respectively. Rainfall during the crop season was only 17 cm. The unirrigated plants were considerably water stressed and exhibited very low leaf water potential, less leaf area, delayed anthesis, longer crop duration but shorter grain filling duration. The ears showed sterility and yield was only 0.41 t ha−1 without nitrogen fertilization. Addition of nitrogen fertilizer had no significant effect on yield in unirrigated plants. A single irrigation 60 DAS increased yield due to increase in both grain number and grain weight per ear in fertilized and unfertilized crop respectively. Two irrigations in the unfertilized crop increased the yield to 2.2 t ha−1 while similar treatment in the fertilized crop did not increase the yield significantly. Irrigation increased the WUE for grain yield. The results indicate that nitrogen stress and water stress reduced grain yield primarily through grain number rather than grain weight. Irrigation relieved both water stress and nutrient stress. Nitrogen nutrition was not beneficial under severe water stress conditions but was considerably helpful under mild stress. Biomass, grain yield and harvest index show significant correlation with preanthesis water use.  相似文献   

16.
The main objective of the CHIP project was to perform ‘standardised’ investigations of potato (Solanum tuberosum L. cv Bintje) responses to increased O3 and CO2 concentrations by means of open-top chambers (OTC) and free air carbon dioxide enrichment (FACE) systems. The experimental sites are located across Europe representing a broad range of different climatic conditions. In 1998 and 1999 a total number of 12 OTC experiments and four FACE experiments were conducted. According to the specific needs for subsequent modelling purposes, environmental data were collected during experiments, i.e. air temperature, global radiation, air humidity (vapour pressure deficit (VPD)), soil moisture and trace gas concentrations. In the present paper, the results of these measurements are summarised. It was shown that the experiments covered a considerable range of growing season mean air temperatures (13.8–19.9 °C) and global irradiances (12.0–21.3 MJ m−2 per day), the most important driving variables for crop growth simulation models. Analysis of the soils used during the experiments demonstrated that in most cases sufficient nutrient elements were available to guarantee an undisturbed growth. Mean concentrations of CO2 and O3 in ambient air and in different treatments illustrate the observed variability of trace gas exposures between different sites and experiments. However, the effects of these parameters on growth and yield are subject of separate papers. The general climatic conditions across Europe are also causing important growth and yield effects. Comparison of marketable tuber yields revealed an increase at higher latitudes. This result was associated with lower temperatures and VPD and longer day lengths at the higher latitudes, which in turn were associated with longer growing seasons.  相似文献   

17.
The critical period for grain yield determination has not been determined for triticale. We aimed to identify it, determining the relative importance of both the major yield components and the dry matter acquisition by the spikes at anthesis. A field experiment was carried out with two triticales, differing in tillering capacity, subjected to shading treatments at five different timings from early tillering to maturity. Results showed that reductions in grain yield were more significant when shading was imposed during 3 weeks before and 1 week after anthesis. Reductions in grain yield by shading treatments were associated with lower number of grains per m2 more than with changes in the average grain weight. Reductions in grains per m2 were due to reductions in the number of fertile florets per spike, affecting grains per spike. The assimilate acquisition by the spikes during the critical period was a key determinant of floret survival. Grain number per m2 was related with photothermal quotient during 30 days before anthesis and spike dry weight at anthesis, though the goodness of the prediction compared with wheat, was lowered by poorer grain setting percentage.  相似文献   

18.
生物质炭配施蚯蚓粪(BEC)可增加土壤碳氮投入,促进作物增产及营养元素的吸收利用。设置3个生物质炭用量梯度(B0:0.0g/kg,B1:6.0g/kg,B2:30.0g/kg)和3个蚯蚓粪用量梯度(M0:不施蚯蚓粪,M1:1%蚯蚓粪,M2:5%蚯蚓粪),于2018和2019年进行盆栽试验,以研究BEC对水稻产量和营养元素吸收的影响。结果显示,2019年不同处理水稻各部位生物量均高于2018年,籽粒的氮和磷吸收量增加,但吸钾量在B2和M2处理中降低;2018和2019年籽粒生物量与BEC的碳投入量间呈极显著相关(P<0.01);2019年籽粒生物量与氮投入量显著相关(P<0.05);BEC产生的碳、氮投入量与氮素收获指数呈正相关,与2018年磷素收获指数间呈不显著负相关,与2019年钾元素收获指数呈显著负相关(P<0.05),BEC对不同元素吸收利用的影响存在差异。生物质炭配施蚯蚓粪促进了水稻生长,有利于提高化学元素利用率,是培肥中低产田、提高作物产量和养分利用率的有效措施。  相似文献   

19.
The objective of this work was to investigate the effects of nutrient solution pH, nitrogen form (NO3, NH4NO3), bicarbonate and different Fe concentrations in the nutrient solution on the Fe concentration in roots and on the development of Fe deficiency symptoms in sunflower plants (Helianthus annuus L.). High pH in the nutrient solution induced by nitrate supply or by a pH-stat device led to increased Fe concentrations in roots and low leaf Fe concentrations associated with a significant decrease in leaf chlorophyll concentration manifested by yellow leaves. Plants of the nitrate fed treatments with 1 μM Fe in the nutrient solution were also characterized by reduced leaf growth and by the suppression of new leaf formation. The reduced leaf growth and the suppression of new leaves only occurred with nitrate and not with NH4NO3 in all treatments with 1 μM Fe in the nutrient solution. All symptoms were removed by a high Fe concentration in the nutrient solution (100 μM) at low external pH proving that suppression of leaf formation, reduced leaf growth and low chlorophyll concentration were caused by Fe deficiency. In the nitrate treatment with a low Fe supply (1 μM Fe) and pH 4 in the nutrient solution leaf chlorophyll concentrations similar to the controls were found. In comparison to control plants (NH4NO3, 1 μM Fe), leaf growth was still significantly reduced, and new leaf formation was suppressed. The chlorophyll concentration and CO2 assimilation rate did not differ from those of the control plants. These results show that Fe deficiency is also characterized by small green leaves and the suppression of leaf formation. At the onset of leaf development, leaf growth and new leaf formation may respond more sensitively to poor Fe efficiency than chlorophyll concentration. In experiments with NO3 plus HCO3, simulating soil solution conditions prevailing in calcareous soils, the Fe efficiency of the youngest leaves was poor, showing retarded leaf growth and low chlorophyll concentration.  相似文献   

20.
The response of crop growth and yield to CO2 and ozone is known to depend on climatic conditions and is difficult to quantify due to the complexity of the processes involved. Two modified mechanistic crop simulation models (AFRCWHEAT2-O3 and LINTULCC), which differ in the levels of mechanistic detail, were used to simulate the effects of CO2 (ambient, ambient ×2) and ozone (ambient, ambient ×1.5) on growth and developmental processes of spring wheat in response to climatic conditions. Simulations were analysed using data from the ESPACE-wheat project in which spring wheat cv. Minaret was grown in open-top chambers at nine sites throughout Europe and for up to 3 years at each site.

Both models closely predicted phenological development and the average measured biomass at maturity. However, intermediate growth variables such as biomass and leaf area index (LAI) at anthesis, seasonal accumulated photosynthetically active radiation intercepted by the crop (ΣIPAR), the average seasonal light use efficiency (LUE) and the light saturated rate of flag leaf photosynthesis (Asat) were predicted differently and less accurately by the two models. The effect of CO2 on the final biomass was underestimated by AFRCWHEAT2-O3 due to its poor simulation of the effect of CO2 on tillering, and LAI.LINTULCC overestimated the response of biomass production to changes in CO2 level due to an overprediction of the effect of CO2 on LUE. The measured effect of ozone exposure on final biomass was predicted closely by the two models. The models also simulated the observed interactive effect of CO2 and ozone on biomass production. However, the effects of ozone on LAI, ΣIPAR and Asat were simulated differently by the models and less accurately with LINTULCC for the ozone effects on LAI and ΣIPAR. Predictions of the variation between sites and years of growth and development parameters and of their responses to CO2 and ozone were poor for both AFRCWHEAT2-O3 and LINTULCC. It was concluded that other factors than those considered in the models such as chamber design and soil properties may have affected the growth and development of cv. Minaret. An analysis of the relationships between growth parameters calculated from the simulations supported this conclusion. In order to apply models for global change impact assessment studies, the difficulties in simulating biomass production in response to CO2 need to be considered. We suggest that the simulation of leaf area dynamics deserves particular attention in this regard.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号