首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨不同形态氮源对烟苗素质和生长发育的影响,以烤烟新品系HN2146为参试材料,采用水培试验研究硝酸铵、硝酸钙、硫酸铵和尿素4种不同形态氮源对烟苗生长发育特性的影响。结果表明,烟苗最大叶面积以硝酸钙处理最大,为100.4cm2;烟苗叶和根系蛋白质含量以硫酸铵处理最高,分别为151.452和79.367μg/g FW;硝酸还原酶活性表现为硝酸钙>硝酸铵>硫酸铵>尿素处理;烟苗对氮的吸收能力表现为硝酸铵>硫酸铵>硝酸钙>尿素处理。通过对不同处理烟苗相关农艺性状和生理特性指标的主成分分析,其综合得分表现为硝酸钙>硝酸铵>硫酸铵>尿素处理。可见以硝态氮和铵态氮作为唯一氮源对烟苗生长发育的效果较好,而以尿素作为唯一氮源的效果最差,本研究结果为不同氮源在烤烟育苗培育上的应用提供了理论依据。  相似文献   

2.
营养液pH变化对刺梨苗吸收硝态氮和铵态氮的影响   总被引:1,自引:0,他引:1  
研究介质pH变化条件下刺梨(Rosa roxburghii)对不同形态氮素吸收特性的影响,能为不同pH土壤上刺梨的合理施肥提供科学依据。本研究以‘贵农5号’刺梨实生苗为材料,采用营养液培养和离子耗竭法,在分别供给硝态氮和铵态氮的条件下,设置营养液分别为pH 4、5、6、7、8、9的6个处理,测定不同pH营养液培养的刺梨苗对NO3-、NH4+的吸收动力学参数和刺梨苗的植株高度、干重生物量、氮含量及氮吸收量,分析营养液pH变化与NO3-、NH4+的吸收动力学参数的相关性和营养液pH变化与刺梨苗植株高度、生物量、氮含量和氮素吸收量的相关性。研究结果表明,刺梨根系对硝态氮、铵态氮及总氮的吸收规律均符合Michaelis-Menten酶动力学方程。营养液的pH变化能够改变刺梨苗根系对NO3-和NH4+的吸收特性。在营养液pH 4~9的范围内和供给硝态氮的条件下,刺梨实生苗的根系对NO3-的最大吸收速率(Imax)、根系与NO3-的亲和力、NO3-流入根系的速率(α)、植株高度、干重生物量、氮含量及氮的吸收量随营养液pH的增大而明显降低,营养液的pH变化与上述指标呈极显著负相关。在供给铵态氮的条件下,刺梨实生苗根系对NH4+的上述指标随营养液pH的升高而明显增大,营养液的pH变化与上述指标呈极显著正相关。在酸性条件下有利于刺梨苗对硝态氮的吸收,升高营养液的pH不利于刺梨苗吸收硝态氮。碱性条件有利于刺梨苗对铵态氮的吸收,酸性条件对刺梨苗吸收铵态氮有不利影响。  相似文献   

3.
Spring wheat cv. Minaret crop stands were grown under ambient and elevated CO2 concentrations at seven sites in Germany, Ireland, the UK, Belgium and the Netherlands. Six of the sites used open-top chambers and one used a controlled environment mimicking field conditions. The effect of elevated CO2 for a range of N application regimes, O3 concentrations, and growth temperatures on flag leaf photosynthesis was studied. Before anthesis, flag leaf photosynthesis was stimulated about 50% by 650 compared with 350 μmol mol−1 CO2 at all sites, regardless of other treatments. Furthermore, there was no evidence of a decrease in photosynthetic capacity of flag leaves due to growth at elevated CO2 before anthesis, even for low N treatments. However, photosynthetic capacity, particularly carboxylation capacity, of flag leaves was usually decreased by growth at elevated CO2 after anthesis, especially in low N treatments. Acclimation of photosynthesis to elevated CO2 therefore appears to occur only slowly, consistent with a response to changes in sink–source relationships, rather than a direct response. Effect of elevated CO2 on stomatal conductance was much more variable between sites and treatments, but on average was decreased by ˜10% at 650 compared with 350 μmol mol−1 CO2. Carboxylation capacity of flag leaves was decreased by growth at elevated O3 both before and after anthesis, regardless of CO2 concentration.  相似文献   

4.
芹菜对铁的吸收及铁对其生长和品质的影响   总被引:2,自引:0,他引:2  
通过调节水培营养液中铁浓度分别为0,0.7,1.4,2.8,5.6,8.4,11.2和14.0.mg/L的8个水平种植4个芹菜品种,研究了不同铁供应水平对芹菜生长和植株铁含量及其品质的影响。结果表明,0.7mg/L浓度下,芹菜生长良好,没有表现缺铁症状,1.4mg/L浓度时,叶片中的铁含量达最大值,2.8mg/L浓度下,芹菜产量,Vc、蛋白质、叶绿素含量较高,硝酸盐含量较低。在各铁供应水平下4个芹菜品种均未出现铁中毒现象。供铁以后,其供应量对芹菜叶中钙、镁含量影响不大;锌含量与营养液中铁浓度呈负相关,铁锌之间表现出离子竞争作用。  相似文献   

5.
Potato cv. Bintje was grown in open-top-chambers and free-air-CO2-enrichment systems at 7 sites across Europe for 2 years (1998–99). The effect of different treatments (CO2 enrichment and O3 fumigation) on the chlorophyll content of fully expanded upper and lower canopy leaves was investigated collecting Minolta SPAD-502 meter readings. In both CO2 treated and O3 fumigated plants, leaves had lower chlorophyll content than those in ambient air controls; season-long chlorophyll averages were 9.3% lower in the ‘CO2’ treatments, 9.1% lower in ‘O3’ treatments and 12.3% lower in ‘CO2+O3’ treatments. The analysis of chlorophyll content in three different growth phases (Emergence–Tuber Initiation; Tuber Initiation–Maximum Leaf Area; Maximum Leaf Area–Harvest) showed that in the early growth period, i.e. before tuber initiation there was a slight indication for an higher chlorophyll content at elevated CO2 (+3.8%) or O3 (+1.7%). However, from tuber initiation onwards the leaves of plants grown under elevated CO2 or O3 showed a progressively lower chlorophyll content (−4.8% for CO2 treatments and −2.6% for O3 treatments) indicating a faster senescence of leaves that increased during the late growth period (−12.8% for CO2 treatments and −12.7% for O3 treatments) and that was enhanced by CO2–O3 interaction (−17.8%).  相似文献   

6.
为阐明大气CO2浓度升高和不同氮素水平对湿地植物光合生理特性和生长的影响,本研究以三江平原湿地优势植物小叶章(Calamagrostis angustifolia)为研究对象,通过野外原位控制试验,利用开顶式气室(OTC)模拟环境大气CO2浓度变化,设置E0(380 ±20 µmol/mol)、E1(550 ±20 μmol/mol)和E2(700 ± 20 μmol/mol)3个CO2浓度;在每个OTC内设置 N0(0 g N/m2)、N1(4 g N/m2)和N2(8 g N/m2)3个氮素水平。结果表明,N0条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率分别降低11%和12%(P<0.05),其叶片可溶性蛋白含量、氮素含量(CO2熏蒸72 天)、小叶章株高(CO2熏蒸86 天)均显著低于E0处理(P<0.05);N1条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率降低5%(P>0.05)和10%(P<0.05),其叶片氮素含量(P<0.05)、小叶章株高均低于E0处理;N2条件下,E1和E2处理(72 天)小叶章净光合速率均呈稍增加的趋势(P>0.05),其叶片可溶性蛋白含量显著增加(P<0.05),氮素含量和小叶章株高无显著变化(P>0.05)。N0、N1和N2条件下,CO2浓度升高均显著增加了小叶章叶片可溶性糖含量。本研究表明长期CO2浓度升高可能通过降低小叶章叶片光合酶活性,进而降低了其净光合速率,而施加高浓度的氮肥可以缓解长期高CO2浓度对湿地植物光合及生长的负面影响。  相似文献   

7.
This paper describes the effects of elevated CO2 (550 and 680 μl l−1) and O3 (60 nl l−1 O3 as an 8 h mean), alone or in combination, on canopy development and senescence in potato (Solanum tuberosum L. cv Bintje) across a range of European agro-climatic conditions. The assessments were made within the European CHIP project (CHanging climate and potential Impacts on Potato yield and quality) that was conducted for two growing seasons (1998 and 1999) in free air CO2 enrichment systems (FACE) and open-top chamber facilities (OTCs) at seven European sites. A comparison of chambered and unchambered experimental plots was included to examine the effects of chamber enclosure. Phenological growth stages, plant height, leaf area index (LAI) and the number of green and yellow leaves were recorded non-destructively throughout the growing season and by a destructive intermediate harvest at maximum leaf area (MLA). In the dynamic growth analysis CO2 and O3 effects were studied over three developmental stages: canopy expansion, full canopy and canopy senescence. Chamber enclosures promoted potato crop development (taller plants, more leaves) during the initial growth stages and led to a faster decline of LAI and a higher number of yellow leaves. The growth in ambient plots varied between sites and seasons, as did the scale of the treatment responses. Despite the large background variation, some overall treatment effects could be detected across all sites. Both levels of increased CO2 reduced final plant height in comparison to ambient concentrations, which indicates a premature ending of the active plant growth. At the stage of full canopy and crop senescence the average number of green leaves was significantly (P<0.05) decreased by 680 μl l−1 CO2 (OTC experiments) and LAI showed the same tendency (P=0.07). As there was however no indication of a decreased leaf formation during initial growth and at full canopy, this must have been due to an earlier leaf fall. In the FACE experiments LAI had already began to decline at the stage of full canopy at 550 μl l−1 CO2 but not in ambient CO2 (DAE×CO2, P<0.05). These observations strongly indicated that elevated CO2 induced a premature senescence during full canopy. O3 did not have an overall detrimental effect on crop development during initial growth nor at full canopy, but did induce a faster reduction of LAI during crop senescence (DAE×O3, P<0.05). Final plant height was not affected by O3. There were few CO2×O3 interactions detected. There was a suggestion (P=0.06) that O3 counteracted the CO2-induced decrease of green leaves at full canopy, but on the other hand during crop senescence the decline of LAI due to elevated O3 was faster at ambient compared to elevated CO2 (P<0.05). These responses of canopy development to elevated CO2 and O3 help to explain the treatment responses of potato yield within the CHIP project at sites across Europe.  相似文献   

8.
以聚乙烯醇为唯一碳源从堆肥中筛选所得降解细菌HK1为出发菌株,对该菌株产酶条件进行了研究。首先通过无色透明圈法确定产酶方式,然后采用单因子试验和正交试验优化菌株HK1的产酶条件。结果表明,该菌在细胞内外均有PVA降解酶的分布,并且胞外酶活水平最高。该菌产酶最佳装液量为50 mL/250 mL三角瓶,最佳接种量为6%,最适温度30℃,最佳碳源和氮源种类分别为PVA和NH4NO3。通过正交试验优化,得出该菌产酶的最佳营养条件为:PVA浓度2.5 g/L,NH4NO3 0.6 g/L,pH 7.0。在此条件下,菌株HK1产酶能力是优化前的225%。  相似文献   

9.
An experiment was conducted under outdoor pot-culture conditions to determine effects of nitrogen (N) deficiency on sorghum growth, physiology, and leaf hyperspectral reflectance properties. Sorghum (cv. DK 44C) was seeded in 360 twelve-litre pots filled with fine sand. All pots were irrigated with half-strength Hoagland's nutrient solution from emergence to 25 days after sowing (DAS). Thereafter, pots were separated into three identical groups and the following treatments were initiated: (1) the control (100% N) continued receiving the half-strength nutrient solution; (2) reduced N to 20% of the control (20% N); and (3) withheld N from the solution (0% N). Photosynthetic rate (Pn), chlorophyll (Chl) and N concentrations, and hyperspectral reflectance of the uppermost, fully expanded leaves were determined at 3- to 4-day-interval from 21 to 58 DAS during the N treatments. Plants were harvested 58 DAS to determine effects of N deficiency on leaf area (LA), biomass accumulation, and partitioning. Nitrogen deficiency significantly reduced LA, leaf Chl content and Pn, resulting in lower biomass production. Decreased leaf Pn due to N deficiency was mainly associated with lower stomatal conductance rather than carboxylation capacity of leaf chemistry. Among plant components of dry weights, leaf dry weight had the greatest and root dry weight had the smallest decrease under N deficiency. Nitrogen-deficit stress mainly increased leaf reflectance at 555 (R555) and 715 nm (R715) and caused a red-edge shift to shorter wavelength. Leaf N and Chl concentrations were linearly correlated with not only the reflectance ratios of R405/R715 (r2 = 0.68***) and R1075/R735 (r2 = 0.64***), respectively, but also the first derivatives of the reflectance (dR/dλ) in red edge centered 730 or 740 nm (r2 = 0.73–0.82***). These specific reflectance ratios or dR/dλ may be used for rapid and non-destructive estimation of sorghum leaf Chl and plant N status.  相似文献   

10.
为明确洛阳烟区烤烟品系LY1306上六片适宜的一次性采收成熟度,采用田间试验,设置4种采收成熟度处理(M1、M2、M3和M4),研究其对上六片3个叶位(上1~2片叶、上3~4片叶和上5~6片叶)叶绿素相对含量(SPAD值)、叶色相对值、丙二醛(MDA)含量、抗氧化酶活性及碳、氮代谢关键酶活性的影响,并分析烤后烟叶常规化学成分和感官质量的差异。结果表明,随着采收成熟度的提高,上六片3个叶位的超氧化物歧化酶与淀粉酶活性均表现为先升高后下降的变化趋势,在M3处理期达到最大值;过氧化物酶、过氧化氢酶和硝酸还原酶活性逐渐下降,MDA含量逐渐升高,且M3到M4处理阶段变化幅度加大;SPAD值与叶色相对值随着采收成熟度的提高而降低,至M3和M4处理期时,上六片3个叶位的SPAD值均差异不显著,且叶色相对值也趋于稳定;M3处理烤后烟叶的总糖、还原糖含量以及糖碱比均最高,焦甜香味突出,评吸总分最高。总之,建议LY1306在洛阳烟区以M3处理期(上3~4叶叶面落黄7~8成、主脉全白、支脉2/3变白,叶面皱褶,SPAD值...  相似文献   

11.
为探明氮及氮素形态对烤烟叶片光合能力的影响,对烟草(Nicotiana tabacum L.)品种龙江911和龙江0520在无N(CK)、硝态氮(NO3--N)、铵态氮(NH4+-N)及硝铵混合氮(NO3--N:NH4+-N=1:1)处理下叶片气体交换参数及荧光动力学曲线的变化规律进行了研究。结果表明:施氮处理组的净光合速率(Pn)、气孔导度(Gs)及蒸腾速率(Tr)均高于CK,且随着时间的延长,升高幅度加大,差异达显著水平(P<0.05)。施氮总体上提高了2个烤烟品种Fv/Fm和光合性能指数(PIabs),说明氮促进了烤烟幼苗叶片光合系统Ⅱ(PSⅡ)反应中心的活性;同时施氮降低了VJVI水平。对3种不同氮素形态下的荧光参数进行比较,发现NH4+-N处理的荧光参数Fv/FmPIabs偏低,而VJVI偏高,说明NH4+-N提高PSⅡ光合性能的能力相对较弱。综合光合气体交换参数和叶绿素荧光参数可知,NO3--N处理的龙江911和NO3--N:NH4+-N(1:1)处理的龙江0520表现出更好的光合性能。  相似文献   

12.
为探究铵态氮条件下增硝营养对油菜铵态氮利用及生长的影响,以品种Bn60为试验材料,以纯硝培养为对照,测定不同氮形态下培养15d油菜的生物量和叶绿素含量。并在5mmol/L NH4+条件下,添加5个不同的NO3-浓度(0.0、0.1、0.3、0.6、1.0mmol/L),处理7d后测定游离NH4+含量及氮素同化酶活性,处理15d后测定生物量、全氮和阳离子含量。结果表明,与硝态氮相比,单一铵态氮导致生长抑制、叶片枯黄,但随着硝酸盐浓度的提高,铵毒害症状逐渐缓解,地上和根系的生物量、全氮量和氮累积量均显著增加。增硝营养显著增强了油菜地上部谷氨酰胺合成酶活性,进而降低游离铵态氮含量,另外K+、Ca2+和Mg2+等阳离子含量均随着硝态氮的增加而显著提高。硝酸盐能增强氮素同化酶的活性,从而降低NH4+含量,同时提高Mg2+等阳离子含量和光合作用,最终缓解铵毒害性状,促进油菜的生长。  相似文献   

13.
Spring wheat cv. Minaret was grown in open-top chambers at four sites across Europe. The effect of different treatments (CO2 enrichment, O3 fumigation, drought stress and temperature) on the chlorophyll content of the flag leaf was investigated using the MINOLTA SPAD-502 meter. Under optimum growth conditions the maximum chlorophyll content, which was reached at anthesis, was consistent among the sites ranging from 460 to 500 mg chlorophyll m−2. No significant effect of elevated CO2 or O3 was observed at anthesis. Leaf senescence, indicated by the chlorophyll breakdown after anthesis, was relatively constant in the control chambers. Under control conditions, thermal time until 50% chlorophyll loss was reached was 600°C day. Elevated CO2 caused a faster decline in chlorophyll content (thermal time until 50% chlorophyll loss was reduced to 500–580°C day) indicating a faster rate of plant development at two experimental sites. The effect of ozone on chlorophyll content depended on the time and dose of O3 exposure. During grain filling, high O3 concentrations induced premature senescence of the flag leaves (up to −130°C day). This deleterious effect was mitigated by elevated CO2. Drought stress led to faster chlorophyll breakdown irrespective of CO2 treatment.  相似文献   

14.
采用SPAD仪进行甜菜氮素营养诊断技术研究   总被引:4,自引:2,他引:2  
为研究甜菜大田栽培及生产过程中氮素的营养状态,以便及时补充氮素亏缺,使用SPAD-502仪(soil plant analysis development)测定了甜菜叶片不同叶位和叶序的SPAD值,发现SPAD值的分布特点及其规律性,建立了基于SPAD值的氮素营养快速诊断方法。试验设计了室内盆栽及田间试验,对不同基因型、不同发育阶段甜菜叶片不同叶位叶序的SPAD值进行测定,统计并分析SPAD值与叶片的叶绿素含量及植株全氮含量的相关性。结果表明:甜菜叶片SPAD值在不同叶位及叶序上有差异,其中叶片尖部SPAD最大值出现的次数与叶片侧缘部和叶片基部相比较有较明显优势,施氮及不施氮处理均达到50%以上;4~6片真叶期后最高叶片SPAD值与测得的同株叶片的SPAD值有较显著的相关性,所以最高叶片的叶片尖部可作为甜菜叶片SPAD值的最适测定部位;增加施氮量能提高叶片SPAD值;不同品种间叶片SPAD值也有差异;SPAD值与不同发育阶段甜菜叶片的叶绿素含量以及植株全氮含量分别建立线性方程,拟合后发现叶片SPAD值和总叶绿素含量之间为极显著相关,与植株含氮量之间为相关性显著。因此,利用叶片SPAD值可实时监测甜菜生长与光合效应,进行氮素营养的快速诊断。  相似文献   

15.
In rape (Brassica napus L., cv. Global) seed growth mainly depends on husk CO2 assimilation. In irrigated plants, the net photosynthetic rate (Amax) was 10–13 μmol CO2 m−2 s−1 in non-maturing pods and correlated with nitrogen content. The stomatal conductance of water vapour (gH2O) was 0.3 mol m−2 s−1 in non-maturing pods. The photosynthetic nitrogen use efficiency (NUE) was 8.3 μmol CO2g−1 N s−1, about one-third of that in leaves. The photosynthetic water use efficiency (WUE; AmaxgH2O−1) was similar in pods and leaves. In severely droughted plants, the photosynthetic rate was reduced to 38%. The seed growth rate, however, was not influenced by intermittent periods of water stress, indicating translocation of assimilates to the seeds. The drought resistant character of the pods was due to low specific area, succulence, low stomatal conductance causing a small decrease of ΔΨ day−1 during soil drying and maintenance of high relative water content during severe drought. A mathematical formulation of the pod water release curve was undertaken. © (1997) Elsevier Science B.V.  相似文献   

16.
邹小云  官梅  官春云 《作物杂志》2022,38(5):97-1180
为阐明甘蓝型油菜氮素高效吸收的形态和生理机制,利用6个氮素效率差异显著的甘蓝型油菜为供试材料,分析低氮条件下甘蓝型油菜抽薹期地上部和根系形态、叶片和根系生理特性的基因型差异及这些指标与高效氮素吸收的关系。结果表明,3个氮高效基因型在表型性状(株高、叶片数、最大叶长×宽、地上部干重、茎基粗、根长、根表面积、根体积、根平均直径和根干重)、生理(叶片可溶性糖含量、游离氨基酸总量、根系吸收总面积、活跃吸收面积、游离氨基酸总量和根系活力)和光合方面(净光合速率、气孔导度、胞间CO2浓度、蒸腾速率和氮素光合效率)均高于3个氮低效基因型。甘蓝型油菜抽薹期根平均直径、最大叶长×宽、蒸腾速率和根系硝酸还原酶共同决定了氮素吸收效率的92.10%。  相似文献   

17.
Nutrient element concentrations and grain quality were assessed in spring wheat grown under elevated CO2 concentrations and contrasting levels of tropospheric ozone at different nitrogen supply rates at several European sites. Carbon dioxide enrichment proved to affect nutrient concentrations in a complex manner. In green leaves, all elements (with exception of phosphorus and iron) decreased. In contrast, effects on the element composition of grains were restricted to reductions in nitrogen, calcium, sulphur and iron. Ozone exposure resulted in no significant effects on nutrient element concentrations in different tissues in the overall analysis. The nitrogen demand of green tissues was reduced due to CO2 enrichment as shown by reductions in the critical leaf nitrogen concentration and also enhanced nitrogen use efficiency. Reductions in the content of ribulose-bisphosphate carboxylase/oxygenase and repression of the photorespiratory pathway and reduced nitrogen allocation to enzymes driving the photosynthetic carbon oxidation cycle were chiefly responsible for this effect. Thus, nitrogen acquisition by the crop did not match carbon acquisition under CO2 enrichment. Since crop nitrogen uptake from the soil was already completed at anthesis, nitrogen allocated to the grain after anthesis originated from vegetative pools—causing grain nitrogen concentrations to decrease under CO2 enrichment (on average by 15% when CO2 concentrations increased from 360 to 680 μmol mol−1). Correspondingly, grain quality was reduced by CO2 enrichment. The Zeleny value, Hagberg value and dry/wet gluten content decreased significantly with increasing [CO2]. Despite the beneficial impact of CO2 enrichment on growth and yield of C3 cereal crops, declines in flour quality due to reduced nitrogen content are likely in a future, [CO2]-rich world.  相似文献   

18.
以云烟87为试验材料,研究打顶后叶面喷施不同浓度的赤霉素(GA3)和6-苄氨基嘌呤(6-BA)植物生长调节剂组合对烤烟生长和烟叶化学成分的影响。结果表明,在打顶当天喷施GA3和6-BA可以增加烤烟叶面积,GA3浓度为100mg/L、6-BA浓度为40mg/L时,烤烟叶面积增加最多;喷施GA3和6-BA可以提高烟叶叶绿素含量,且随着二者浓度提高烟叶叶绿素含量呈增加趋势;外源GA3和6-BA主要对碳氮化合物起调节作用,GA3和6-BA联用可以提高烟叶中总糖、还原糖和钾含量,而单施6-BA则会引起烟碱含量升高,当GA3浓度为50mg/L、6-BA浓度为40mg/L时,总糖和还原糖含量最高;不同浓度的GA3和6-BA主要影响烟叶香味物质中的类胡萝卜素降解产物和新植二烯,当GA3浓度为50mg/L、6-BA浓度为40mg/L时,烟叶中胡萝卜素降解产物和新植二烯等香味物质含量较高。  相似文献   

19.
为探讨钾用量和留苗株数对玉米苗期生长发育相关指标的影响,在水培条件下,以‘粒收1号’为材料,设置不同钾浓度梯度(K1:1.35 mmol/L、K2:1.85 mmol/L、K3:2.35 mmol/L、K4:2.85 mmol/L)和不同留苗株数(D1:4株/盆、D2:8株/盆),研究玉米苗期株高、茎粗、植株鲜重、根冠比、叶面积以及叶绿素含量对钾浓度和留苗株数的响应。结果表明:施用钾肥对玉米生长有促进作用,在D1处理条件下,植株间竞争小,养分充足,玉米生长更旺盛,所测指标均显著高于D2。随着钾浓度的增加,D1处理条件下,株高、茎粗、叶面积和植株总鲜重均表现为K4最大,K1最小。D2处理条件下,玉米的株高、总绿叶面积和SPAD值表现为K2处理最大,均显著大于其他处理。茎粗、单株生物量、总绿叶面积和SPAD值呈先增加后降低的趋势,K2、K3、K4处理间无显著性差异。分析2处理在不同浓度下的根冠比显示D1处理在K1浓度下根冠比较大,D2处理在中高浓度下较大。  相似文献   

20.
NaCl胁迫对野生大豆幼苗生理及叶绿素荧光特性的影响   总被引:2,自引:0,他引:2  
为了探究NaCl胁迫对野大豆幼苗生长发育以及叶绿素荧光特性的影响,以0、0.2%、0.4%、0.6%和0.8%NaCl处理野大豆幼苗,分析不同胁迫条件下,野生大豆幼苗生理指标和光合参数等指标的变化。结果显示:野生大豆幼苗在0.2%NaCl胁迫下能保持稳定生长且Fv/Fm升高;0.4%~0.8%NaCl胁迫显著抑制幼苗的生长与光合作用;NPQ随NaCl胁迫浓度升高先下降后升高,Fv/Fm随盐浓度的升高先升高后下降;随着光照的增强,各处理组的ФPSⅡ、qP呈下降趋势,ETR呈上升趋势;0~200 μmol/(m2·s)光照强度下,0.2%NaCl胁迫处理组的ФPSⅡ高于对照。0.4%NaCl可能是其生长发育、生理及光合的临界盐浓度。低光条件下低浓度NaCl胁迫(0.2%NaCl)对植株的ФPSⅡ有促进作用,而强光条件下NaCl胁迫对野生大豆植株的损害加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号