首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
甘蓝型油菜主要脂肪酸组成的QTL定位   总被引:10,自引:3,他引:7  
应用RAPD、SSR和SRAP技术, 对甘蓝型油菜低芥酸品系APL01与高芥酸品系M083杂交组合的BC1F1群体进行检测, 获得251个分子标记, 构建了19个连锁群组成的分子标记遗传图谱; 应用WinQTLCart 2.0对油菜主要脂肪酸组成进行QTL扫描, 获得与棕榈酸含量相关的QTL 5个, 分别位于N3、N8、N10和N13连锁群, 其中效应值较大的主效QTL qPA8-1和qPA13分别可解释棕榈酸含量表型变异的11.31%和14.47%。获得与硬脂酸含量相关的QTL 3个, 分别位于N1、N8和N16连锁群, 其中效应值较大的主效QTL qST16可解释硬脂酸含量表型变异的12.22%。获得与油酸含量相关的QTL 2个, 位于N8和N13连锁群, 均为主效QTL, 其中qOL8位于N8连锁群的m11e37b~A0226Ba267区间, 可解释油酸含量表型变异的11.73%, qOL13位于N13连锁群的m18e46~m20e25a区间, 可解释表型变异的27.14%。获得与亚油酸含量相关的QTL 3个, 其中主效QTL qLI8-1位于N8连锁群, 可解释亚油酸含量表型变异的13.25%。获得与亚麻酸含量相关的QTL 3个, 效应值均较小, 属微效QTL。获得与廿碳烯酸含量相关的QTL 4个, 分别位于N8、N13和N15连锁群, 其中主效QTL qEI8-1、qEI8-2和qEI13分别可解释廿碳烯酸含量表型变异的12.20%、10.22%和11.14%。获得与芥酸含量相关的QTL 2个, 位于N8和N13连锁群, 均为主效QTL, 其中qER8位于N8连锁群的m11e37b~A0226Ba267区间, 可解释芥酸含量表型变异的16.74%; qER13位于N13连锁群的A0301Bb398~m18e46区间, 可解释芥酸含量表型变异的31.32%。在N8连锁群的分子标记m11e27b附近及N13连锁群的分子标记m18e46附近存在多个主要脂肪酸的主效QTL, 这些标记可用于油菜脂肪酸改良的分子标记辅助选择。  相似文献   

2.
蒙姜宇  傅鹰  贺亚军  钱伟 《作物学报》2019,45(9):1338-1348
以德国冬性甘蓝型油菜Express和中国半冬性甘蓝型油菜SWU07为亲本构建包含261个株系的DH群体和包含234个株系的IF2群体,检测不同年份条件下油菜籽粒油酸、亚油酸、亚麻酸含量相关的QTL。在DH群体4年环境下共检测出71个QTL,在IF2群体2年环境下共检测出4个QTL。去掉在不同年份和群体中置信区间相互重叠的QTL之后,共得到3个品质性状的51个QTL,其中有15个在2年以上环境中被检测到。这些QTL分别分布在13个连锁群上,其中与油酸含量相关的18个,分布于A01、A02、A04、A05、A07、A09、C01连锁群,揭示3.44%~13.97%的表型变异;与亚油酸相关的12个,分布于A02、A06、A09、C01、C02连锁群,揭示3.84%~19.51%的表型变异;与亚麻酸相关的21个,分布于A01、A02、A03、A04、A05、A08、A09、C01、C02、C03、C06连锁群,揭示2.86%~11.91%的表型变异。这些结果将为油菜脂肪酸品质改良提供更多遗传信息。  相似文献   

3.
鲁棉研15号纤维品质性状QTL定位研究   总被引:3,自引:3,他引:0  
 以陆地棉(Gossypium hirsutum L.)杂交种鲁棉研15号的F2群体为作图群体,利用SSR标记和JoinMap3.0软件构建遗传连锁图谱;利用复合区间作图法分别对随机组成的3个鲁棉研15号的F2:3家系亚群体进行纤维品质性状QTL定位。构建的遗传连锁图谱包含116个多态位点,25个连锁群,全长892.25 cM,覆盖棉花总基因组的20.05%,平均每个连锁群4.64个标记,标记间平均距离7.76 cM;根据已有图谱的定位结果,19个连锁群与染色体建立了联系。在3个F2:3家系亚群体中共检测到46个QTL,其中16个为纤维长度(FL)QTL、7个为纤维强度(FS)、12个为麦克隆值(FM)、6个为伸长率(FE),5个为整齐度指数(FU)。发现在Ah05、Ah08、Ah09、Dh02染色体上QTL有成簇分布的现象,并在3个亚群体中检测到一些受环境影响较小、稳定遗传的QTL。这些QTL可以在今后应用于分子标记辅助选择。  相似文献   

4.
转基因抗虫棉产量相关性状QTL的分子标记及定位   总被引:1,自引:0,他引:1  
 采用亚洲棉渐渗的纤维强度突出的陆地棉优质新品系0-153与陆地棉转基因抗虫新品系sGK9708为亲本,构建了F2及F2∶3分离群体。利用3869对SSR引物筛选亲本,得到125对多态性引物。进一步对183个F2群体单株分析得到150个多态性标记位点,其中100个标记位点连锁,构建20个连锁群,共覆盖660 cM,占棉花总基因组的14.67%,每个连锁群平均包含5个标记位点,标记间平均相距6.6 cM,其中13个连锁群确定了对应的染色体。利用F2和F2:3数据,通过复合区间作图,共检测到28个产量及相关因素的QTLs。这些控制产量性状的QTLs只存在于5个连锁群上,成簇分布。与皮棉产量性状有关的2个QTLs,均与其它多个产量相关性状的QTLs在同一个连锁区段内,增效基因遗传效应方向一致,有必要研究其在标记辅助选择中的效果。本研究没有检测到在多世代表现稳定的QTL。因此,需要培育重组自交系,进一步明确产量性状有关QTL的遗传效应。  相似文献   

5.
大豆倒伏性及其相关性状的QTL分析   总被引:20,自引:3,他引:17  
利用来自中豆29×中豆32的165个重组自交系F10进行2年田间试验, 以复合区间作图法检测与大豆倒伏及形态性状有关的QTL。结果表明, 2年分别检测到25个和19个与大豆倒伏及茎杆性状和根系性状有关的QTL, 分布于A2、C1、C2、D1a、F、G、I和L连锁群, 可解释4.4%~50.1%的表型变异。在F连锁群上, 2年均检测到倒伏主效QTL(qLD-15-1)和株高主效QTL(qPH-15-2);G连锁群和L连锁群上分别有1个主茎节数QTL和2个根重QTL在2个年份重复出现。在倒伏QTL的附近检测出株高、根重、茎叶重、茎粗、主茎节数和分枝数QTL, 表明植株地上部和地下部性状与抗倒性普遍关联;QTL定位结果与表型相关分析一致, 反映了这些形态性状表型相关的遗传特性。部分性状QTL存在共位性, 但是未在2个年份稳定表达。  相似文献   

6.
多种环境下大豆单株粒重QTL的定位与互作分析   总被引:1,自引:0,他引:1  
定位大豆单株粒重QTL、分析QTL间的上位效应及QTL与环境互作效应, 有利于大豆单株粒重遗传机理的深入研究。利用147个F2:14~F2:18 RIL群体, 5年2点多环境下以CIM和MIM方法同时定位大豆单株粒重QTL, 检测到17个控制单株粒重的QTL, 分别位于D1a、B1、B2、C2、F、G和A1连锁群上, 贡献率为6.0%~47.9%;用2种方法同时检测到3个QTL, 即qSWPP-DIa-3、qSWPP-F-1和qSWPP-D1a-5, 贡献率为6.3%~38.3%;2年以上同时检测到4个QTL, 即qSWPP-DIa-1、qSWPP-DIa-2、qSWPP-B1-1和qSWPP-G-1, 贡献率为8.1%~47.9%;利用QTLMapper分析QE互作效应和QTL间上位效应, 7种环境下的数据联合分析得到1个QE互作QTL和4对上位效应QTL, 贡献率和加性效应都较小。在分子标记辅助育种中应该同时考虑主效QTL及各微效QTL之间的互作。  相似文献   

7.
大豆脂肪酸主要组分含量QTL定位   总被引:2,自引:1,他引:1  
以中黄13×中黄20的100个BC2F2家系为作图群体,构建了一张包含131个SSR分子标记的遗传连锁图谱,图谱总长为2157.3 cM,平均遗传距离为16.5 cM,涵盖了大豆的20个连锁群。利用气相色谱技术测定BC2F2、BC2F3和BC2F4回交群体的脂肪酸主要组分含量,采用IciMapping 3.3完备区间作图法定位QTL,共检测到5种脂肪酸组分相关的QTL 26个,与棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸相关的QTL分别为5、5、7、5和4个;3个区间在不同年份被检测到与同一脂肪酸组分相关,sat_294~satt228连续3年被检测到与棕榈酸含量相关,sat_253~satt323和sat_292~satt397连续2年被检测到与油酸含量相关;4个区间被检测到与2种脂肪酸组分相关,其中sat_294~satt228与棕榈酸、油酸相关,satt308~sat_422与硬脂酸、亚油酸相关,sat_292~satt397与油酸、亚油酸相关,satt374~satt269与油酸、亚麻酸相关。  相似文献   

8.
碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测   总被引:7,自引:0,他引:7  
以粳粳交“高产106/长白9号”F2:3代200个家系为作图群体, 在0.15% Na2CO3溶液的碱性胁迫下, 进行了水稻耐碱性鉴定, 并以SSR标记构建的分子连锁图谱为基础, 对水稻幼苗前期的根数、根长和苗高及其相对碱害率进行了数量性状基因座(QTLs)的检测。结果表明, 上述性状在F3家系群中均表现为具有1~2个峰的连续分布, 认为由主效基因和微效基因共同控制的数量性状。共检测到与碱胁迫下幼苗前期根数、根长和苗高及其相对碱害率相关的QTL 26个, 分布于第1、5、6、7、8、9和11染色体上。其中, 碱胁迫下与根数相关的QTL 4个, qRN6-1和qRN11对表型变异的解释率较大, 分别为29.91%和13.42%;与根数相对碱害率相关的QTL 5个, qRRN11-2对表型变异的解释率较大, 为23.86%;与根长相关的QTL 6个, qRRL11-2对表型变异的解释率较大, 为21.06%;与根长相对碱害率相关的QTL 2个, 但对表型变异的解释率均较低;与苗高相关的QTL 5个, qSH1和qSH11-2对表型变异的解释率较大, 分别为15.81%和16.53%;与苗高相对碱害率相关的QTL 4个, qRSH5和qRSH6-2对表型变异的解释率分别为29.89%和34.63%。而这些解释率较大的QTL所处的标记区间距离, 除qRN6-1相对较小(19.0 cM)外, 其余QTL的标记区间距离均大于26.3 cM, 需作进一步的精细定位。在所检测到的QTL中, 13个QTL的增效等位基因均来自耐碱亲本长白9号, 而其余QTL的增效等位基因来自敏碱亲本高产106;基因的主要作用方式为超显性或部分显性。  相似文献   

9.
选用感丝裂病的玉米自交系R08与抗丝裂病的自交系Es40组配F2群体共348个单株,构建了包含115个SSR标记的分子遗传连锁图谱,覆盖玉米基因组2 178.6 cM,平均图距为18.9 cM。采用复合区间作图法,对F2:4家系丝裂病数据进行抗性QTL分析,共检测到12个QTL,分别位于第1、2、4、5和7染色体,贡献率为4.22%~37.95%。其中在第1、3染色体上检测到主效QTL,贡献率均大于30%,基因作用方式均为显性,其余10个QTL的作用方式多为加性或部分显性。  相似文献   

10.
菌核病是一类非专一性的植物真菌病原菌,寄主范围广泛,严重危害农作物的生产。对高世代重组自交系群体(RIL)及F2群体终花期茎秆进行菌核病抗性接种鉴定,根据构建的近红外模型对接种鉴定的茎秆木质素含量、单体组分比例进行测定,并进行相关性分析和QTL定位。结果表明在2013年和2014年RIL群体茎秆菌斑大小与木质素含量呈极显著负相关,相关系数分别为–0.348和–0.286,与单体G/S呈显著正相关,相关系数分别为0.198和0.167。2014年F2群体菌斑大小与木质素含量呈极显著负相关,相关系数为–0.306,与单体G/S相关性为0.142。F2:3家系抗(感)植株茎部切片间苯三酚染色观察表明抗性较强的材料木质素含量高于抗性较弱的材料。根据已构建的重组自交系高密度SNP遗传图谱,利用复合区间作图法对上述性状进行QTL分析,共检测到18个QTL,其中9个菌核病抗性相关QTL分布于A05、A06、C04和C06染色体,单个QTL可解释的表型变异为2.38%~12.05%;3个木质素含量QTL分别位于A04、A05和C01染色体,单个QTL可解释表型变异的2.03%~13.75%。6个木质素单体G/S QTL分布于A08、C03和C07染色体,单个QTL可解释表型变异的2.06%~8.66%。本文研究结果为油菜菌核病抗性育种提供了新的思路和理论基础。  相似文献   

11.
The potential of near-infrared reflectance spectroscopy (NIRS) for the simultaneous analysis of seed weight, total oil content and its fatty acid composition in intact single seeds of rapeseed was studied. A calibration set of 530 single seeds was analysed by both NIRS and gas-liquid chromatography (GLC) and calibration equations for the major fatty acids were developed. External validation with a set of 75 seeds demonstrated a close relationship between NIRS and GLC data for oleic (r = 0.92) and erucic acid (r = 0.94), but not for linoleic (r = 0.75) and linolenic acid (r = 0.73). Calibration equations for seed weight and oil content were developed from a calibration set of 125 seeds. A gravimetric determination was used as reference method for oil content. External validation revealed a coefficient of correlation between NIRS and reference methods of 0.92 for both traits. The performance of the calibration equations for oleic and erucic acid was further studied by analysing two segregating F2 seed populations not represented in the calibration set. The results demonstrated that a reliable selection for both fatty acids in segregating populations can be made by using NIRS. We concluded that a reliable estimation of seed weight, oil content, oleic acid and erucic acid content in intact, single seeds of rapeseed is possible by using NIRS technique. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
官梅  李栒  官春云 《作物学报》2010,36(6):968-978
采用基因芯片技术对甘蓝型油菜高油酸(71.71%)和低油酸(55.6%)材料进行分析,探索油酸的差异表达基因。结果检测到差异表达基因562个,其中上调表达基因194个,下调表达基因368个。以基因芯片中油菜上调基因NM_100489和下调基因NM_130183为材料,用实时荧光定量方法验证基因芯片的结果,二者完全相符。根据基因芯片的实验结果,采用Go注释系统和数据库查询对562个差异表达基因进行功能注释表明,主要为各种酶类、结合功能、转录调控、代谢等,还有的功能未知或与糖代谢及脂肪酸合成相关,其中丙酮酸激酶、果糖二磷酸、酰基传递/酰基ACP硫脂酶、作用于酯键的水解酶、Δ9硬脂酰-乙酰载体蛋白去饱和酶(ADS1)、Δ9酰基-油脂减饱和酶2(ADS2)、ω-3脂肪酸减饱和酶(fad3)等被鉴定为差异表达基因。  相似文献   

13.
The objective of this work was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid method to estimate the fatty acid composition of the oil in intact-seed samples of rapeseed. A total of 549 samples (3 g intact seed) from selected mutant and breeding lines were scanned by NIRS, and 220 of them were selected and scanned again by using two different adapters, which reduced the sample size to 300 and 60 mg, respectively. Selected samples were analysed by gas liquid chromatography and calibration equations for individual fatty acids were developed. Calibrations for oleic, linoleic, linolenic, and erucic acid were highly accurate, with values of r2 in cross validation from 0.95 to 0.98 (samples of 3 g), from 0.93 to 0.97 (300 mg), and from 0.84 to 0.96 (60 mg). Calibrations for palmitic and stearic acid were less accurate, with values of r2 in cross validation always lower than 0.8, probably because of the narrow range available for these fatty acids. The accuracy of the calibration equations for eicosenoic acid was very low (r2 = 0.69 in 3 g samples), although improved equations were developed (r2 from 0.78 to 0.91) when the relationship between erucic and eicosenoic acid was taken into account. We conclude that NIRS is a powerful technique to estimate the fatty acid composition of the oil in rapeseed, provided that samples covering a wide range of fatty acid levels are available, with the advantage that such estimation is possible with few additional costs when NIRS is used for the determination of other seed quality traits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
G. Ishikawa    H. Hasegawa    Y. Takagi  T. Tanisaka 《Plant Breeding》2001,120(5):417-423
Sixty soybean cultivars from Japan and the USA formed five maturity groups (IIb‐Vc) based on number of days from sowing to flowering and number of days from flowering to maturity. Highly significant intervarietal differences in fatty acid composition were found in all the maturity groups, especially in IIc. Stearic and oleic acids showed a larger variation than palmitic, linoleic and linolenic acids. Principal component analysis suggested that the total variation of fatty acid composition depended mainly on the desaturation levels from oleic to linoleic acid. Three cultivars exhibiting unique fatty acid composition, together with a standard cultivar, were examined for the contents of the five fatty acids, as well as crude oil at eight seed‐filling stages. For all four cultivars, it was found that crude oil content increased sigmoidally with advancing filling stage, and that the accumulation patterns of palmitic, linoleic and linolenic acids were similar to that of crude oil. However, the accumulation pattern of stearic acid was different from that of crude oil and divided the cultivars into two distinct groups. For oleic acid, only the cultivar ‘Aburamame’ showed a rapid increase in proportion with advancing filling stage, although not differing markedly in accumulated content from the other cultivars. These results indicate that analysing the accumulation patterns of fatty acids could explain the latent genetic variation in fatty acid composition of soybean seeds.  相似文献   

15.
Soya bean [ Glycine max (L.) Merr.] genotypes with modified unsaturated fatty acid profiles in seed oil have been developed. Higher oleic (18:1) and lower linolenic (18:3) acids are desirable for increased use of soya bean oil in food and industrial applications. The environment affects levels of unsaturated fatty acids in soya bean and it is important that desired components of seed oil are produced across a range of growing conditions. Our objective was to determine whether irrigation affects fatty acid levels in soya bean with altered fatty acid profiles. Seven modified oil genotypes which included elevated oleic acids, and/or reduced linolenic acid, along with two common soya bean varieties were evaluated with and without irrigation (rain fed) in four environments in each of 2 years. Irrigation generally had no significant influence on unsaturated fatty acid accumulation in seed oil in soya bean genotypes with altered fatty acid profiles. However, irrigation tended to show desirable effects on 18:1 and 18:3 contents in the genotypes studied. Oleic acid tended to be higher in eight of the nine genotypes and linolenic acid was lower in six of the nine genotypes under irrigation vs. rain fed treatments.  相似文献   

16.
A greenhouse study was conducted to determine the effect of nitrogen supply (30, 100 or 170 ppm N) and raceme position on the fatty acid composition of oil extracted from erucic acid-free summer rape seed ( Brassica napus cv. Callypso ). The seven fatty acids analyzed for include palmitic, palmitolcic, stearic, oleic, linoleic, linolemc, and eicosenoic acids; of which oleic (59.54–64.84 %) and palmitoleic (0.36–0.4 %) acids were the highest and lowest levels respectively. Generally, N nutrition influenced fatty acid pattern only to a little extent. Palmitic, palmitoleic and stearic acid levels were increased by 170 ppm N, depending on raceme position, but oleic and linolenic acids were unaffected. Similarly, 170 ppm N produced the highest fatty acid levels in seeds on the lower portions of racemes, with the exception of oleic acid. This was also true in the case of the upper portions of racemes, except that 30 ppm N produced the highest levels of oleic and linoleic acids in rape seeds. Under the optimum N supply level (i.e. 100 ppm N), position of raceme on the rape plant did not greatly influence the levels of different fatty acids in lipids.  相似文献   

17.
Soybean [Glycine max (L.) Merr.] is the principal oilseed crop in the world. Soybean oil has various industrial and food applications. The quality of soybean oil is determined by its fatty acid composition. Palmitic, stearic, oleic, linoleic and linolenic are the predominant fatty acids in soybean oil. The objective of this study was to determine the associations of simple sequence repeat (SSR) molecular markers with minor differences in fatty acids in soybean oil thereby detecting modifier quantitative trait loci (QTL) which could further improve soybean oil quality. To achieve this objective, 101 F6-derived recombinant inbred lines (RIL) from a population whose parents did not contain major mutant fatty acid alleles were developed from a cross of N87-984-16 × TN93-99. Fatty acids were determined by gas chromatography. Heritability estimates on an entry mean basis for fatty acids ranged from 65.8 to 77.3% for palmitic and linoleic acids, respectively. Molecular marker Satt537 located on molecular linkage group (MLG) D1b was associated with palmitic acid and Satt168 and Satt249 located on MLG B2 and J, respectively were associated with stearic acid. Molecular markers Satt185 or Satt268 (which are within 0.6 cM of each other) located on MLG E were consistently associated with oleic and linoleic acid, and Satt263 and Satt235 located on MLG E and G, respectively were associated with linolenic acid. The lack of markers associated with multiple fatty acids suggests the possibility of independently changing fatty acid levels to achieve a desirable composition, except for regions common to all saturated fatty acids. Phenotypic variation explained by the fatty acids modifier QTL ranged from 10 to 22.5%. These modifier QTL may be useful in making minor improvements to further enhance the quality of soybean oil.  相似文献   

18.
陈影  张晟瑞  王岚  王连铮  李斌  孙君明 《作物学报》2019,45(7):1038-1049
以58份不同类型(野生、半野生和栽培)大豆种质为材料,利用32对SSR标记分析大豆种质间的遗传多样性和进化关系,采用NIRS和GC方法分别分析大豆脂肪含量和脂肪酸组分含量,研究不同类型大豆种质油脂组成特点及其与演化的关系。结果显示,野生大豆和栽培大豆的油脂组成存在显著差异,栽培大豆脂肪含量(平均20.8%)显著高于野生大豆(平均10.49%),油酸含量(平均28.5%)显著高于野生大豆(平均14.37%),而亚麻酸含量却显著低于野生大豆;由相关性分析可知,大豆种子中的脂肪与油酸含量显著正相关(r=0.85**),而与其他脂肪酸组分极显著负相关;油酸与所有其他脂肪酸组分均负相关,特别是与亚麻酸和亚油酸呈极显著负相关(r=?0.90**和?0.89**);油脂组成和SSR标记对不同类型大豆种质的聚类和主成分分析表明,2种分类结果基本一致,可分为栽培和野生2个亚群,半野生大豆则分布于2个亚群中。由此可见,大豆油脂组成与大豆种质的驯化程度有关,脂肪含量和亚麻酸含量可以作为大豆演化分类的参考指标。  相似文献   

19.
甘蓝型油菜种子中几种主要脂肪酸含量的遗传   总被引:23,自引:0,他引:23  
通过对甘蓝型油菜杂交组合(华油8号×Altex)正反交 F_1、F_2、回交一代以及相应的杂交亲本种子中几种主要脂肪酸含量的气相色谱测定,研究了芥酸、廿碳烯酸、油酸、亚油酸和亚麻酸含量的遗传以及这几种脂肪酸之间的相互关系。研究结果表明:种子中的芥酸、廿碳烯酸和油酸含量都是由胚基因型决定的,这三种脂肪酸含量受到一个共同  相似文献   

20.
The development of rapeseed cultivars (Brassica napus L.) with high oleic acid and low linolenic acid is highly desirable for food and industrial applications. In this study, the Korean rapeseed cultivar Tamla was used for ethyl methanesulfonate (EMS)-induced mutagenesis and seed oils were screened up to generation M7 for high oleate mutants. Two mutant populations (M7) with an average of approximately 76% oleic acid content were isolated. Yield components between two mutant populations and untreated Tamla plants were not substantially different, although the mutants in the vegetative stage were slightly smaller in size than Tamla. Genomic analyses of six fatty acid desaturase (four FAD2 and two FAD6) genes revealed that the elevated oleic acid content in the mutants is the result of single gene mutations. Changes in DNA sequence were observed in two genes out of six fatty acid desaturase (four FAD2 and two FAD6). FAD2-2 exhibited a 2-bp deletion in the upstream region of the gene in the two mutants, resulting in a severely truncated polypeptide (57 aa instead of 469 aa), while six point mutations in the other gene did not result in changes in the amino acid sequence. Based on these results, FAD2-2, an endoplasmic reticulum (ER) oleic acid desaturase, is affected in the mutants, resulting in a ~ 7% increase in oleic acid content in comparison to untreated Tamla plants. The induced mutants could be utilized for the development of high oleic oil rapeseed varieties and for regulatory studies of lipid metabolism in seed oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号