首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为研究不同施肥处理对猕猴桃采后软化的影响,以“东红”猕猴桃为材料,对不同施肥处理的猕猴桃果实在生理成熟期采摘,于室温贮藏,定期取样分析果实硬度、软化率、淀粉质量分数、原果胶质量分数、可溶性果胶质量分数、纤维素质量分数及多聚半乳糖醛酸酶(Polygalacturonase,PG)、果胶甲酯酶 (Pectin methylesterase,PME)、纤维素酶(Cellulase,Cx)、β-半乳糖苷酶(β-D-galaetosidase,β-Gal)、淀粉酶活性的变化。结果表明,合理的施肥处理可延缓果实硬度的下降,减缓果实中淀粉、原果胶、纤维素质量分数的下降,延缓可溶性果胶质量分数及PG、PME、Cx、β-Gal、淀粉酶活性的升高,并推迟峰值出现的时间。不同施肥处理组的果实在贮藏期间其硬度与可溶性果胶质量分数、PG、Cx、β-Gal、淀粉酶活性呈极显著负相关(P<0.01),与原果胶、纤维素、淀粉质量分数呈极显著正相关(P<0.01)。在猕猴桃生产中采用复合化肥+有机肥+生物菌肥相结合的施肥方式可显著延缓贮藏期间果实的软化,延长果实的贮藏期。  相似文献   

2.
为了从细胞壁代谢角度研究1-甲基环丙烯(1-MCP)调控采后番石榴果实软化的机制,用1 μL/L 1-MCP处理‘红心’番石榴果实试材。通过测定果实的硬度、细胞壁代谢相关物质及相关酶活性的变化,研究1-MCP处理对常温(25±1℃)贮藏下番石榴果实软化的抑制作用。结果表明,1 μL/L 1-MCP处理使采后番石榴果实的硬度比对照组果实高0.51倍,并有效抑制多聚半乳糖醛酸酶、果胶甲酯酶、纤维素酶、β-葡萄糖苷酶、α-淀粉酶和β-淀粉酶的活性,减缓可溶性果胶、葡萄糖含量的增加,延缓原果胶、纤维素和淀粉含量在采后贮藏期间的下降。因此,1 μL/L 1-MCP处理能有效延缓采后‘红心’番石榴的软化进程,延长其采后贮运保鲜期。  相似文献   

3.
采后嘎拉苹果果实细胞壁代谢及关键酶基因表达特性研究   总被引:2,自引:0,他引:2  
以嘎拉苹果为试材,研究其果实细胞壁代谢及关键酶基因表达特性及受1-MCP、乙烯利和低温的影响效应。结果表明,常温下,嘎拉果实硬度变化与WSP显著正相关,与CSP和半纤维素显著负相关,与ISP的关系不大;1-MCP和低温处理显著抑制了WSP含量上升,减缓了CSP和半纤维素降解。嘎拉果实细胞壁酶中,β-Gal活性最高、增加最快,其基因表达亦迅速增加,α-L-Af活性和基因表达虽增加速率低于β-Gal,但二者变化规律相似,均显著受到1-MCP和0℃低温的抑制;PG和PME活性和基因表达量亦呈增加趋势,但未能完全被1-MCP处理和0℃低温所抑制;相关性分析表明,其细胞壁酶活性变化均与硬度呈显著负相关性,并显著受到1-MCP和低温的影响。但是,乙烯利处理虽对嘎拉果实软化有一定的促进作用,但效果不显著。  相似文献   

4.
1-MCP对采后嘎拉苹果果实淀粉及细胞壁成分变化的影响   总被引:6,自引:0,他引:6  
以嘎拉苹果为试材,研究了常温(20±1)℃条件下1-MCP对嘎拉果实后熟软化过程中淀粉和细胞壁成分变化的影响。结果表明,常温下,1-MCP可极显著地抑制嘎拉苹果果实的呼吸强度,推迟果实呼吸跃变期,而且很好地保持了果实原有硬度;对果实相关成分的分析表明,1-MCP显著地抑制了淀粉转化、降低细胞壁物质的降解速率,延缓了不溶性果胶向水溶性果胶转化,使其极显著地低于对照。相关性分析证明,嘎拉果实采后的硬度与淀粉、共价结合果胶(CSP)、纤维素和半纤维素变化呈显著正相关,与水溶性果胶(WSP)呈显著负相关,而与离子结合果胶(ISP)相关性不大。  相似文献   

5.
果实成熟衰老过程中软化机理研究进展   总被引:1,自引:0,他引:1  
介绍了果实成熟衰老过程中呼吸作用、乙烯释放量、细胞壁超微结构和组分变化,以及与果实软化有关的细胞壁酶的活性变化。多数果实软化是由于细胞壁的破坏,细胞中的果胶溶液化,纤维素解体等。与果实软化相关较为密切的4种细胞壁酶:多聚半乳糖醛酸酶(PG)、β-半乳糖苷酶(β-Gal)、纤维素酶(Cx)和果胶甲酯酶(PME)。为深入研究果实软化机理提供参考。  相似文献   

6.
以“安哥诺”李为试材,分别进行1-MCP+GA3、1-MCP+6-BA处理,0℃冷藏75 d,通过测定硬度和4种软化相关酶活性,研究不同处理对“安哥诺”李果实软化的影响。结果表明,1-MCP+GA3和1-MCP+6-BA处理均有效延缓了冷藏期间“安哥诺”李果实硬度的下降,并有效抑制了软化相关酶活性,从而延缓果实软化,1-MCP+GA3处理保持果实硬度效果优于1-MCP+6-BA处理。  相似文献   

7.
1-MCP对龙园秋李冷藏期间品质和生理特性的影响   总被引:2,自引:1,他引:1  
以龙园秋李果实为试材,在冷藏条件下,研究了不同浓度的1-MCP处理对果实多酚氧化酶(PPO)和过氧化物酶(POD)活性、硬度、可溶性固形物含量、可滴定酸含量以及呼吸强度的影响.结果表明,1-MCP处理降低了果实PPO和POD的活性,提高了果实的硬度,延缓了可滴定酸含量的下降,显著地抑制了果实的呼吸强度,但对可溶性固形物含量无影响.1-MCP处理明显地延长了果实的贮藏时间.  相似文献   

8.
针对黄金梨长期贮藏期间容易发生果肉软化和果心褐变的问题,研究1-MCP(1.0μL/L)、CO2高渗型PE薄膜(15μm厚)包装(MAP)和乙烯吸收剂(EA)单一或复合处理对0℃下贮藏200 d期间黄金梨品质的影响。结果表明,1-MCP+MAP+EA三者复合处理的保鲜效果最好,可显著延缓果实硬度的下降,抑制可溶性固形物含量、果皮细胞膜透性和果心多酚氧化酶活性的升高,保持较高的可滴定酸含量,减少果心褐变的发生。表明采后黄金梨冷藏之前采用1-MCP+MAP+EA三者复合处理的方式,能达到改善黄金梨冷藏品质的效果。  相似文献   

9.
乙烯吸收剂对丰水梨果实软化和细胞壁代谢的影响   总被引:4,自引:2,他引:2  
为了探讨乙烯吸收剂通过调控环境乙烯,进而抑制梨果实软化的作用,以丰水梨为研究材料,用PE18 μm保鲜袋包装,研究了乙烯吸收剂在0℃条件下,对果实冷藏期间果实硬度、乙烯释放以及细胞壁物质代谢的影响。结果表明,丰水梨果实乙烯释放高峰过后,伴随着果实软化,而果实乙烯释放与袋内环境乙烯浓度变化呈极显著正相关关系,果实硬度与水溶性果胶含量呈极显著负相关关系。乙烯吸收剂通过对环境乙烯的调控作用,抑制了果实乙烯释放和PME、PG活性的升高,使果胶物质降解速度受限,从而有效保持了果实硬度,延缓了果实软化进程。  相似文献   

10.
以"黄冠"梨为试材,研究自发气调包装(MAP)结合1-MCP处理(MAP+1-MCP)对"黄冠"梨在常温包装3 d后货架7 d时品质的影响。结果表明,MAP结合1-MCP处理较未包装(CK)和MAP处理可显著抑制"黄冠"梨果实乙烯释放与果心褐变,保持果实较好的硬度、色泽、可滴定酸及VC含量,但对可溶性固形物含量无显著影响。上述研究表明,MAP结合1-MCP处理能够延缓常温下"黄冠"梨果实的衰老,保持良好的果实品质。  相似文献   

11.
1-MCP结合硅窗MAP对新疆毛杏贮藏品质的影响   总被引:3,自引:0,他引:3  
本文研究了1μL/L 1-甲基环丙烯(1-MCP)、硅窗自发气调包装(MAP)、1-MCP+MAP协同处理对新疆毛杏低温冷藏期间贮藏品质的影响。结果表明,硅窗MAP包装贮藏9 d后,CO2含量维持在3.14%~3.61%之间,O2含量维持在7.88%~9.00%之间,说明硅窗具有较好的气体通过率;1-MCP和MAP单独处理可以显著抑制新疆毛杏的呼吸速率,降低果实乙烯释放量,延缓果实TA、硬度下降速率,维持果实贮藏期感官品质;1-MCP+MAP处理具有协同作用,可显著延缓果实硬度、TA、VC含量和果实色调角值H的下降速率,感官品质评价最好。1-MCP和MAP处理对新疆毛杏均有明显的保鲜效果,1-MCP+MAP处理保鲜效果优于单独处理。  相似文献   

12.
研究1-MCP和乙烯利处理对5种秋子梨(20±1)℃常温贮藏期间主要生理及软化相关指标的影响,探讨1-MCP和乙烯利对秋子梨品种软化机理的调控,为控制秋子梨果实后熟软化进程提供理论依据.以南果梨、京白梨、花盖梨、尖把梨和安梨5种秋子梨为试材,分别用浓度为0.5μL/L的1-MCP密闭熏蒸24 h和1.0 g/kg的乙烯利溶液浸泡5 min,比较常温((20±1)℃)贮藏期间果实硬度、可溶性固形物(SSC)、可滴定酸(TA)、维生素C(Vc)、呼吸强度、乙烯释放量等生理品质指标以及水溶性果胶、纤维素、淀粉含量、β-半乳糖苷酶(β-Gal)、淀粉酶(AM)、多聚半乳糖醛酸酶(PG)、纤维素酶(CL)等软化相关指标变化.与对照(CK)组相比,1-MCP处理可明显延缓5种秋子梨果实硬度、水溶性果胶(WSP)、纤维素、呼吸强度、乙烯释放量和淀粉含量的减少,降低了PG、β-Gal、CL、AM酶活性,而乙烯利处理组与对照组差异较小.1-MCP处理可通过抑制细胞壁相关降解酶活性和减少乙烯释放量来减轻细胞壁物质的降解,从而有效延缓秋子梨果实软化进程,而乙烯利对果实贮藏过程中软化和细胞壁降解生理变化无明显影响.  相似文献   

13.
对“新红星”苹果进行1-甲基环丙烯(1-MCP)、自发气调包装(MAP)与乙烯吸收剂(EA)处理,然后于0 ℃下冷藏,研究不同处理在冷藏270 d后20 ℃货架期果实品质的差异。结果表明:贮后货架期间,“新红星”苹果果实硬度和可滴定酸含量下降,可溶性固形物含量无明显变化,虎皮病增多;MAP包装与1-MCP+EA+MAP能较好维持冷藏期间“新红星”苹果果实硬度,同时1-MCP+EA明显降低了冷藏期间虎皮病病情指数、显著降低了果实乙烯释放量和呼吸速率,并且抑制果皮α-法尼烯及共轭三烯的生成。综合分析认为,1-MCP+EA+MAP处理能较好维持"新红星"苹果冷藏和货架期间的品质,并能显著控制果实虎皮病的发生。  相似文献   

14.
常温货架期间油桃果实不同部位对1-MCP的响应   总被引:1,自引:0,他引:1  
采用1-MCP对油桃进行处理,于果顶和赤道两个部位取样,研究其对1-MCP的响应及对常温(25℃)货架品质的影响。结果表明,1-MCP处理可有效抑制油桃果实的软化,特别是延缓果顶部位的软化,降低其呼吸强度、VC含量、纤维素酶、多聚半乳糖醛酸酶活性,提高果实还原糖和可滴定酸含量,但对可溶性固形物含量、色差、果胶含量、果胶甲酯酶活性无显著影响。  相似文献   

15.
1-MCP结合低温贮藏对杏果实采后软化及相关酶活的影响   总被引:3,自引:0,他引:3  
罗岩  李蓓 《保鲜与加工》2018,18(3):43-48
以新疆库车小白杏为试材,采用浓度为1μL/L的1-MCP常温密闭熏蒸处理24 h,以蒸馏水熏蒸作为空白对照,然后置于4℃冷库中贮藏,定期测定各指标,研究1-MCP处理对低温贮藏过程中杏果实软化及相关酶活性的影响。结果表明:1-MCP处理能显著延缓杏果实硬度的下降,抑制小白杏果实呼吸强度和乙烯释放量的上升及果实软化相关酶PG、PE、Cx、β-glu、β-Gal、α-Afa的活性,延长杏果实的贮藏期,为新疆小白杏果实贮藏提供了理论依据。  相似文献   

16.
辣椒果实成熟过程中硬度及相关生理生化指标的变化   总被引:4,自引:0,他引:4  
选用2个不同硬度的辣椒品系,在果实成熟的不同时期测定其果肉硬度变化,并测定了与硬度相关的原果胶、果胶和纤维素的含量以及促进细胞壁物质分解的PME,PG,纤维素酶和β_半乳糖苷酶等水解酶的活性。结果表明:果实硬度在转色期最大,随着果实成熟,可溶性果胶含量增加,纤维素含量从转色期开始基本呈下降趋势,从幼果期到转色期PME酶的活性呈上升趋势,529品系酶活性在转色期达到最大,585品系在绿熟期酶活性达到最大值。2个品系的PG酶活性不断上升并在红熟期达到最大值。纤维素酶的活性也呈上升趋势并在转色期达到最大值。2个品系的半乳糖苷酶活性在红熟期达到最大值。辣椒果实成熟软化过程中,其硬度的变化与果胶、纤维素等物质的变化有显著相关性,而这些物质的变化又与促进这些物质水解的细胞壁水解酶活性的变化相一致。在果实成熟的不同时期,这些硬度的相关生理生化指标可以反映出果实的硬度特点,在耐贮运辣椒育种过程中有一定参考价值。  相似文献   

17.
以秦光油桃为试材,研究了1-MCP处理对外源乙烯诱导果实软化的影响.结果表明,1-MCP处理可抑制外源乙烯诱导果实硬度的下降,将乙烯诱导果实的淀粉、纤维素和果胶类物质的降解延迟2天,对引起这些物质降解的相关酶类如淀粉酶、纤维素酶和多聚半乳糖醛酸酶(PG)等酶活性高峰的到来推迟2天,同时降低了多聚半乳糖醛酸酶(PG)活性高峰值.  相似文献   

18.
研究经1-MCP与MAP处理在半地下通风库贮藏6个月后酥梨果实货架期品质的变化.结果表明,与对照相比,1-MCP处理及PE微孔保鲜膜MAP处理均能明显降低贮后货架期酥梨果实的呼吸速率和乙烯释放量,很好地保持果实的硬度,延缓可溶性固形物和可滴定酸含量的下降,抑制乙醇的产生,延缓衰老,降低黑心指数及腐烂率,较好地保持果实的...  相似文献   

19.
1-MCP对蟠桃采后生理效应的影响   总被引:2,自引:0,他引:2  
以蟠桃(Prunus perisica L.)为试材,研究了果实采后1-甲基环丙烯(1-MCP)处理对果实营养成分、呼吸强度、果胶酶(Pectase)、多酚氧化酶(PPO)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及果实硬度的影响。结果表明,1-MCP处理能够延缓果实酸度的降低,增加维生素C的含量,对可溶性固形物的变化没有影响;降低呼吸强度,抑制呼吸跃变的发生;抑制果胶酶的活性,延缓果实硬度的下降;处理前期对过氧化物酶的活性有抑制作用。贮藏后期使多酚氧化酶活性增加。0.25μl/L1-MCP处理使过氧化氢酶活性增加。  相似文献   

20.
研究了富士苹果在减压贮藏过程中环境中的乙烯含量、多聚半乳糖醛酸酶(PG)活性、β-半乳糖苷酶(β-Gal)活性、果胶质含量与果实硬度的相关性。结果表明,苹果在减压贮藏条件下,贮藏环境中的乙烯含量、 PG活性、β-Gal活性值及最高值均较常压条件下的低,随着贮藏时间的延长,环境中的乙烯含量、PG活性、β-Gal活性增大,引起原果胶水解成水溶性果胶,细胞壁松弛,果实硬度下降,整个贮藏期果实硬度下降了21.7%,常压贮藏条件下硬度下降了35.9%。因此,可判断减压贮藏通过抑制PG活性及β-Gal活性,从而延缓了原果胶的水解速度,抑制了软化速率,延长果实的保质期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号