首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soluble nitrogen (N) components in sugar beet seriously impair sugar recovery. The only N component determined routinely in the sugar factory is amino N (the sum of amino acids in the beet), which is assumed to reflect all the other N components. Amino N is affected by N supply and variety, but only little is known about the other N components such as total soluble N, betaine and nitrate. This study aimed at investigating the effect of N supply on the N composition of sugar beet varieties with special emphasis on N supply by variety interactions. In 2001 and 2002, field trials with four varieties and four N treatments were carried out at six sites in Germany. Storage root yield and the concentrations of sucrose, sodium, amino N, betaine, nitrate and total soluble N in the beet were determined. With increasing N supply, the concentration of amino N increased considerably and that of nitrate slightly, whereas that of betaine remained rather constant. Thus, the N composition of sugar beet changed with increasing N supply and the percentage of amino N of total soluble N increased. Although amino N has the closest correlation with total soluble N, for quality assessment it may overestimate the effect of N supply on other N components. Varieties clearly differed in root yield and quality as well as in all N components. The variety with the lowest amino N had the highest betaine concentration. However, as related to the concentration of total soluble N in the beet, for all varieties amino N as well as betaine showed the same response pattern. This indicates that the N composition of sugar beet is determined by the level of total soluble N, irrespective of variety or N supply. All varieties required the same N supply for obtaining maximum yield or quality. N supply did not affect the ranking of the varieties for all parameters studied, consequently it need not be considered for variety choice.  相似文献   

2.
The success of plant breeding programs depends on the ability to provide farmers with genotypes with guaranteed superior performance in terms of yield across a range of environmental conditions. We evaluated 49 sugar beet genotypes in four different geographical locations in 2 years aiming to identify stable genotypes with respect to root, sugar and white sugar yields, and to determine discriminating ability of environments for genotype selection and introduce representative environments for yield comparison trials. Combinations of year and location were considered as environment. Statistical analyses including additive main effects and multiplicative interactions (AMMI), genotype main effects and genotype?×?environment interaction effects (GGE) models and AMMI stability value (ASV) were used to dissect genotype by environment interactions (GEI). Based on raw data, root, sugar and white sugar yields varied from 0.95 to 104.86, 0.15 to 20.81, and 0.09 to 18.45 t/ha across environments, respectively. Based on F-Gollob validation test, three interaction principal components (IPC) were significant for each trait in the AMMI model whereas according to F ratio (FR) test two significant IPCs were identified for root yield and sugar yield and three for white sugar yield. For model diagnosis, the actual root mean square predictive differences (RMS PD) were estimated based upon 1000 validations and the AMMI-1 model with the smallest RMS PD was identified as the most accurate model with highest predictive accuracy for the three traits. In the GGE biplot model, the first two IPCs accounted for 60.52, 62.9 and 64.69% of the GEI variation for root yield, sugar yield and white sugar yield, respectively. According to the AMMI-1 model, two mega-environments were delineated for root yield and three for sugar yield and white sugar yield. The mega-environments identified had an evident ecological gradient from long growing season to intermediate or short growing season. Environment-focused scaling GGE biplots indicated that two locations (Ekbatan and Zarghan) were the most representative testing environments with discriminating ability for the three traits tested. Environmentally stable genotypes (i.e. G21, G28 and G29) shared common parental lines in their pedigree having resistance to some sugar beet diseases (i.e. rhizomania and cyst nematodes). The results of the AMMI model were partly in accord with the results of GGE biplot analysis with respect to mega-environment delineation and winner genotypes. The outcome of this study may assist breeders to save time and costs to identify representative and discriminating environments for root and sugar yield test trials and creates a corner stone for an accelerated genotype selection to be used in sweet-based programs.  相似文献   

3.
Depending on genotype, sugar beet can differ considerably in yield and quality characteristics. These are additionally modified by environmental conditions with drought stress recently gaining in importance, restricting growth and altering the chemical composition of the beet. The occurrence and development of these genotypic differences during the vegetation period and their possible interaction with environmental conditions were investigated. In 2002 and 2003, four sugar beet genotypes differing in yield and quality and putative different with regard to drought tolerance were tested in field trials, partly under irrigated conditions, in a total of 10 environments with consecutive harvests starting in early summer. In 2 years of stress and non-stress conditions they exhibited significant differences for taproot and leaf dry matter and the concentration of sucrose, K, Na and α-amino nitrogen in the taproot. These differences existed already in mid-June and virtually did not change any more from this time on. Accordingly, interactions between genotype and harvest date did not occur. For sugar beet, genotype by environment interactions generally do not exist. Water supply, as an important single determinant of the effect of the environment, was studied separately analysing data from selected locations. Under drought conditions, withholding irrigation reduced leaf and taproot growth and root-to-leaf ratio, decreased the percentage of sucrose in dry matter and resulted in an accumulation of α-amino N. Interactions between genotype and water supply did not occur for any of the parameters under study. A genotype-specific high α-amino N content, which might be of advantage for osmoregulation, did not improve the adaptation to drought. Differences in leaf maintenance or taproot-to-leaf ratio during drought also did not affect yield response. Due to the lack of interaction between genotype and harvest date as well as between genotype and irrigation it is concluded that harvest date or climatic factors of the growing region do not have to be taken into consideration when choosing a variety.  相似文献   

4.
To improve the storability of sugar beets, this study aimed at determining reasons for genotypic variability in sugar losses and invert sugar accumulation during storage, and at identifying indirect criteria to select for varieties with low storage losses prior to storage. In 2011 and 2012, 18 genotypes, and in 2012 and 2013, six genotypes cultivated at two locations were stored for 8 and 12 weeks at 8°C under controlled conditions. The same 18 genotypes were grown under stress conditions in Spain in 2012/2013. Sugar losses were closely correlated with the invert sugar accumulation after storage. Genotypic differences in storage losses were primarily caused by differences in the level of infestation with microorganisms. The invert sugar accumulation was lower for genotypes with high marc concentration before storage, pointing to a non‐specific resistance. Additionally, the sugar concentration in dry matter before storage, and the invert sugar concentration after cultivation under stress conditions correlated with the invert sugar concentration after storage. These parameters are therefore suggested as criteria to select for improved storability of sugar beet genotypes.  相似文献   

5.
The cultivation of autumn sown sugar beet (winter beet) is supposed to result in a marked yield increase compared with spring sown sugar beet. Although the importance of the growth stage reached before winter for the survival of autumn sown sugar beet has already been shown, it is not clear to which extent osmotic and potentially frost protecting compounds may contribute to winter hardiness. The study thus aimed to analyse the acclimatization process of sugar beet to low temperatures and to identify compounds which are important for survival of frost. Field trials with autumn sown sugar beet were conducted at eleven environments in Germany from 2009/10 to 2012/13, which were accompanied by greenhouse experiments with controlled temperature regimes. In the field trials, the survival rates after winter varied from 0 % to 99 %, but only in four environments differences between the five genotypes occurred. During acclimatization, betaine, glutamine, proline and raffinose were markedly accumulated and osmolality was enhanced. In particular betaine, amino acids and osmolality showed a positive correlation to the survival rate and were thus identified as potentially frost protecting substances for sugar beet. In contrast, raffinose and proline seem to act rather as stress indicators as they were negatively related to survival. Possible frost protecting substances were identified which can be used in breeding to improve the winter hardiness of sugar beet.  相似文献   

6.
Morpho-physiological and molecular analysis were conducted to identify useful root indexes of sugar beet nutrient uptake capacity and productivity. Root architectural parameters, root elongation rate, sulfate uptake rate and glucose and fructose content in the root apex, traits involved in the plant response to sulfate stress, were evaluated in 18 sugar beet genotypes characterized by different root yield. Morpho-physiological traits, determined on 11-day-old seedlings grown in hydroponics under sulfate deprivation, showed variations from 59 to 197% and were significantly correlated (P < 0.01) with root yield. Under field conditions, the highest root yield genotype (L18), which has the highest root phenotypic values following sulfate shortage, also showed the greatest root length density and leaf relative water content, with respect to the lowest root yield genotype (L01). Bulk segregant analysis based on AFLP analysis, done on a segregating progeny obtained from the cross between the two lines L01 × L18, allowed the identification of two AFLP markers associated to the root elongation rate parameter that showed the highest variation among all the analyzed root traits. The genetic diversity of root adaptive traits and the use of marker-assisted selection aimed at increasing sugar yield under water and nutrient stress in sugar beet breeding programmes are discussed.  相似文献   

7.
Selective absorption (SA) of K over Na (i.e. the preferential absorption of K over Na) has been proposed as a Na tolerance mechanism but genotypic variation for this trait has not been assessed with sugar beet in the field. Thus, the aim of this study was to explore the variation of SA in 14 sugar beet cultivars and to relate SA with yield and root quality in two sites of central Greece (Amfithea and Pyrgetos). Genotypic variation for SA was significant and the SA values were higher in Pyrgetos, the site with the lower soil K and Na concentrations. In Pyrgetos, a favourable environment for sugar beet growth, cultivars yielded more and root quality was better. In that site, a negative relationship between SA and yield (fresh root weight, sugar yield) was found indicating that strong Na exclusion from root is a disadvantage for high yielding. Negative SA–yield relationships were evident in Amfithea when five cultivars with very low SA values (<1.00) were excluded from the analysis. Combined all the cultivars, curvilinear functions were the best-fitted curves for the SA–yield relationships. In Amfithea, where sugar beets had lower water content in root (WCR), a significant, positive correlation between SA and % sucrose content in fresh root weight was found. This finding was ascribed to the dilution of sucrose in roots due to the increased WCR as a result of the increased root Na concentration. In both sites, SA was positively related with root K concentration and negatively with Na concentration. The positive correlations between SA and root α-amino N concentration indicated that sugar beet N nutrition could be affected by the genotypic ability to exclude Na from the root.  相似文献   

8.
To study the effects of different levels of drought stress on root yield and some morpho-physiological traits of sugar beet genotypes, a study was conducted in the research farm of Islamic Azad University of Birjand, Iran in 2013 as strip-split plot experiments based on randomized complete block design. Different levels of drought stress were considered as vertical factor in three levels including normal irrigation, moderate stress, and severe stress. Horizontal factor was assigned to five varieties of sugar beet. Drought stress had a significant effect on root dry weight, total dry weight, root yield, and leaf temperature at 1% probability level and on leaf dry weight, crown dry weight, and harvest index at 5% probability level. Drought stress had an adverse effect on root yield of investigated genotypes of sugar beet. Under normal conditions, the mean of root yield was higher than middle and severe drought stress. Different investigated genotypes of sugar beet responded to drought stress based on their yield potential. The highest positive correlation of root yield was observed with root dry weight (r=0.977**). Stepwise regression analysis and path coefficient analysis showed that root dry weight and petiole dry weight are the most important traits that can affect root yield of sugar beet under drought stress and can used as selection criteria in investigated cultivars of sugar beet. Finally, 7221 genotypes can be considered as tolerant genotypes in the next studies. In comparison, Jolgeh cultivar (as susceptible control) yielded well in areas with normal irrigation, but under moderate and severely stresses its root yield was reduced.  相似文献   

9.
Adaptation to low water availability in sugar beet includes the accumulation of solutes relevant for the technical quality of the beet. Two sugar beet genotypes were grown in pot experiments under drought stress of different severity to study effects on taproot composition and concentration of solutes relevant for technical quality, reversibility of drought effects after re‐watering and genotypic differences in drought response. Differences in stress sensitivity between the genotypes were not observed as reductions in taproot and leaf dry weight and white sugar yield were the same. Increasing dry matter concentration with decreasing water supply could, in part, be attributed to an increase in the concentration of cell wall components. The major solutes in the taproot were sucrose, potassium, amino N (the sum of amino acids) and betaine. Sucrose concentration decreased considerably under drought, indicating limited availability of assimilates. In contrast, all further solutes increased in concentration with increasing severity of stress. However, the response of individual solutes varied largely. Changes in amino N and nitrate were most pronounced and probably reflect accumulation of non‐utilized metabolites under limited growth. The drought‐induced accumulation of taproot solutes implicates a considerable decrease in the technical quality of the beet. It was only in part reversible by re‐watering. Genotypic variability for solute accumulation under water deficiency was observed but was not linked to drought tolerance.  相似文献   

10.
Improvements in drought tolerance of crop plants require research focused on physiological processes. In 2002 and 2003 pot experiments with sugar beet were conducted in a greenhouse. Two (2002) or three (2003) different genotypes were subjected to three watering regimes (100, 50 and 20% of water holding capacity). Gas exchange, chlorophyll fluorescence and water-use efficiency (WUE) as parameters of possible relevance for drought stress tolerance in sugar beet were investigated. It was studied whether 13C discrimination (Δ) is suitable as an indirect measure for WUE of sugar beet.DM yield, photosynthesis rate, transpiration rate and stomatal conductance decreased with increasing severity of drought stress. In contrast, internal CO2 partial pressure remained relatively stable and effective quantum yield of photosynthesis was reduced only under severe drought, which points at non-stomatal inhibition of photosynthesis. Different sugar beet genotypes showed significant differences in DM yield, but interactions between genotype and water supply did not occur, indicating that genotypic differences in drought tolerance did not exist. In accordance with that, drought-sensitivity of gas exchange and chlorophyll fluorescence was the same in different genotypes. Δ was higher in the leaves than in the taproot. Reductions in Δ in drought-stressed plants corresponded to about 24% higher WUE. Differentiating between plant organs, only leaf Δ was negatively correlated with WUEL whereas taproot Δ and WUET were unrelated. Δ was therefore proven to be a sensitive indicator for water availability during the growing period. However, similar as other parameters relevant for drought stress tolerance it requires investigations in broader genetic material of sugar beet to detect genotypic differences.  相似文献   

11.
Drought stress may affect sucrose accumulation of sugar beet by restricting leaf development and storage root growth. The objective of this study was to identify changes occurring in the storage root of Beta beets in growth characteristics and ions and compatible solutes accumulation under drought with regard to sucrose accumulation. Two pot experiments were conducted: (1) sugar beet well supplied with water (100 % water capacity), under continuous moderate (50 %) and severe drought stress (30 %), (2) sugar beet and fodder beet well supplied with water (100 %) and under continuous severe drought stress (30 %). Under drought stress, the ratio of storage root to leaf dry matter of sugar beet decreased indicating a different partitioning of the assimilates. The sucrose concentration of the storage root was reduced. In the root, the number of cambium rings was only slightly affected, although drought stress was implemented already 6 weeks after sowing. In contrast, the distance between adjacent rings and the cell size was considerably restricted, which points to a reduced expansion of existing sink tissues. The daily rate of sucrose accumulation in the root showed a maximum between 16 and 20 weeks after sowing in well‐watered plants, but it was considerably reduced under drought stress. The concentration of compatible solutes (K, Na, amino acids, glycine betaine, glucose and fructose) decreased during growth, while it was enhanced because of drought. However, when sucrose concentration was added, a constant sum of all examined solutes was found throughout the vegetation period. It was similar in sugar beet and in fodder beet despite different concentrations of single solutes, and the total sum was not affected by water supply. A close negative relationship between the concentration of compatible solutes and sucrose occurred. It is therefore concluded that the accumulation of compatible solutes in the storage root of Beta beets under drought might be a physiological constraint limiting sucrose accumulation.  相似文献   

12.
滴灌甜菜对块根膨大期水分亏缺的补偿性响应   总被引:1,自引:0,他引:1  
李阳阳  费聪  崔静  王开勇  马富裕  樊华 《作物学报》2016,42(11):1727-1732
为探讨滴灌甜菜块根膨大期干旱胁迫及复水的生长补偿效应,设置70%(T1)、50%(T2)和30%(T3)田间持水量,调查块根膨大期缺水对滴灌甜菜产量、农艺性状以及理化指标的影响。结果表明,当土壤为30%田间持水量时,甜菜产量比70%和50%田间持水量分别提高51.7%和17.6%,产糖量分别提高48.7%和7.7%。与70%田间持水量相比,50%和30%田间持水量条件下,块根膨大期甜菜电导率、脯氨酸以及过氧化物酶活性均在复水1 d时显著增加。主成分分析表明,细胞膜透性、抗氧化酶活性、渗透调节物质以及农艺特性共同调控块根膨大期甜菜抵御干旱胁迫,其中块根可溶性糖含量不能作为甜菜抗旱性鉴定的指标。因此,滴灌甜菜块根膨大期,当土壤含水量下降至田间持水量的30%时及时补充灌溉,不但不影响甜菜生长,还有利于增加块根含糖量。  相似文献   

13.
为了探索适宜糖用甜菜高产优质种植的氮磷钾最佳施肥效应模型,本文以糖用甜菜为研究对象,采用大田回归组合试验,对糖用甜菜栽培中的氮、磷、钾肥因子与糖用甜菜的产量和品质的关系进行研究,采用层次分析法(Analytic Hierarchy Process, AHP)确定了各品质指标(糖度、钾、钠、a-氮)和产量为指标的权重,通过隶属函数对各种施肥处理糖用甜菜的产量和品质进行模糊综合评价,根据评价得分为品质指数初步建立并优化了氮、磷、钾肥因子与糖用甜菜综合品质指数的回归方程。结果表明:大田试验适宜的氮肥施用量为68.89~88.61 kg.ha-1,施磷量为47.94~92.06 kg.ha-1,施钾量为54.34 ~100.66kg.ha-1。  相似文献   

14.
为了筛选出最适宜黑龙江哈尔滨地区种植的产质量高并抗根腐病的糖用甜菜品种。2020年在黑龙江省哈尔滨市黑龙江大学呼兰校区试验基地,以21个引种的KWS系列及1个BTS2730糖用甜菜品种(KWS1197为对照)为试材,采用主成分分析和灰色关联度分析法对根产量、含糖率、产糖量和根腐病4个指标进行综合评价。两种方法得出的甜菜品种的排序大致一致;第一主成分根产量的贡献率为69.704%,第二主成分含糖率的贡献率为26.283%,累计贡献率为95.987%,因此能够全面地反映甜菜的产质量性状;最适合本地种植的综合评价值高于对照的6个品种为:KWS0023(0.8231)>KWS0015(0.7685)> KWS6661(0.7511) >KWS9921(0.7103)>KWS0860(0.7097)>BTS2730(0.7065)>CK(0.6823);其他品种的综合评价值低于对照。主成分分析法和灰色关联度分析能够较为全面得分析甜菜品种,得出的结果具有可靠性。  相似文献   

15.
东北旋耕制度下垄作与平作甜菜产质量差异   总被引:1,自引:1,他引:0  
为研究东北旋耕制度条件下甜菜平作和垄作对于甜菜产量和质量的影响,2017年以‘H004’为试验材料,采用分区设计的实验方法,在哈尔滨呼兰区多年旋耕地测定了在平作和垄作栽培条件下甜菜的块根产量、绿茎叶产量、含糖率、甜菜地下和地上部位的干物质量比例以及不同耕作条件下不同土层的土壤含水量和容重。研究发现转旋耕条件下平作和垄作甜菜含糖量没有显著差异,但是垄作甜菜块根产量要明显优于平作甜菜,垄作甜菜块根单产达到87.8 t/hm2,而平作甜菜块根单产仅为72.9 t/hm2。此外研究发现平作甜菜地上部分干物质积累较多,如平作甜菜根/地上部干物质比值要显著低于垄作甜菜。同时发现垄作栽培土壤含水量及土壤疏松程度均优于平作,如在20-26 cm土层中垄作土壤的容重和含水量分别为1.38 g/cm3和21.96%,而在20~26 cm平作土壤的容重和含水量仅为1.56 g/cm3和19.35%。本研究表明在东北旋耕制度条件下,垄作栽培更适于甜菜生产,也为下一步研发东北高产高糖甜菜栽培模式鉴定重要基础。  相似文献   

16.
旨在更加科学真实地评价甜菜种质资源的品质性状,有针对性地对种质资源优异品质性状进一步挖掘利用。引用甜菜块根蔗糖可回收率、杂质指数、可回收蔗糖量3 个综合指标,排除甜菜块根中有害性非糖分钾、钠、α-氮的影响,对参试的162 份甜菜种质资源2 年试验鉴定结果的有关品质性状进行分析。结果表明:甜菜块根中影响蔗糖提取的有害性非糖分钾、钠、α-氮在不同的种质资源材料间差异较大,其中钠含量在参试种质资源材料中极差达到4.763 mmol/100 g,为平均数的1.84 倍,变异系数34.43%;α-氮含量和钾含量在不同参试种质资源材料间也表现出较大差异,变异系数分别为16.90%和19.03%。通过对参试种质资源材料的评价,筛选出蔗糖含量高、有害性非糖分含量低的高糖组种质资源材料10份、中高糖组48份材料,2组平均蔗糖可回收率分别为15.88%和14.95%;筛选出杂质指数低于4.0、块根产量在45.00 t/hm2以上的丰产型种质资源材料7份,杂质指数4.0~4.5、块根产量在45.00 t/hm2以上丰产性较好的种质资源材料14 份。甜菜块根中可回收蔗糖量指标综合了蔗糖可回收率和块根产量2个性状指标,利用该项指标评价种质资源材料,可以挖掘出丰产优质的种质资源。用可回收蔗糖量指标评价甜菜品种,筛选丰产、高工艺品质的品种,兼顾甜菜种植者和制糖企业双方利益,有利于甜菜制糖产业可持续发展。  相似文献   

17.
Breeding has led to a continuous increase of the performance of sugar beet varieties and thereby contributes to meet the global needs for food and biomass. This study aimed to analyze the extent of the breeding progress in sugar beet and to determine which parameters and traits were modified by breeding. In 2007 and 2008 sugar beet varieties registered between 1964 and 2003 were cultivated in field trials and in greenhouse experiments to exclude effects from changes in agronomic operations and climatic conditions. Differences in white sugar yield related to the reference variety registered in 1964 were regarded as breeding progress. The results showed an increase in the white sugar yield of 0.6–0.9% a−1 from 1964 to 2003 due to breeding. This was achieved by an improved biomass partitioning (higher root to leaf ratio and higher sugar to marc ratio), better technical quality (decreased concentration of K, Na, and amino N combined as standard molasses loss) and enhanced assimilation (higher chlorophyll content, higher assimilation rates). No changes were observed in leaf development and cambium ring formation. A principle component analysis pointed out that breeding targets have shifted with time from “yield” to “biomass quality”. To continue the breeding progress in future it is essential to integrate multiple resistances and tolerances against biotic and abiotic stress.  相似文献   

18.
The results from multienvironment field performance trials of cultivars are usually analysed as two‐way classification data with rows=genotypes/cultivars and columns=environments (locations and/or years). To reduce the impact of genotype × environment interaction effects, one commonly stratifies genotypes/cultivars or environments by cluster analysis techniques into homogeneous groups so that interactions within groups are minimized. By such a stratification, for example of test sites, with regard to similarity of genotype × environment interactions and the selection of only one representative test site from each group, the overall number of necessary test sites for yield trials can be reduced. In the literature, many clustering techniques have been proposed. Systematic comparisons between different cluster methods, however, are rather rare. A single cluster method is characterized by `measure of distance', `stopping criterion', `algorithm' and `level of significance'. In this paper, 11 clustering techniques were applied to extensive yield data sets of several agricultural crops (faba bean, fodder beet, oat, winter oilseed rape and sugar beet) from the official registration trials of the German `Bundessortenamt'. The results were compared with each other using two proposed parameters: measure of resemblance (for two classifications) and cluster size (for one classification). Neither the level of significance nor the algorithm has a substantial impact on the resulting clusters. The final results of clustering are therefore mainly determined by the stopping criterion with its associated measure of distance. If one uses tests for crossover interactions as stopping criteria, the resulting clusters are larger than the resulting clusters for the F‐test of conventional interactions in an analysis of variance. The cluster size decreases with increasing sensitivity of the tests that are used as stopping criteria. Finally, recommendations for the choice and handling of clustering techniques for practical applications are given.  相似文献   

19.
为了研究不同灌溉定额下不同品种(标准型、丰产型和高糖型)糖用甜菜的产量、质量和光合特性的响应,在东北地区甜菜4个生长时期进行了7个滴灌处理水平的试验研究,测定不同处理对标准型、丰产型和高糖型甜菜品种的生长情况、光合特征、产量质量及灌溉效率的响应。结果表明,不同灌溉量对不同类型甜菜生长指标、光合参数及产质量影响不同。标准型和高糖型甜菜品种对其生长性状各指标有利的灌溉定额为320~360 m3/ha,3个品种甜菜叶绿素含量对灌溉定额的最佳响应为300~320 m3/ha。标准甜菜品种随着灌溉量的增加并不利于其进行光合作用,而高糖型与丰产型甜菜品种随灌溉量的增加在叶丛快速生长期对叶片蒸腾速率的影响显著,在320 m3/ha灌溉量处理下光合效率较好。随着灌溉量的增加,标准型甜菜品种根产量增加;当灌溉量达320 m3/ha时,丰产型甜菜品种根产量不再升高而保持平稳、高糖型甜菜品种糖度下降。叶片水分利用效率在生育期前期总体上要高于生育后期,增加灌溉量并不能提高不同类型甜菜品种的灌溉水生产效率。在本研究特定区域内优化不同品种甜菜的灌溉制度可改善甜菜生长和产质量,并为建立甜菜灌溉模型提供理论基础。  相似文献   

20.
Slow leaf formation in spring is regarded as the main factor limiting sugar beet yield. It is therefore expected that yield can be enhanced when plants develop leaves earlier resulting in an extended growing period. The aim of this study was to analyse leaf and storage root growth of sugar beet plants sown in autumn or very early in spring with regard to possible yield increases. In 2005/06 and 2006/07, field trials were conducted at 4 sites with 6 sowing dates: August, beginning and mid of September, and in February, March and April. Sequential harvests were conducted to follow yield formation.Field emergence of autumn sown sugar beets was fast and reached 90% whereas in early spring it was severely restricted due to low temperature. Leaf and root yield formation of autumn and spring sown sugar beets could well be described with thermal time confirming that sugar beet growth is temperature driven and day length insensitive. Despite longer growing periods autumn sown beets did not form more cambium rings in the storage root than spring sown beets. That might be partly due to the bolting process after winter. However, early spring sown beets as well did not achieve more cambium rings than plants sown in April pointing to a presumably limited ability to adapt cambium ring formation. Because of the shift to reproductive growth, autumn sown beets formed high amounts of shoot dry matter, but not much root dry matter. Furthermore, the root dry matter consisted of a lower sugar and a higher marc content and would therefore not be suitable for sugar recovery. Earlier sowing in spring did not result in a significant yield increase because the benefit from early sowing diminished throughout the season as also obvious from the distance between the cambium rings.For bolting resistant sugar beet varieties, which are expected to be available in near future, the presented data form a basis to predict yield with models. However, it has to be investigated to what extent sugar beet growth and yield formation benefits from early sowing and extended growing periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号