首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
Doubled haploid plants are useful in genetic studies and plant breeding, but a consistent and satisfactory frequency of production has been difficult to achieve in durum wheat. Triticum turgidum L., using the maize pollen method. The objective of this study was to develop an objective method of producing doubled haploids in durum wheat. Plant growing and handling conditions, aspects of hormone treatments, wheat genotype and pollen source were considered. The number of caryopses, embryos, haploids, doubled plants and doubled plants that set seed were measured. Although growth conditions, pollen source, method of handling plants and wheat genotype are important considerations, the type of hormone was found to be most significant in the production of doubled haploid plants. When 50mg/l dicamba was substituted for 100 mg/l 2,4‐D the number of doubled haploids per spike increased from 0.2 for the best 2,4‐D treatment to 1.3 for the dicamba treatment. This increased frequency was largely attributed to an increase in the number of caryopses generated for each spike emasculated and from an increased frequency of germination of embryos to haploid plantlets. The best production of caryopses was 0.41 caryopses per florest with 2,4‐D. The best production of haploids per 100 florets was 12 with dicamba and 1.65 with 2,4‐D. The frequency of one doubled haploid per emasculated spike through the use of dicamba is a practical level for generating populations for genetic studies.  相似文献   

2.
The aim of this work was to analyse the influence of the male parent on the production of embryos and haploid plants in durum wheat crossed with maize and pearl millet, to find a proper trait to identify the most efficient pollinators and to evaluate the mixtures of pollen. Two genotypes of durum wheat, low and high responding, were crossed with eight pollen samples: (i) three maize hybrids, (ii) three pearl millet inbred lines, (iii) a mixture of maize pollen and (iv) another mixture of pearl millet pollen. No significant differences on embryos and haploid plant production were observed among the four samples of maize pollen, but there were clear genotypic differences for the production of haploids between genotypes of pearl millet. The best pearl millet genotype produced significantly more haploid plants than the other two and the mixture of pollen. There was no correlation between the production of embryos and haploid plants. Therefore, the production of haploid plants must be the criterion to identify superior pollinators. In addition, a mixture of pollen is inappropriate except when using genotypes previously identified as good pollinators.  相似文献   

3.
A total of 257 parental wheat and 38 triticale lines were used for anther culture. On average, 2.1 green wheat haploids were obtained per spike. This response occurred irrespective of the origin of the material (Germany, France, Sweden or UK) and 5 years of testing. Triticale responded with 5.3 green haploids per spike. Using the criterion that one parental line should give at least one green haploid per spike in the screening experiment, green haploids were produced from 88 out of 91 F1 wheat breeding combinations and from each of 21 F1 and F2 triticale breeding combinations. An average of 4.7 green plants were obtained per spike from the wheat production programme, while the triticale programme gave an average of 6.2 green plants per spike. A single medium supplemented with different hormones for anthers and embryos was used for culture of both crops.  相似文献   

4.
Z. Labbani    J. de Buyser    E. Picard 《Plant Breeding》2007,126(6):565-568
The use of doubled haploids improves the efficiency of cultivar development in many crops and can be helpful in genetic and molecular studies. The major problem with this approach is the low efficiency of green plant regeneration. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat cv. ‘Jennah Khetifa’. Tillers from donor plants were pretreated in 0.3 m mannitol and were stored at 4°C at various times: 3, 5, 6, 7, 8, 10 and 12 days. Our results showed clearly that the novel pretreatment combined mannitol 0.3 m and cold for 7 days had a strong effect on the number of embryos produced and regenerated green plants. Under this condition 13 475 mature embryos were produced from 2 693 500 microspores. Moreover, 85 green plants were obtained. High green plants regeneration frequency was recorded. As an average 11.55 green plants were produced per 100 000 microspores (about the equivalent of six plants per spike). Therefore, this study showed clearly that our results are the best ones published until now in durum wheat.  相似文献   

5.
F. Matzk  A. Mahn 《Plant Breeding》1994,113(2):125-129
Wheat × maize and wheat × pearl millet crosses have proved efficient for haploid production using various genotypes of wheat; 22 and 27 % of florets produced embryos. In favourable conditions 6—9 haploid plants per spike were produced. The following simplifications or improvements in technique are recommended: 1. Only a single treatment with an aqueous solution of dicamba or 2,4-D (50–100 ppm) for embryo stimulation in vivo; 2. Application by spraying or dipping the spikes; 3. Application time two to four days after pollination; 4. Embryo rescue 15 to 18 days after pollination; 5. Crosses without emasculation are possible if pollination occurs 1–2 days before anthesis. More than 450 haploids and some doubled haploid (DH) lines (after colchicine treatment in vitro) were produced using these methods. No hybrid plants, chromosome additions or substitutions were found.  相似文献   

6.
Production of doubled haploids (DHs) is an important methodology to speed the process of breeding and development of mapping populations in crops. The procedure for DH production includes two major steps: haploid induction and chromosome doubling. In recent years, wide hybridization between wheat and maize has become a main approach for haploid production in wheat. In this method, the maize chromosomes are completely eliminated during the early development of the hybrid seeds after wheat spikes were pollinated with maize pollen. Numerous wheat cultivars and mapping populations have been developed using wheat–maize hybridization. In this study, we review the procedures of DH production of durum and common wheat via wide hybridization with maize, the factors which affect the efficiency of DH production, and the mechanism of selective elimination of the maize genome during the early development of the hybrid embryos. We also report a highly efficient protocol for DH production in durum and common wheat, which was established based on the optimal conditions for each of the factors that affect the efficiency of DH production.  相似文献   

7.
Genotypic influence of both male and female parents on haploid production through interspecific crosses was studied using eight wheat and four maize genotypes. The average numbers of embryos and green haploid plantlets obtained per pollinated floret were 17.6% and 10.1%, respectively. Clear genotypic influence of the wheat genotype was detected, but heterozygosity of the wheat did not affect haploid production. Analogous response to anther culture and interspecific crossing was observed, still a wheat variety which did not respond to anther culture, produced 1.1 plantlets per pollinated spike upon maize pollination. This appears to be a major advantage of interspecific crossing compared to anther culture technique in wheat. Circumstantial evidence is presented for specific wheat × maize interaction on haploid plantlet formation. Rye chromatin enhanced haploid production but only in a complete 1B/1R substitution line. Ovaries with an embryo were found to be dispersed evenly all over the wheat spike, suggesting that within certain limits the developmental stage of ovaries and thus time of pollination within a spike are not as important as it was previously assumed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
P. K. Sidhu    N. K. Howes    T. Aung    P. K. Zwer    P. A. Davies 《Plant Breeding》2006,125(3):243-247
Doubled haploids (DHs) are becoming increasingly important in crop breeding programmes but methods for producing oat DHs remain inefficient. In this study haploid and DH oat plants were produced using the oat × maize hybridization method. Factors influencing the rate of caryopsis and haploid embryo production including genotype, post‐pollination plant growth regulator application and temperature were investigated. The four growth regulators tested showed significant differences in their capacity to induce caryopsis formation with dicamba producing the highest numbers of caryopses, followed by picloram, 2,4‐dichlorophenoxyacetic acid (2,4‐D) and gibberellic acid (GA3). No significant differences were observed between these growth regulators for their effect on embryo production. The concentration of dicamba was also important and was found to influence caryopsis but not embryo production, with 50 and 100 mg/l dicamba producing significantly more caryopses than 25 or 5 mg/l. Temperature had a significant impact on both caryopsis and embryo production with the magnitude and direction of response depending on genotype. Rates of haploid embryo production observed were between 0.8% and 6.7% of the pollinated florets. The proportion of haploids, which survived and were successfully doubled with colchicine following transfer to soil was between 72% and 81%.  相似文献   

9.
To improve haploid plant production in durum wheat, the haplomethod involving intergeneric crossing with maize followed by embryo rescue was used. The influence of parental genotypes and various experimental factors were studied. Ten cultivars of Triticum turgidum ssp. durum (female parent) were crossed with eight genotypes of Zea mays. After pollination, plant stems were either maintained in situ or cut near the base and kept in a 2,4‐dichlorophenoxyacetic acid (2,4‐D)‐sucrose solution. Ten to 18 days after pollination, embryos were excised from developed ovaries and cultured on one of MS, MS/2, or B5 media. Haploid embryos and plants were obtained (78 green haploid plants regenerated in 0 year). The wheat genotype was significant for ovary development, embryo and plant formation, whereas the maize genotype was significant only for embryo formation. Detailed results of all crosses showed the best crossing partner for each wheat genotype. Cutting the plant stems after pollination gave better results than maintaining them in situ. The optimal stage for embryo rescue was 14 days and B5 and MS/2 media were more efficient than MS for embryo culture.  相似文献   

10.
Amplified fragment length polymorphisms (AFLPs) were used to follow the possible introgression of maize DNA into haploids of wheat as a side‐effect of exploiting wheat x maize hybridization for haploid production. AFLPs were generated with 64 MseI/ EcoRI and 64 MseI/ PstI primer combinations, and the AFLP profiles of haploids were tested against those of maize and of the regular wheat varieties involved in the crosses. On average, 45.1 and 110.7 fragments were produced per assay with the MseI/EcoRI and MseI/PstI combinations, respectively. Different numbers of fragments were produced for wheat and maize: an average of 81 in the haploid, 80 in the wheat parent, and only 67.1 in maize. No evidence was found for introgression of maize into the wheat genome. Three unique AFLP fragments were detected in haploids, which were not present in the parental wheat genotypes. These ‘novel’ AFLP bands in the haploids could be caused by nucleo‐cytoplasmic interaction in the hybrid zygote. Such instability in the wheat genome is defined as temporal, as it was not detected in further generations when colchicine‐doubled progeny of the haploids was tested for the presence of polymorphic fragments.  相似文献   

11.
Isolated microspores of two DH lines of wheat were treated with 8 different colchicine concentrations up to 3 mM for either 24 h or 48 h during microspore culture. Untreated control cultures produced on average 220 embryos per spike (100,000 microspores), 68% of the regenerated plantlets were green, and 15% of the flowering plants were fertile. The colchicine treatments had a significant effect on chromosome doubling as measured by the percentage of fertile regenerants. Using colchicine concentrations around 1 mM the percentage of fertile plants among the regenerants was increased up to 53%. The highest number of embryos and regeneration rates were observed after 24 h colchicine treatment, while the highest frequencies of green plants and fertile plants were obtained with 48 h colchicine treatments. The highest number of DH plants per spike was found after treatment with colchicine concentrations of 300 to 1000 μM. Such treatments resulted in an estimated average between the two genotypes of 23 doubled haploid plants per spike. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
S. Sood    R. Dhawan    K. Singh  N. S. Bains 《Plant Breeding》2003,122(6):493-496
Two chromosome doubling strategies were evaluated for producing wheat doubled haploids from wheat x maize crosses: (i) in vitro colchicine application to haploid embryos and (ii) colchicine treatment through postpollination tiller injections. In the in vitro approach the haploid embryos were rescued on medium containing colchicine (at concentrations of 0.2, 0.3, 0.4 and 0.5%) and moved to a colchicine‐free regeneration medium 48 h later. Embryos exposed to 0.5% colchicine had 91.67% of their regenerated plants showing chromosome doubling. In the tiller injection approach, different concentrations (0.5, 0.75 and 1.0%) of colchicine solution, which also contained 2,4‐D (100 ppm), were injected into the uppermost inter‐node of crossed tillers 48 and 72 h after pollination. The chromosome doubling efficiency varied from 33 to 100%, with 1% treatment being the most effective. No chimeras of doubled/haploid sectors were observed in the case of the tiller injection treatment and all the florets showed seed set in the doubled plants. Stomatal guard cell length provided rapid, early‐stage and unambiguous analysis of ploidy level on the basis of 10 guard cell observations per plant.  相似文献   

13.
小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性   总被引:2,自引:0,他引:2  
陈新民  王凤菊  李思敏  张文祥 《作物学报》2013,39(12):2247-2252
小麦与玉米杂交是诱导小麦单倍体最有效的途径之一, 但单倍体和双单倍体产生频率不稳定影响了该技术的应用。选用13个小麦杂种F1代单交组合与玉米杂交, 研究了不同小麦生长环境、生长素处理、培养基和壮苗处理对单倍体及双单倍体产生频率的影响。小麦生长在大田, 去雄后割穗培养与玉米杂交平均得胚率为23.9%, 每个杂交穗平均得胚数6.8个, 均是返青后从大田移回冷温室盆栽的3倍以上;不同小麦杂交组合间胚产生频率存在明显差异。生长素Dicamba蘸穗处理平均得胚率是21.5%, 与2,4-D处理得胚率(21.1%)无显著差异, 但不同杂交组合间差异显著。B5培养基幼胚萌发率为70.9%~88.3%, 平均82.0%;1/2 MS培养基胚萌发率为70.0%~86.0%, 平均76.6%;两种培养基平均胚萌发率无显著差异。试管苗经壮苗培养基壮苗处理与试管苗经移栽壮苗处理后加倍效率分别是67.6%和8.6%。移栽壮苗处理的苗分蘖少, 生长较弱, 加倍处理后存活率低和加倍率低是其单倍体加倍效率低的原因。  相似文献   

14.
Nineteen commercial hexaploid wheat varieties were crossed with the maize F1 hybrid ‘Seneca 60’. Fertilization frequencies ranged from 32.1 % to 47.5 % of pollinated florets (mean 39.5 %) in the 14 winter wheat varieties and from 40.7 % to 51.4 % (mean 47.8 %) in the five spring wheat varieties. In some cases only an endosperm was formed and the frequencies of embryo formation were therefore slightly lower, being 28.2 % to 45.9 % (mean 36.4 %) for winter wheats and 39.8 % to 48.6 % (mean 45.1 %) for spring wheats. Mean values were significantly higher in the spring wheats but no significant variation was found between varieties within the spring or winter categories. In the five spring wheats the mean yield of embryos, and hence the potential yield of haploid plants, was 3.4-fold higher than with the tetraploid Hordeum bulbosum clone PB179. For the 14 winter wheats the figure was 10.9-fold higher. These differences were highly significant (p < 0.001) in all varieties. A single 2,4-D treatment given to spikes one day after pollination with maize enabled embryos to be recovered from all 19 varieties. A total of 311 embryos were recovered from 950 florets (an average of 7.3 embryos per spike) of which 191 germinated, giving an average yield of one haploid plant for every 5.0 florets pollinated (4.4 haploid plants per spike).  相似文献   

15.
E. León    S. Marín    F. Barro 《Plant Breeding》2006,125(6):580-583
High frequencies of regeneration are desirable characteristics of in vitro culture from elite wheat cultivars. The effect of the source spike, the scutellum size and the induction temperature on embryogenesis, regeneration and number of plants per explant were optimized in three varieties of wheat and later determined in fifteen varieties of both bread and durum wheat. The highest frequencies of embryogenesis, regeneration and plants per explant were obtained when the first spike was used as source of scutella and decreased using the scutella from the second and third spikes. Scutella from the third spike yielded half the number of plants per explant than those from the first spike. Significant differences were also found for embryogenesis, regeneration and plants per explant as affected by scutellum size. The number of plants per explant drastically decreased in commercial varieties when scutella larger than 2.0 mm were used. The optimum induction temperature was 21 and 25°C for commercial and model genotypes, respectively. However, no differences were found for the number of plants per explant as affected by the induction temperature. The in vitro culture response of twelve and four cultivars of, respectively, bread and durum wheat were then determined. In all wheat varieties tested embryogenesis, regeneration and plants per explant varied over a wide range of values. In elite wheat varieties the selection of the source spike and the scutellum size can yield high frequencies of embryogenesis and regeneration and high numbers of plants per explant.  相似文献   

16.
L. A. Sitch  J. W. Snape 《Euphytica》1986,35(3):1045-1051
Summary An attempt was made to produce doubled haploids on 16 winter wheat and six spring and winter triticale genotypes thought to carry genes for interspecific incompatibility. The potential for haploid production was maximized by the use of Hordeum bulbosum genotypes selected for high crossability on crossable wheat genotypes, the use of two post-pollination applications of gibberellic acid and by the pollination of immature florets.A low frequency of seed was set on both the wheat and the triticale genotypes, having mean seed sets of 0.20 per cent and 0.27 per cent respectively. Although the frequency of embryos (seed quality) was high, doubled haploid production was further limited by poor embryo differentiation and regeneration. Haploid plantlets were obtained from the wheat cultivars Moulin and Renard, although successful chromosome doubling and doubled haploid production was achieved in Moulin only.  相似文献   

17.
Utilization of the doubled haploid method of breeding usually shortens the time to cultivar release, and methods of haploid production need evaluation in a breeding programme. Thirty-eight different three-way crosses were tested for anther culture response. On average 5.8 percent of the anthers cultured produced calli. Three crosses were found recalcitrant for callus induction. Overall, the anther culture method produced 0.6 plantlet per 100 anthers cultured. Five crosses with an average of 5.8 and 2.8 percent of anthers producing calli and plantlets, respectively, were compared using anther culture and wheat × maize crosses. Non-responsive genotypes for callus induction and plantlet formation in the anther culture method proved to be good parental material in wheat × maize crosses. The average percentages of embryo formation and plantlet production in wheat × maize crosses were 10.3 and 4.7, respectively. Anther-derived plants were cytologically unstable, whereas all the plants regenerated from wheat × maize crosses were haploids (n = 21 chromosomes). The chromosome numbers of the polyhaploids were doubled with a colchicine treatment. Improvement of the two haploid production methods to facilitate their efficient use in a breeding programme is discussed.  相似文献   

18.
Pearl millet is an efficient alternative to maize as a pollen source for haploid production in bread wheat. To compare haploid production frequencies in other Triticeae species, the crossabilities of two genotypes each of bread wheat, durum wheat and hexaploid triticale with four pearl millet genotypes and a maize control were examined. Embryos were obtained from crosses of all three species with both pearl millet and maize. However, significant differences in crossability were found among the three species (10.5–79.8% seed development and 1.4–15.8% embryo formation), as well as among genotypes of durum wheat (7.2–23.7% and 2.1–6.4%) and hexaploid triticale (0.3–20.6% and 0.1–2.7%). Crossability of bread wheat with pearl millet was relatively high. Haploid plants were regenerated from crosses of all three species with pearl millet. As in the case of maize crosses, low crossabilities of durum wheat and hexaploid triticale with pearl millet can be attributed to the absence of D-genome chromosomes.  相似文献   

19.
Isolated microspore cultures from two doubled haploid (DH) lines of wheat, Triticum aestivum L., were used to develop an in vitro chromosome-doubling protocol. During the initial 24 h or 48 h of culture the microspores were treated with either of the two antimicrotubule herbicides trifluralin or amiprophos-methyl (APM) in concentrations ranging from 0.1 μM to 10μM. Untreated control cultures yielded 209 embryos per 100000 microspores, which is the equivalent of one spike. Among the regenerated plantlets 67% were green, and 15% of the flowering plants were spontaneously chromosome doubled. Treatments with both the herbicides had a significant effect on chromosome doubling, measured as the percentage of fertile regenerants. With the best combination of treatment duration (48 h) and herbicide concentration (10/μM) the percentage of fertile plants among regenerants could be increased up to 74% with APM and up to 65% with trifluralin. The largest numbers of DH plants per spike could be obtained with herbicide concentrations at 1–3 μM. Treatments with either herbicide at these concentrations resulted in an estimated average between the two genotypes of 27 DH plants per 100 000 microspores. These results demonstrate the high potential of APM and trifluralin as chromosome-doubling agents in isolated microspore cultures. The in vitro treatment integrated into tissue culture procedures will constitute an efficient method for chromosome doubling in future wheat breeding  相似文献   

20.
Doubled haploid lines derived from anther culture of two Iranian spring wheat genotypes‘Ghods’susceptible and‘9106’resistant to yellow rust in Iranian field conditions, and their F1 hybrids were used in this study. Seedlings of 36 doubled haploid lines, selected out of 96 according to their agronomic traits and the two parental genotypes were inoculated with eight races of yellow rust. The parental genotypes (‘Ghods’and‘9106’) were segregating for some of the races but their doubled haploid lines were either resistant or susceptible to them.‘Ghods’was susceptible to three of the races studied but three doubled haploid lines derived from it were resistant to them. Five selected doubled haploids from the‘9106’genotype and six from F1 hybrid plants were resistant to all eight races tested. After further investigations in Iranian field conditions it was found that some of these lines can be used as donor genotypes for resistance to yellow rust in wheat breeding programmes. Use of these genotypes should be possible if the French yellow rust races used for selection also represent the dominant races in Iran. It can be concluded that anther culture provides an efficient method for fixing genes of resistance to yellow rust and desirable doubled haploids from F1 plants can be derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号