首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
液泡膜型钠氢逆向转运蛋白(Tonoplast Na~+/H~+antiporters,NHX)在植物耐盐方面具有重要意义。本研究利用RACE方法克隆了蓖麻Rc NHX2基因的3'端和5'端片段。最后设计全长引物获得蓖麻Rc NHX2全长序列,并对其进行生物信息学分析。结果表明,蓖麻液泡膜型钠氢逆向转运蛋白基因的c DNA完整的开放阅读框序列为1 626 bp,推测其可编码541个氨基酸;含有典型的液泡膜型钠氢逆向转运蛋白典型的Na~+/H~+交换泵(~(50)NES~(52))和氨氯吡嗪咪的结合位点(~(84)LFFIYLLPPI~(93));存在12个跨膜结构域,属于跨膜蛋白;预测其定位于细胞质膜和液泡膜及内质网膜。  相似文献   

2.
采用PCR的方法,分离到木榄质膜Na~+/H~+逆转运蛋白基因BgSOS1 3'-末端缺失的突变基因BgSOS1-3000。BgSOS1-3000缺少了SOS1蛋白末端的自抑制区。构建酵母表达载体BgSOS1-pYPGE15和BgSOS1-3000-p YPGE15,在酵母突变体AXT3K中分析它们的功能,结果发现与转全长BgSOS1基因的酵母相比,转突变基因BgSOS1-3000的转基因酵母耐盐性更强,可在200 mmol/L Na Cl条件下生长,而且超活性突变体增强耐盐性不依赖于植物体内的SOS2/SOS3蛋白复合体。通过测定转基因酵母的离子含量,发现转BgSOS1-3000基因的酵母中的Na+显著低于转BgSOS1基因的酵母,说明BgSOS1-3000超活性突变体通过外排更多的Na+能提高酵母的耐盐性。这为提高植物耐盐性提供了新材料。  相似文献   

3.
《分子植物育种》2021,19(10):3235-3242
为明确液泡型Na~+/H~+逆向转运蛋白在竹类植物耐盐中发挥的重要作用。本研究从筇竹中克隆出液泡膜Na+/H+逆向转运蛋白基因,命名为QtNHX1 (基因登录号:MT078987),并分析该基因表达特征。结果表明,QtNHX1基因全长为2 075 bp,包含1 632 bp的开放阅读框(编码544个氨基酸),其相对分子量为59.43 kD,理论等电点(pI)为8.83。QtNHX1具有10个跨膜区域,且与水稻同源性最高,达到90.59%。另外,QtNHX1基因在在筇竹不同组织器官(竹笋,根,茎,叶)均有表达,说明QtNHX1为组成型表达。筇竹根中QtNHX1基因的表达量最高,在竹笋表达量最低。对筇竹进行不同时间(6, 12, 24 h)的NaCl胁迫处理,发现QtNHX1基因的表达量随着处理时间的延长而上升,表明QtNHX1基因在调控筇竹耐盐性中发挥着重要作用。  相似文献   

4.
为挖掘蓖麻耐盐相关基因,以盐生植物蓖麻(Ricinus communis L.)叶片为材料。设计特异性引物,克隆高亲和性钾离子转运蛋白(high-affinity K+transporter,HKT)耐盐基因,并对其序列进行生物信息学分析。结果表明,该基因全长1 596 bp,编码531个氨基酸,推测分子量为59.74 kD,等电点(pI)为9.32。多重序列比对和系统发育树分析表明该蛋白与木薯和橡胶树的同源性最高,分别为69.13%和67.03%,且与HKT1蛋白家族成员同源性较高,为S-G-G-G类型蛋白,推测该蛋白为HKT1类蛋白。二级结构预测蓖麻HKT蛋白有9个跨膜结构域,主要定位于内质网上,是典型的跨膜蛋白。根据蓖麻HKT基因序列设计带有Bam HⅠ和PstⅠ酶切位点的引物扩增出全长基因,用限制性内切酶Bam HⅠ和PstⅠ进行双酶切后与表达载体pCHF-3300连接。本研究成功构建了蓖麻HKT基因的表达载体,为进一步研究该基因的转化及功能验证提供参考。  相似文献   

5.
Na+/H+逆向转运蛋白是生物耐盐的关键因子,能够维持高盐胁迫下生物体的正常生长代谢。利 用PCR技术从施氏假单胞菌(Pseudomonas stutzeri)中克隆质膜Na+/H+逆向转运蛋白基因nhaA。序列分 析表明,该基因全长1167 bp,编码388 个氨基酸,含有12 个跨膜结构域和保守的功能氨基酸残基位点: Asp-133、Asp-163、Asp-164、His-225、Gly-338。与大肠杆菌nhaA 基因核苷酸和编码氨基酸序列的同源 性分别为99%和99.2%。将该基因与pET-28a 构建成原核表达载体pET-nhaA,转化E.coli BL21,经IPTG 诱导后获得相对分子量约为41 kD的蛋白。平板法和生长曲线法检测表明,重组菌在800 mmol/L NaCl 胁迫下仍能正常生长,耐盐能力显著提高。以上结果证实克隆到的基因是施氏假单胞菌nhaA 基因家族 的成员,具有盐胁迫下将Na+逆向转运至胞外的功能,为进一步利用该基因进行作物耐盐改良奠定了基 础。该基因的GenBank登录号为EU545468。  相似文献   

6.
Na~+/H~+逆向转运蛋白基因SOS1(salt overly sensitive 1)是植物耐盐性的必需基因之一,在植物抵御盐胁迫过程中发挥十分重要的作用。本研究以小麦EST序列KJ563230为探针,利用电子克隆技术结合RT-PCR,获得一条甘蔗SOS1基因的cDNA序列,命名为ScSOS1(GenBank登录号为KT003285)。序列分析结果表明,该基因全长1403 bp,包含一个1272 bp的开放阅读框,编码423个氨基酸的蛋白质。ScSOS1蛋白的相对分子质量为47.6 kD,理论等电点(pI)为9.12。氨基酸序列分析表明,ScSOS1蛋白具有一个CAP-ED superfamily结构域。生物信息学预测显示,ScSOS1的编码蛋白为亲水性蛋白,不存在信号肽,二级结构元件多为无规则卷曲,主要参与中间代谢。实时荧光定量PCR分析表明,ScSOS1基因的表达具有组织特异性,在甘蔗叶鞘、蔗皮、蔗髓、侧芽和根中均有表达,其中在叶鞘中的表达量最高,根中的表达量最低。此外在NaCl、PEG、ABA、SA和MeJA的胁迫过程中,该基因表达均受到调控,其中受NaCl和PEG诱导后上调表达,均在24 h表达量达最高,分别约为对照组的1.5倍和4.0倍。推测该基因的表达与甘蔗耐盐性和抗渗透胁迫有关。  相似文献   

7.
为了研究不同K~+吸收途径在小麦耐盐机理中的作用,以小麦耐盐品种沧6005(C6005)和敏感品种矮抗58(AK58)为材料,通过K~+吸收相关抑制剂和NaCl对幼苗进行根系处理,测定并分析了根系K~+、Na~+含量、比值和质膜K~+转运相关蛋白活性的变化。结果表明:与正常条件生长小麦相比,250 mmol/L NaCl处理7 d后,2种耐盐性不同的小麦根系中的K~+/Na~+比明显降低,同时与敏感品种相比,耐盐品种能保持较高的K~+/Na~+比;NaCl胁迫下,通过3种抑制剂处理对K~+含量及K~+/Na~+比值的影响发现,与钾离子通道和非选择性阳离子通道途径相比,小麦根系K~+吸收主要通过钾载体途径;当该途径被抑制时,沧6005的K~+/Na~+比下降幅度明显高于矮抗58,表明耐盐品种更依赖该途径;NaCl胁迫下,钾载体途径被抑制时,小麦根系质膜质子泵H~+-ATPase和H~+-PPase活性明显降低,且沧6005降低幅度相对更大;NaCl胁迫下,钾载体抑制剂处理,对沧6005质膜K~+/H~+转运蛋白的抑制作用明显强于矮抗58,进一步证明上述结果。研究表明,盐胁迫下小麦主要通过钾载体途径吸收K~+,耐盐品种沧6005对钾转运载体的依赖程度更高;高NaCl环境中,细胞质膜质子泵活性和钾载体活性的提高对于维持K~+/Na~+比具有重要作用。为深入解析小麦耐盐机理提供了理论依据。  相似文献   

8.
制约大豆生产的因素很多,土壤盐渍化就是其中之一。大量研究证明过表达NHX逆向转运蛋白可以提高植物的耐盐性。为获得耐盐性良好的转基因大豆材料,我们将大豆Na~+/H~+逆向转运蛋白(GmNHX1)基因构建到植物表达载体pCAMBIA3300上,应用农杆菌介导法将GmNHX1导入大豆品种黑农56和黑农59中,共获得18个转基因株系,并对T_1代转基因株系进行了PCR和实时荧光定量PCR检测。PCR结果表明转基因后代株系呈阳性的植株有4株;经Real-time PCR检测该4个PCR阳性转基因株系的G NHX1基因表达水平均高于对照株系;200 mmol/L NaCl溶液的盐试结果表明;对照植株的生长速度滞缓于4个转基因株系的生长速度。  相似文献   

9.
植物阳离子/质子逆向转运蛋白可以维持细胞内的离子平衡,在抵御离子毒害过程中发挥重要作用。本研究克隆了一个编码玉米阳离子/质子逆向转运蛋白的基因,命名为ZmNHX7。该基因编码序列(codingsequence,CDS)全长3411 bp,编码一条含1136个氨基酸的多肽链。ZmNHX7基因在玉米各组织部位均有表达,在V7 (第7片叶完全展开)时期的根和茎中表达量较高。在NaCl与LiCl的胁迫条件下,该基因表达量上调。系统进化树分析将ZmNHX7与拟南芥质膜阳离子/质子逆向转运蛋白AtNHX7和AtNHX8归为一类,亚细胞定位结果表明该蛋白定位于细胞膜和核膜上。将ZmNHX7基因转入拟南芥T-DNA插入突变体中,转基因互补株系可以恢复该突变体对Li+的耐受性。这些结果表明, ZmNHX7编码一个玉米质膜阳离子/质子逆向转运蛋白,在缓解Li+对植物的毒害和维持细胞内的离子平衡等方面发挥重要作用。  相似文献   

10.
阳离子转运载体HKT(high-affinity K~+transporter)类蛋白既是高亲和的K~+转运载体,也是一种Na~+转运体,具有Na~+和K~+转运的双重功能,对调节细胞内Na~+/K~+动态平衡起着决定性作用。胡杨长期生长在盐渍化和干旱的土壤环境,对高盐和干旱形成了极强的适应能力,是典型的耐盐抗旱植物,成为研究多年生林木抗逆适应机制的理想材料。以胡杨根系为材料,本研究克隆鉴定了一个胡杨Peu HKT1基因,该基因含有3个外显子和2个内含子;其c DNA全长为1 076 bp,包括13 bp的5'端非翻译区(5'UTR)和232 bp的3'端非翻译区(3'UTR);长831 bp的开放阅读框(open reading frame,ORF)可编码276个氨基酸;其编码蛋白含有丰富的α-螺旋,存在多个跨膜结构域,蛋白质相对分子量(MW)为31.54 k D;理论等电点(p I)9.36;实时定量PCR技术构建了Peu HKT1基因在高盐胁迫条件下的动态表达模式,探讨了该基因参与胡杨高盐胁迫响应的信号转导途径。  相似文献   

11.
高盐对作物造成渗透胁迫和离子毒害,是影响作物生长发育的主要非生物胁迫因子之一。Na+/H+逆向转运蛋白能够通过将Na+排出细胞或将其区隔化入液泡中来调节细胞内的离子平衡,是植物耐盐的关键因子。本研究将质膜Na+/H+逆向转运蛋白基因nhaA构建到植物表达载体pBI121上,通过发根农杆菌介导转化大豆子叶节,获得6株卡那霉素抗性再生植株。对抗性植株进行PCR、Southern blot和RT-PCR鉴定,3株植株呈阳性,平均转化率为0.42%。对阳性植株的耐盐生理指标测定结果显示,盐胁迫后转基因植株的质膜相对电导率显著低于对照植株,叶绿素含量和脯氨酸含量显著高于对照植株。nhaA基因在大豆植株中的表达显著提高了大豆对盐胁迫的耐受性,为大豆耐盐新品种的选育和广泛应用该基因进行其它农作物的耐盐性改良提供了材料和依据。  相似文献   

12.
细胞膜Na~+/H~+逆转运蛋白SOS1在植物耐盐过程中起重要作用。本研究将盐生植物海马齿中的细胞膜Na~+/H~+逆转运蛋白基因SpSOS1构建到植物双元表达载体pCAMBIA1304上,采用农杆菌介导的方法将SpSOS1基因转入到拟南芥中,在含有50μg/mL潮霉素B的MS培养基上筛选转基因后代,结合目标基因和标记基因的PCR验证,获得了超表达的转基因拟南芥。利用T_3代转基因幼苗进行耐盐性分析。研究表明,转SpSOS1基因的拟南芥在50 mmol/L NaCl的培养基中发芽率在80%以上,明显高于野生型拟南芥的45%。转SpSOS1基因拟南芥幼苗的耐盐性明显提高,在100 mmol/L NaCl条件下能正常生长,具有较高的生物量、根长和侧根数,而野生型拟南芥在50 mmol/L NaCl的胁迫下明显萎蔫、失绿、甚至死亡。说明过表达SpSOS1基因显著提高了拟南芥的耐盐性。  相似文献   

13.
利用RT-PCR和RACE技术,从珍稀观赏植物金花茶(Camellia nitidissima)花瓣中克隆得到了一个番茄红素ε-环化酶(lycopeneε-cyclase,LCYE)基因c DNA全长,命名为CnLCYE。碱基序列分析显示,CnLCYE基因全长2 149 bp,包含291 bp的5'非翻译区(untranslated regions,UTR)、265 bp的3'UTR和1 593 bp编码530个氨基酸的开放阅读框。该基因编码的蛋白质含有2个跨膜结构域,一个NADB_Rossmann superfamily结构域以及番茄红素ε-环化酶结构域(PLN02697)。CnLCYE蛋白二级结构以无规则卷曲为主,其次为α-螺旋,β-折叠所占比例最少。氨基酸序列比对分析结果显示,CnLCYE与茄科、蔷薇科等植物LCYE蛋白同源性都在70%以上,与普洱茶(Camellia sinensis var.assamica)LCYE同源性最高。根据该CnLCYE全长序列设计带有KpnⅠ和Bam HⅠ位点的全长扩增引物扩增基因全长,用KpnⅠ和Bam HⅠ双酶切后与表达载体p CAMBIA1300连接,成功构建了CnLCYE基因的正义表达载体,为深入研究CnLCYE基因的功能及其对花色的调控作用提供了帮助。  相似文献   

14.
液泡膜Na+/H+逆向转运蛋白介导的Na+区域化在植物适应盐胁迫中起着重要作用。本研究以甜菜(Beta vulgaris L.)叶片总RNA为模板,采用RT-PCR方法扩增液泡膜Na+/H+逆向转运蛋白基因BvNHX的靶片段,以中间载体pHANNIBAL和表达载体pART27为基础,采用酶切和连接的方法,构建CaMV 35S启动子驱动的含BvNHX基因片段反向重复序列的RNAi植物表达载体pARB,通过冻融法将其导入根癌农杆菌GV3101,并转入甜菜幼苗获得BvNHX-RNAi转化株系。半定量RT-PCR分析结果表明该干扰载体能特异性地导致转化植株BvNHX基因表达的沉默。这将为解析BvNHX在甜菜体内Na+区域化中的功能及其在甜菜适应盐渍生境中的作用机制提供帮助。  相似文献   

15.
《分子植物育种》2021,19(14):4672-4680
在载体yy449的CaMV 35S minimal启动子序列与LUC基因序列之间增加BglⅡ限制性内切酶位点,构建yy621载体。用PCR的方法分别扩增CaMV 35S minimal启动子序列与LUC基因。引物设计要满足如下条件:CaMV 35S minimal启动子序列扩增片段的上游应包括Bam HⅠ、下游应包括BglⅡ限制性内切酶位点;LUC基因序列扩增片段的上游应包括BglⅡ、下游应包括XbaⅠ限制性内切酶位点。以上两个片段先用BglⅡ限制性内切酶消化后进行连接,得到CaMV 35S minimal启动子序列与LUC基因序列之间含BglⅡ限制性内切酶的识别位点的片段,然后再用Bam HⅠ和XbaⅠ限制性内切酶进行消化,插入到载体yy449的Bam HⅠ和XbaⅠ酶切位点之间,替换原有的CaMV 35S minimal启动子序列与LUC基因序列。经菌落筛选、PCR鉴定和测序验证,阳性菌落中的CaMV 35S minimal启动子序列与LUC基因序列之间包含BglⅡ限制性内切酶的识别位点,载体yy621构建成功。本实验中构建的荧光素酶表达载体yy621,适于今后用抗性相关基因替换LUC基因,测定合成启动子对抗性相关基因的具体调控与赋予植物对不良环境的具体抗性表现,或者用全长启动子序列替换CaMV 35S minimal启动子序列(-46~+1),对进一步观察LUC基因的表达调控具有重要的意义。  相似文献   

16.
根据小麦和长穗偃麦草的液泡膜Na+/H+逆转运蛋白基因(TaNHX1、TeNHX1)全长序列设计引物,通过RT.PCR直接扩增的方法从毛偃麦草(Elytrigia trichophora L.)中克隆到了Na+/H+逆转运蛋白基因,命名为EtNHX1 (Accession numeber:EU876834).EtNHX1最大开放阅读框为1 641 bp,编码含有546个氨基酸残基、分子量为59.8 kD的蛋白,预测等电点8.0.EtNHX1含有39个碱性氨基酸,37个酸性氨基酸,256个疏水氨基酸及128个极性氨基酸.二级结构预测表明该蛋白含约47%的α-螺旋、20%的延伸链、4.5%的β-转角和28%的不规则卷曲.亲疏水性分析显示,EtNHXl含有12个连续的疏水片断,其中10个可能构成跨膜螺旋.序列分析显示,EtNHX1与小麦(Triticum aestivum L.)、中间偃麦草(Thinopyrum intermedium L.)、长穗偃麦草(Elytrigia elongate L.)、水稻(Oryza sativa L.)、角果碱蓬(Suaeaa corniculata L.)、小盐芥(Thellungiella halophila L.)等植物的液泡膜Na+/H+逆向转运蛋白高度同源,序列相似性分别为98%、98%、96%、85%、68%和67%.序比对结果以及进化树分析均表明EtNHX1应为定位于毛偃麦草液胞膜上的Na+/H+逆向转运蛋白.  相似文献   

17.
肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase, CAD)在木质素生物合成中有着重要作用,为了探讨辣椒中CAD基因在木质素合成中的作用,本研究利用RT-PCR方法从黄灯笼辣椒幼嫩叶片中克隆得到CAD1基因全长cDNA,命名为CcCAD1。序列分析表明,CcCAD1 cDNA序列全长1 074 bp,编码357个氨基酸。同源比对显示其与番茄CAD1蛋白的一致性高达96.09%。荧光定量PCR检测结果显示,CcCAD1基因在辣椒根、茎、叶、胎座和果肉中的表达量差异显著,其相对表达量为叶果肉茎根胎座。利用Bam HⅠ和SacⅠ双酶切连接成功构建pBI121-CcCAD1植物表达载体,为CcCAD1基因转化以及后续的功能分析提供依据。  相似文献   

18.
热激蛋白(heat shock proteins,HSP)是生物体在不利环境条件因素刺激下应激合成的一组在进化上高度保守的蛋白质。前期转录组测序的结果发现马铃薯Favorita的小热激蛋白(small heat shock proteins,s HSPs)基因(PGSC0003DMG400009255)在接种晚疫病菌(Phytophthora infestans)24 h后表达量显著上调。因此,以马铃薯Favorita为材料,根据PGSC0003DMG400009255基因序列设计引物,并在引物5'端加上Bam HⅠ和SalⅠ酶切位点,从接种P.infestans 24小时后的Favorita的RNA中通过RT-PCR的方法获得PGSC0003DMG400009255的基因片段,并命名为s HSP-F,该基因最大开放阅读框(ORF)为594 bp,编码197个氨基酸。通过酶切连接将s HSP-F连接至表达载体p CAMBIA1301中。通过测序和酶切验证,表明s HSP-F基因成功克隆到表达载体中,该工作为进一步研究该基因的功能提供了基础。  相似文献   

19.
铵是植物吸收利用的主要氮源之一,NH4+的吸收主要通过铵转运蛋白(AMT)进行运输。本研究克隆了星星草铵转运蛋白(PutAMT),以GFP为标记构建了植物表达载体,观察表明PutAMT蛋白明显定位于质膜,但是根据观察发现PutAMT蛋白的定位具有复杂性及多样性的特点。为了深入了解铵转运蛋白的结构对NH4+吸收能力的影响,构建了N、C及NC末端缺失的PutAMT(ΔNPutAMT,ΔCPutAMT及ΔNCPutAMT)的载体,转入酵母突变体菌株31019b进行NH4+吸收能力的实验,结果显示了全长PutAMT在低氮条件下具有较强的吸收NH4+的功能。N、C及NC末端缺失的突变体与全长PutAMT相比,对NH4+的吸收能力有下降的趋势。结果表明了,N、C末端对NH4+的吸收起到重要的作用。  相似文献   

20.
以紫花苜蓿(Medicago sativa)为材料, 利用反转录PCR方法分离了NHX1全长cDNA(命名为MsNHX1)。Southern杂交结果表明, 在紫花苜蓿中存在一个小的液泡型Na+/H+逆向转运蛋白基因家族。序列分析表明, 该基因所编码的蛋白与拟南芥、水稻和棉花中液泡型Na+/H+逆向转运蛋白具有较高的同源性。在洋葱表皮细胞中瞬时表达MsNHX1-GFP融合基因的结果表明, MsNHX1定位在液泡膜上。Northern杂交发现该基因的表达受高浓度NaCl诱导。MsNHX1在盐敏感酵母突变体中表达可以提高转化子对NaCl的耐受性, 说明MsNHX1具有转运Na+的功能。在拟南芥中表达MsNHX1能显著提高植株耐受盐胁迫的能力; 而且在受到盐胁迫时, 转基因植株比野生型的渗透调节能力更强, 生物膜受破坏程度降低, 光合能力增强。以上研究结果表明MsNHX1是一个液泡膜Na+/H+逆向转运蛋白, 在植物耐受盐胁迫过程中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号