首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
研究植物种子特异启动子具有重要的理论和实际意义。本文研究了棉花α球蛋白A基因启动子,该启动子序列全长为1640 bp,作用元件分析表明该区域除了具有核心调控序列外,还含有多个与组织特异性相关的顺式作用元件。设计其5'端构建4个不同长度的缺失、融合GUS基因的表达载体,并通过蘸花法分别转化拟南芥。转基因拟南芥GUS表达分析结果表明,该启动子能驱动GUS基因在胚、露白的种子、子叶期的幼苗中表达,而二叶期的幼苗、根、茎、莲座叶、茎生叶和花苞组织则没有表达,说明棉花α球蛋白A基因启动子是一个种子特异性启动子。208 bp长度的启动子足以维持其种子特异表达功能,而且在启动子的-684和-208区域之间可能存在负调控元件或负调控区域。分析棉花α球蛋白A基因启动子是一个种子特异性启动子,其基本启动子区域不长于208 bp。  相似文献   

2.
为了克隆棉花Rubisco活化酶基因(RCA)启动子,研究其表达调控的分子机制,以百棉1号为材料,对GhRCAα启动子区2 000 bp的片段进行克隆、顺式作用元件分析以及活性分析,结果表明,许多重要的顺式作用元件包括响应于光、生物钟、逆境胁迫、植物激素以及其他的基本顺式作用元件特异地存在于GhRCAα启动子区;进一步对GhRCAα进行表达特性分析发现,该基因在光合作用进行的主要位置叶片中表达量最高,在其他组织表达量很低,其表达具有组织特异性,这与该启动子区存在许多光响应及组织特异性表达相关元件的结果相一致;将克隆的GhRCAα启动子片段以烟草叶片为受体材料进行瞬时表达分析表明,GhRCAα启动子可以驱动GUS基因的表达,表明克隆的启动子片段具有驱动目标基因表达的活性。克隆的GhRCAα启动子可能是一种组织特异型启动子,有望用于植物的遗传转化,进而更好地调控重要基因的特异性表达。  相似文献   

3.
为了解文心兰生物钟基因OnELF3的转录调控,本研究采用TAIL-PCR技术从文心兰基因组中克隆到OnELF3基因起始密码子上游2 204 bp的启动子序列。使用BDGP、PlantCARE和PLACE在线软件对OnELF3基因启动子的转录起始位点与顺式作用元件进行预测。结果表明启动子序列除包含TATA-box和CAAT-box等启动子基本元件外,还包含组织特异性元件、光调控元件、植物激素响应元件、胁迫反应响应元件和昼夜节律调控元件等。为探究OnELF3启动子的表达活性,构建pCAMBIA1301-p OnELF3p:GUS载体,利用农杆菌介导法,转化烟草与拟南芥。烟草叶片瞬时转化表明克隆的OnELF3启动子序列具有启动子活性。转化拟南芥结果表明,OnELF3启动子能够驱动下游的GUS基因在T2代拟南芥中稳定表达,GUS组织染色显示该启动子呈现发育与组织特异性表达。这些结果为进一步研究文心兰OnELF3基因的转录表达调控与相关功能分析提供基础。  相似文献   

4.
高转录活性籽粒特异性启动子可调控目的基因在植物籽粒中特异性、高水平表达。为发掘玉米籽粒特异性启动子,以公开发表的玉米表达谱芯片数据为切入点,筛选出籽粒优势表达基因GRMZM2G006585,克隆其编码区上游约2 000 bp的DNA序列,命名为PZm2G006585。利用在线网站New PLACE和PlantCARE对其进行启动子顺式作用元件分析,发现其含有E-box、P-box等多个籽粒特异性相关元件,初步认为所克隆编码区上游序列为玉米来源的籽粒特异性启动子。为验证其功能,构建该启动子驱动β-葡萄糖苷酸酶基因(GUS)的表达载体并进行植物遗传转化。转基因水稻的GUS组织化学染色结果表明,该启动子驱动外源基因表达模式为籽粒特异、胚优势表达;转基因拟南芥单拷贝株系T3种子中GUS活性检测结果显示,PZm2G006585驱动的GUS活性为909.52 nmol/(min·mg)。籽粒特异性启动子PZm2G006585的发掘和功能验证为驱动目标基因在玉米、水稻等单子叶植物籽粒中特异性表达提供了候选启动子资源。  相似文献   

5.
WRKY蛋白属于锌指型转录调控因子,参与植物生长发育及耐逆响应。以陆地棉遗传标准系TM-1为材料,克隆Gh WRKY64(KF031101)基因上游1064 bp的启动子序列,并对其调控元件及功能进行分析。生物信息学分析表明,该区域含18个组织器官表达及诱导表达关键元件,分别为6个ROOTMOTIFTAPOX1根特异调控元件,4个CACTFTPPCA1叶肉特异性调控元件、4个OSE2ROOTNODULE病菌诱导元件、2个GTIGMSCAM4盐调控元件和2个W-box胁迫应答响应元件。将该启动子与GUS基因融合,构建p BIW64:GUS植物表达载体,通过农杆菌介导叶盘转化法获得12个转基因烟草株系。选择GUS表达量最高的p BIW64-5进行转基因不同组织器官表达及诱导表达分析。GUS组织化学染色显示,苗期的转基因烟草植株在叶和根部均具有GUS活性,开花期在转基因烟草植株根、叶及叶柄均检测到GUS活性,特别在转基因烟草的根及根尖部分染色更深,在茎和花组织上未检测到GUS活性。对该转基因烟草幼苗进行黄萎病菌诱导处理,诱导48 h后,转基因烟草幼苗根和叶片的GUS染色比未诱导处理的对照明显加深。结果表明,Gh WRKY64上游1064 bp长度的DNA序列,具有启动子的相关顺式作用元件,且为病原菌诱导型启动子。该启动子可为开展棉花抗黄萎病转基因研究提供调控元件。  相似文献   

6.
LMI1基因是叶片锯齿状结构发育调控的关键基因。为了研究棉花鸡脚叶发育的机理,通过PCR扩增技术从A基因组棉花亚洲棉石溪亚1号中克隆出GaLMI1-like基因及其启动子序列,大小分别为681,1 439 bp。结构域分析发现,GaLMI1-like蛋白含有与陆地棉中同源基因一样的homeobox结构域,进一步构建了GaLMI1-like基因过表达载体p6MYC-GaLMI1-like,转化拟南芥后验证了GaLMI1-like基因具有调控叶片缺刻表型发育的功能。对启动子序列进行顺式作用元件分析,发现其除了具有CACA-box和TATA-box等基本作用元件外,还具有光响应及根、茎和叶肉特异性表达相关元件。构建了GaLMI1-like启动子的GUS融合表达载体并转化拟南芥,GUS染色结果显示,该启动子能够驱动GUS基因在根中柱、茎和叶片中表达,其中在叶片中染色较深。上述结果表明,GaLMI1-like基因具有调控缺刻叶形成的功能,且此调控棉花叶形发育的功能是通过GaLMI1-like启动子调控其在叶片中强表达实现的。  相似文献   

7.
利用PCR的方法从大豆品种"吉豆2号"基因组DNA中克隆得到大豆球蛋白启动子G1p,长度约为686 bp,PLACE在线启动子预测工具分析表明:序列中含有多种典型的种子特异性表达元件。将克隆得到的G1p取代pCAMBIA1301中的CaMV35S启动子,构建于G1p与GUS基因融合表达的载体pCAM-G1p,通过农杆菌介导的方法在大豆根、茎、叶和种子中进行瞬时表达分析结果显示,仅能在种子中检测到GUS活性,而在根、茎和叶其他组织中基本检测不到GUS活性。说明G1基因上游686 bp片段具有种子特异性启动子的功能,G1p是一个比较高效的种子特异性启动子。  相似文献   

8.
大根香叶烯合成酶在植物萜类化合物合成中具有重要作用。前期从茉莉花cDNA文库中克隆获得香气相关基因Js GDS基因,但是其表达调控机制还不是很清楚,本研究拟采用染色体步移法从茉莉花基因组中克隆了Js GDS上游1 646 bp的启动子序列。生物信息学分析表明,该启动子片段中包含启动子的基本元件TATA-box和CAAT-box以及光调控元件、赤霉素应答元件、ABA应答元件、MeJA应答元件等多个与生长发育或者逆境胁迫相关的顺式作用元件。利用Gateway技术构建Js GDS启动子的GUS融合载体及其系列缺失体,并获得拟南芥遗传转化植株。对转基因拟南芥进行GUS组织化学染色。结果表明,Js GDS启动子及缺失体均具有驱动下游基因转录的活性。本研究为进一步探究Js GDS基因的调控和表达机制提供理论依据。  相似文献   

9.
为探究VcMYB启动子在转录过程中如何发挥调控作用,利用FPNI-PCR法从蓝莓中克隆到调控原花青素合成相关的转录因子VcMYB的768 bp启动子序列。用PLACE和Plant CARE在线启动子预测工具分析了该启动子,结果表明其序列中存在启动子的基本元件CAAT-box和TATA-box,还包含一系列的响应元件,如光响应元件、低温响应元件、防御与胁迫响应元件和茉莉酸甲酯响应元件等。为进一步分析该启动子的功能,构建了该基因启动子与GUS基因融合的植物表达载体VcMYBpro::GUS,并用农杆菌转化拟南芥。对转基因拟南芥进行GUS组织化学染色分析,结果表明该VcMYB启动子能驱动GUS基因在转基因拟南芥中表达,并且经脱落酸(ABA)、4℃低温、LED光照和持续光照处理后,转基因拟南芥中GUS的表达活性增强,推测该基因受ABA、低温和光的调控。  相似文献   

10.
为研究4-香豆酸辅酶A连接酶基因(4CL)在白桦木质素合成代谢过程中的组织特异性表达,利用染色体步移法克隆其启动子,用该启动子定向置换pBI121载体的35S启动子,构建重组载体P_(4CL)::GUS。利用瞬时转化法将重组载体转入白桦实生苗茎后进行GUS染色。结果显示:获得了4CL基因编码区起始密码子上游长1344 bp的启动子序列,该启动子除分布有TATA-box、CAAT-box等基本的转录起始元件外,还存在多个顺式作用元件序列位点,包括35S启动子作用元件ASF,参与脱落酸响应的顺式作用元件ABRE,参与茉莉酸甲酯响应的顺式调控元件CGTCA-motif,以及光反应元件G-Box、ACE、4CL-CMA2b等;启动子表达分析结果显示经过瞬时侵染的白桦茎段被染成蓝色。以上结果表明克隆获得的4CL基因启动子具有启动子表达活性,其可能参与了白桦木质部的发育。  相似文献   

11.
种子特异性表达启动子是植物种子基因工程改良的重要工具.Lea(Late embryogenesis abundant)蛋白是胚胎发育后期种子中大量积累的一系列蛋白质,因此,其调控序列可能提供一个很好来源的种子特异性表达启动子.为研究植物Lea蛋白基因启动子在种子中的特异性表达,本研究通过PCR扩增,从亚洲棉(Gossy...  相似文献   

12.
分离了金华中棉(Gossypiun arboreum var. jinhua)光诱导基因cab 5'上游的调控序列1 009 bp,并对其功能进行了分析,证明获得的这一DNA片段具有驱动光诱导表达的功能。为了进一步分离具有最大转录活性的最小光诱导启动子,根据光诱导表达调控元件所在的位置,构建了Gacab P和197 bp、504 bp、779 bp的5'端缺失体,并将这些缺失体分别与gus (uid A)基因融合,构建植物表达载体。用农杆菌介导法转化烟草,获得转基因烟草。GUS组织化学分析表明,转基因烟草的T1代种子在光下培养时,只有Gacab P驱动gus基因在转基因烟草的叶片表达,其他3个启动子驱动gus基因在转基因烟草的整个植株中均有表达;当转基因烟草的T1代种子在暗中萌发及培养时,Gacab P驱动gus基因在转基因烟草中无表达,其他3个启动子驱动gus基因在转基因烟草的整个植株中均有表达。GUS定量分析表明,–504 ~ –1 bp的启动子缺失体启动活性最高,比CaMV35S启动子高0.6倍。上述结果表明只有全长的Gacab启动子具有光诱导和绿色组织特异表达特性,且–504 ~ –1 bp的启动子缺失体启动活性最高。  相似文献   

13.
棉花纤维是研究单细胞生长发育的良好模式细胞,寻找在棉花纤维发育时期优势表达的启动子,对于棉花纤维发育的功能基因组研究非常重要。本试验对发掘到的一个在纤维伸长期优势表达基因GhFLA1的启动子进行克隆,并将该启动子融合GUS转化棉花和烟草。转基因棉花的GUS蛋白染色表明,在0~20 DPA(days post anthesis)的纤维中检测到GUS蛋白,同时在柱头、雄蕊、萼片、胚根、子叶和根中也检测到GUS蛋白,但在花瓣、叶片和苞叶中没有检测到。同时GUS定量检测结果显示,pGhFLA1驱动GUS蛋白积累的高峰是在20 DPA的纤维中,其驱动GUS表达的能力是Ca MV 35S::GUS的22倍。转基因烟草组织化学染色显示pGhFLA1可以驱动GUS在叶片及叶片的表皮毛中优势表达,同时在子房、柱头、花药、苞叶、花柄基部、花瓣、种子等生殖器官上也存在GUS蛋白。启动子pGhFLA1在棉花纤维和烟草叶片的表皮毛中优势表达,可用于棉花纤维功能基因组研究,在改良纤维品质育种中具有潜在的应用价值。  相似文献   

14.
为了解大豆ClassⅠ几丁酶基因(Chitinase gene)对不同胁迫响应的分子机制。利用PCR技术克隆了大豆ClassⅠChitinase基因的启动子片段(Gm CHI1p),序列分析表明,扩增片段(1 641 bp)与Gen Bank中的已知序列同源性达99.8%,且含有多个胁迫响应调控元件。利用GUS基因上游无启动子的表达载体p CAMBIA1391Z,构建GmCHI1p与GUS基因融合的植物表达载体pCAM-Gm CHI1p,并通过农杆菌介导法导入烟草中。在转基因烟草愈伤组织中检测到GUS活性,表明该启动子具有启动活性。对转基因烟草中的GUS活性进行初步定性分析,结果表明,GmCHI1p可驱动GUS基因在转基因烟草的根部特异性表达,而且在伤害处理的叶片中检测到GUS的强烈表达,表现出明显的根组织特异性及伤害诱导性。这种伤害诱导仅在伤害组织部位及其附近高效表达而没有被长距离传递,预计该启动子在转基因抗虫分子育种中具有巨大的应用前景。  相似文献   

15.
刘睿洋  刘芳  张振乾  官春云 《作物学报》2016,42(10):1471-1478
富含油酸的菜籽油具有重要的经济价值,使得高油酸育种和形成机理的研究成为热点。油酸脱氢酶基因(FAD2基因)是控制油酸含量的关键酶基因。本文针对BnFAD2-C5基因展开研究,根据油菜和甘蓝的同源性,克隆了1257 bp启动子序列,利用GUS和GFP作为报告基因分别构建含有不同片段长度的启动子和内含子的缺失载体并转化拟南芥,经GUS染色检测发现–319 ~ –1 bp为该研究中最小启动子;采用Western技术分析启动子和内含子不同区域的功能,发现BnFAD2-C5启动子区域–1257 ~ –1020 bp和–319 ~ –1 bp能够诱导报告基因在转基因拟南芥种子发育中期高效表达,BnFAD2-C5内含子具有增强启动子转录水平的功能,该功能主要由631~1033 bp区域调控。  相似文献   

16.
利用农杆菌介导转化法,将含有35S启动子驱动NPTII基因和GUS基因以及棉纤维特异表达启动子E6驱动目的基因FB的植物表达载体转入到常规棉花R15中.重点分析了GUS基因和NPTII基因在愈伤诱导阶段、T0代及T1代转基因棉花中的表达情况.综合两个基因的表达来进行转基因棉花的阳性鉴定,可以为转基因棉花后代的纯合选育提供双重保障.7个转基因株系选育到T3代共获得株行51个,卡那霉素检测多数株行阳性率在90%以上,其中21个株行阳性率达100%.  相似文献   

17.
范昕琦  刘章伟  冯娟  徐鹏  张香桂  沈新莲 《作物学报》2013,39(11):1962-1969
盐胁迫是影响作物生长和发育的重要因素之一。一些棉属野生种具有较好的耐盐性, 是开展棉花耐盐性机制研究以及改良陆地棉耐盐性的重要资源。本研究基于cDNA-AFLP技术分离获得的旱地棉(Gossypium aridum)盐胁迫下差异表达片段序列信息, 经电子克隆技术和RT-PCR方法克隆了旱地棉苏氨酸醛缩酶基因cDNA全长, 命名为GarTHA (GenBank登录号为KC167360)。该cDNA全长为1 018 bp, 包含一个822 bp的完整ORF, 编码273个氨基酸残基, 蛋白质分子量为82.57 kD, 等电点为4.89。GarTHA基因与杨树PtTHA基因同源性最高, 为84.6%。为进一步验证其功能, 利用拟南芥逆境胁迫启动子rd29A构建植物表达载体, 将GarTHA基因的完整ORF转入拟南芥中, 获得转基因植株并进行了耐盐性鉴定。结果表明, 在盐胁迫下转基因拟南芥种子的发芽率明显高于野生型, 且转基因植株的根长显著高于野生型。说明GarTHA基因可能参与植物的盐胁迫反应, 从而提高植物抗逆性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号