首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
黄河中游粗泥沙集中来源区重点支流的遴选   总被引:1,自引:0,他引:1  
通过来沙粒径、输沙模数、水土流失面积占流域面积的比例等指标遴选出黄河粗泥沙集中来源区重点治理的支流。按水文站实测悬移质粒径粗细分析的重点支流的排序为:皇甫川、窟野河、秃尾河、佳芦河、孤山川、无定河、延河和清涧河;根据各支流坝地淤积物钻孔取样分析的d≥0.10 mm泥沙所占百分数由大到小排序是:窟野河、皇甫川、清水川、孤山川、石马川、秃尾河、无定河、佳芦河、乌龙河、延河和北洛河;在此基础上,再按粗泥沙输沙模数大小最后遴选的重点治理支流的顺序是:窟野河、皇甫川、清水川、秃尾河、孤山川、石马川、佳芦河、乌龙河、无定河。  相似文献   

2.
黄土高原粗泥沙集中来源区水沙变化特征及趋势性分析   总被引:5,自引:1,他引:4  
黄土高原粗泥沙集中来源区为治理黄河泥沙的重点核心地区.根据1960-1999年黄土高原粗泥沙集中来源区皇甫川、孤山川I、窟野河,秃尾河和佳芦河径流及输沙资料,以流域为单元,分析了区内各流域径流量、输沙量的年内、年际变化特征及变化趋势.结果表明,区内径流量及输沙量的年际、年内变化较大.在季节上,除秃尾河径流量集中期为6月份外,其余4条流域径流量的集中期均为8月份;5条流域输沙量的集中期均为8月份.各流域径流量、输沙量的突变时间均在20世纪70年代,说明各流域水沙量呈现减少的趋势,尤以20世纪90年代减少最明显.人类活动和气候变化是影响该区内各流域水沙变化的主要因素.  相似文献   

3.
黄土高原丘陵沟壑区淤地坝的淤地拦沙效益分析   总被引:23,自引:5,他引:23  
根据皇甫川、窟野河、佳芦河、秃尾河、大理河5条支流内黄丘区小流域淤地坝的调查资料,分析了淤地坝单坝的淤积速度、拦沙指标和拦沙效益,以及与其影响因素之间的关系。研究结果表明,黄土高原丘陵沟壑区淤地坝的淤地拦沙效益与淤地坝的规格、流域的侵蚀产沙特征有着密切的关系。淤地坝的平均淤积库容在0.9~2.4万m3之间,平均淤地面积在0.14~0.45 hm2之间,与坝高、坝控面积、侵蚀产沙模数和泥沙粒径成正比;拦沙指标变化在500~760万t/km2之  相似文献   

4.
北京地区降雨侵蚀力简易计算方法研究   总被引:4,自引:2,他引:4  
降雨侵蚀力反映了降雨对土壤侵蚀影响的潜在能力。降雨侵蚀力经典算法所需的降雨过程资料较难获得,一般利用各种类型雨量资料建立降雨侵蚀力的简易算法,为模型的参数输入服务。利用北京10个水文站25年2 894次降雨过程资料。其中5个站点用于建立日、月、年降雨侵蚀力简易计算公式,另外五个站点用语模型检验。研究结果表明,不同类型雨量资料估算降雨侵蚀力的精度不同,用日或月雨量资料直接估算日或月降雨侵蚀力时,模型的误差较大。用日、月或年雨量估算年降雨侵蚀力时,模型的误差较小,约有一半的样本相对误差绝对值小于20%,三个模型相比,日雨量模型估算的平均相对误差最小。用日、月或年雨量估算多年平均年降雨侵蚀力时,模型的误差最小,所有样本的相对误差绝对值均小于20%,平均相对误差绝对值最小值只有0.8%,最大值也小于7%,三个模型相比,日雨量模型的估算精度最高。因此在具体应用过程中可以根据资料的占有情况来决定相应的降雨侵蚀力估算模型。本研究结果可以为北京地区土壤侵蚀量估算和水土资源评价提供参数服务。  相似文献   

5.
景可 《中国水土保持》1993,(2):24-25,49
窟野河、孤山川、秃尾河三流域,是黄河中游多沙粗沙区的核心部分。三条河自1953年有观测资料以来,平均每年输入黄河的泥沙量为1.65亿t,其中粗沙量为0.89亿t。三条河各站1970年以来输沙量均为减少,其主要原因并非水土保持发挥了作用,而是由于降雨总量和降雨强度减少所致。神府煤田开发,至公元2000年平均每年将增加入黄泥沙量450万t。随着全球的增温,流域内的降雨量将会增加,植被的生境条件将得到改善,侵蚀产沙强度会随之减弱。但是,由于人口的增加,土地利用结构与垦殖指数都不会有明显的变化,所以流域的产沙不可能有大幅度的减少。  相似文献   

6.
为研究赣江上游降雨特征,以章水流域1955—2015年的22个雨量站日降雨资料为基础,对各站雨量及流域面雨量序列分别采用线性回归、滑动平均、Mann-Kendall趋势检验、Pettitt突变检验、Sen’s斜率估计等方法进行了研究。结果表明:章水流域多年平均降雨量为1 599.76 mm,其中春季最多,占全年的37.32%,冬季降雨最少,仅为13.05%。年降水量以0.17 mm/a速率缓慢增加;春、夏和冬季降水量呈现不显著的增加(α=0.10),增加速率分别为0.65,0.60,0.86 mm/a;但秋季降水量表现为显著减少趋势,速率为1.94 mm/a。从空间上来看,年、春和夏3个时段只有零星站点有显著变化趋势和突变,绝大多数站点特征表现稳定,无显著变化趋势和突变发生;而在秋季22个站点中有16个站点有显著的减少趋势,其中有7个站点的显著性超过0.05,主要分布在流域中上游地区,涉及崇义、大余和上犹西部;有10个站点的降雨在冬季具有显著的增加趋势,其中3个站点的显著性超过了0.05,主要分布在流域的中游。仅有个别站点年降水量和春季降雨量发生了突变,夏、秋、冬3个季节降雨突变站点较多在整个流域零散分布,发生时间大多在1992年及前后。  相似文献   

7.
黄河中游输沙与减沙的时空分异特征   总被引:1,自引:0,他引:1  
利用黄河中游主要水文站输沙量数据和48个雨量站降雨数据,分析了黄河中游1955年以来输沙与减沙特征,以及降雨与人类活动对输沙量变化的影响.结果表明:1955-2007年黄河中游输沙量总体呈下降趋势,20世纪70年代后较70年代前减沙46.8%,其中减幅较大的有汾河99.8%、岚漪河73.9%、州川河71.9%、三川河70.3%;退耕还林还草时期(1998-2007年)输沙量下降趋势最为明显,较70年代前减沙74.2%,除黄浦川,孤山川、佳芦河、屈产河、清涧河、延水之外,黄河中游大多数流域达到轻度侵蚀及以下;降雨因素和人类活动对输沙量变化的贡献率分别为37.6%和62.4%.  相似文献   

8.
为了获取适宜的黄土高塬流域面雨量计算方法,选择算术平均(Am)、泰森多边形(Tsn)、普通克里金(OK)、泛克里金(UK)、反距离权重(IDW)、简单克里金(SK)、考虑海拔的简单克里金(SK_EL)以及将海拔和空间坐标信息作为辅助因子的简单克里金(SK_EXY)和地形插补法(Tr)等9种方法计算了环江下游流域2006—2011年面雨量。结果表明:(1)各年面雨量Am法全流域只有1个数值,无空间分布,Tsn法呈斑块状分布,IDW法在站点周围空间趋势表达不连续,其余6种基于克里金方法的面雨量空间变化趋势基本一致,均是从东南向西北连续递减的等值带,其中OK的插值曲面最平滑,Tr与SK法的结果更加符合降雨随地形的变化趋势;(2)24站测值为基础的单年和多年交叉验证结果均表明各种方法插值所得面雨量的精度以考虑高程和站点空间信息的Tr法最高,SK_EXY其次,并没有一种插值方法在所有的精度检验指标中都最差;(3)当只考虑面雨量值不考虑其空间分布时,可以选择Am与Tsn法相结合,其值接近各种方法的均值,而当综合考虑面雨量值及其空间分布时,则宜选择Tr和SK_EXY法。  相似文献   

9.
黄土高原河龙区间暴雨可以造成极为严重的土壤侵蚀。为了探究河龙区间暴雨重现期的分布及变化规律,利用河龙区间及毗邻地区24个气象站点1957—2009年日降雨数据,分别用Gumbel分布和GEV分布模拟最大日雨量辨析这两种拟合方法的适用性,在此基础上,分析降雨极端事件的时空演变特征。结果表明:(1)对于短重现期(≤10a),两种分布模拟值最大日雨量(PMP)值相差较小;而在长重现期(≥20a)的水平上,GEV模拟精度较高。但若站点出现几次大暴雨且雨量相近的情况下,Gumbel模拟精度高于GEV模拟精度。(2)结合GEV分布和Gumbel分布,对河龙区间各站点的最大日雨量进行模拟。河龙区间2a,5a,10a,20a,50a,100a重现期的PMP分别介于40~70,50~85,60~100,70~110,85~130,95~150mm。河龙区间各重现期的最大日雨量的高值中心均分布在南部延河流域和西北部窟野河流域,而低值中心在西部横山以西和东北部偏关河以北地区。用3个时段数据(1950s—1960s,1970s—1980s,1990s—2000s)估算的5个代表站的最大日雨量值差异明显,在太原、榆林两站,1950s—1960s估算的最大日雨量较大,最大日雨量呈减少趋势。而在其它3个站点,均为1970s—1980s估算的最大日雨量较大。  相似文献   

10.
利用长江上游干流区域的降雨资料,计算流域面雨量,利用所研究区域上的各固定站点地理信息数据可以推求无资料地区的降水状况。并与算术平均法、泰森多边形法的计算结果进行对比分析,以此研究基于地理信息的插值法的面雨量计算方法的适用性,表明加入地理信息的流域面雨量计算方法在所研究区域是合理的。  相似文献   

11.
降雨侵蚀力反映了降雨对土壤侵蚀的潜在能力,准确评估降雨侵蚀力对水土保持规划和水土流失治理具有重要意义。近年来,网格化降水产品在计算中国的降雨侵蚀力方面发挥了积极作用,但不同降水产品存在一定的区域差异性。因此,为评估各类降水产品在不同区域的适应性以利于降雨侵蚀力的准确估计,该研究选用了4种网格化降水产品:中国逐日网格降水量实时分析系统数据集(China gauge-based daily precipitation analysis,CGDPA)、中国区域地面气象要素数据集(China meteorological forcing dataset,CMFD)、中国地面降水日值0.5°×0.5°格点数据集(v2.0)(Dataset of gridded daily precipitation in China(Version2.0),CN0.5)、热带降水测量计划—多卫星降水分析测量产品(tropical rainfall measurement mission-multisatellite precipitation analysis,TRMM-TMPA)3B42V7,采用日降雨侵蚀力...  相似文献   

12.
Despite the high variability of the precipitation regime characterizing the Mediterranean area, the records of rainfall depth are usually not appropriate for long‐term calculations of erosivity and soil losses, because they do not reveal details of short lengths or long durations (daily, monthly). In this work, we present a simple approach to calculate annual erosivity through monthly precipitation records. The study area (olive groves on steep slopes) has a high erosion risk associated to the main soil land use, combined with an irregular and erosive rainfall regime. The relationships between rainfall data at intervals of 10 min for a period of 3 years, daily rainfall records over 10 years and a long‐term monthly dataset of 60 years were checked to calculate the annual erosivity values through daily data, Fourier's index and modified Fourier's index values. A good, adjusted linear relationship between modified Fourier's index and the erosivity was found, which allowed us to optimize the use of the 60‐year monthly data series and to carry out a long‐term analysis of the erosivity quantiles in the study area. The estimated mean erosivity showed a return period of between 2 and 5 years and a variation coefficient of over 50 per cent, which illustrate its high variability and frequency. This approach to calculate erosivity and the use of quantiles could be applied in other areas with month‐long data series in order to study and model the erosion risk using suitable temporal periods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
采用659个气象观测站日值降水数据计算了中国年际和年代际暴雨雨量和暴雨雨日,然后基于中国气候变化区划(1961-2010年)对中国暴雨进行了分区统计.结果表明:在中国气候变化区划降水呈增加和减少的区域,绝大多数的暴雨呈现相应的年际和年代际的增加和减少趋势.但也有在降水趋势减少的I1东北-华北暖干趋势带的小兴安岭-长白山-三江平原气温波动增强、降水量波动减弱区和Ⅲ3西南-华南干暖趋势带的云贵高原南岭西部山地丘陵降水量波动增强、气温波动增强区两个二级气候变化分区,暴雨呈现增加趋势;反之在降水趋势增加的Ⅳ1藏东南-西南湿暖趋势带的藏东南山地-高原降水量波动增强、气温波动增强区,暴雨呈现减少趋势.进一步对暴雨分为短历时的对流型暴雨和长历时的过程型暴雨也有类似的结论.说明现有的一级和二级气候变化区划在一定程度上可以反映暴雨的变化,但仍需要深入采用以极端降水为指标的三级区划对暴雨变化进行研究.  相似文献   

14.
降雨侵蚀力是引起水力侵蚀最主要的动力因素,经典算法所必须的降雨过程资料在藏东横断山区难以获得,目前,藏东高山峡谷区的降雨侵蚀力研究很薄弱。本研究采用月平均降雨量和年平均降雨量为基础的不同降雨侵蚀力估算模型,比较分析了不同模型的估算精度。结果表明:基于年雨量的指数函数形式的模型适用于藏东横断山区降雨侵蚀力计算,具有较高精度。研究区年平均降雨量为540.1 mm,模型估算藏东横断山区降雨侵蚀力R值为298.67(MJ.mm)/(hm2.h.a)。  相似文献   

15.
The Tibetan Plateau (TP) in China has been experiencing severe water erosion because of climate warming. The rapid development of weather station network provides an opportunity to improve our understanding of rainfall erosivity in the TP. In this study, 1-min precipitation data obtained from 1226 weather stations during 2018–2019 were used to estimate rainfall erosivity, and subsequently the spatial-temporal patterns of rainfall erosivity in the TP were identified. The mean annual erosive rainfall was 295 mm, which accounted for 53% of the annual rainfall. An average of 14 erosive events occurred yearly per weather station, with the erosive events in the wet season being more likely to extend beyond midnight. In these cases, the precipitation amounts of the erosive events were found to be higher than those of the daily precipitations, which may result in implicit bias as the daily precipitation data were used for estimating the rainfall erosivity. The mean annual rainfall erosivity in the TP was 528 MJ mm·ha?1·h?1, with a broader range of 0–3402 MJ mm·ha?1·h?1, indicating a significant spatial variability. Regions with the highest mean annual rainfall erosivity were located in the forest zones, followed by steppe and desert zones. Finally, the precipitation phase records obtained from 140 weather stations showed that snowfall events slightly impacted the accuracy of rainfall erosivity calculation, but attention should be paid to the erosion process of snowmelt in the inner part of the TP. These results can be used as the reference data for soil erosion prediction in normal precipitation years.  相似文献   

16.
金沙江流域降雨侵蚀力时空分布特征   总被引:4,自引:1,他引:3  
[目的]分析金沙江流域降雨侵蚀力的时空分布的变化特征,为优化流域土壤流失定量评估及水土保持规划编制工作提供支持。[方法]利用气象台站降水资料验证了TRMM降水数据估算降雨侵蚀力在金沙江流域内的适用性,并结合气象站、TRMM和DEM数据,在Arc/Info软件提供的地图代数运算功能支持下,利用日雨量模型估算降雨侵蚀力开展分析和研究。[结果]1998—2015年TRMM 3B42降水数据和气象站降水数据估算金沙江流域多年平均的总体精度达到了82%,说明二者估算降雨侵蚀力的结果在合理误差范围内,金沙江流域降雨侵蚀力大体呈由东南向西北递减的趋势,地区差异大。总体上,高程越小的地区,降雨侵蚀力越大。流域年际变化同样存在空间分异,整体上呈现降低的趋势。[结论]将TRMM 3B42降水数据应用于气象站点稀疏的金沙江流域的多年平均降雨侵蚀力估算是可行的。但是各个站点估算结果的一致性高低程度不同,且某些年份的适用性程度受极端气候的影响。  相似文献   

17.
依据定西关川河流域1995-2010年的水文站监测数据,分析了该地区降雨特征及其水土流失效应。结果表明:(1)流域降雨事件主要发生在5-9月,7-8月降雨量达到全年最高值,而侵蚀性降雨主要发生在7-8月15a间侵蚀性降雨日数占总降雨日数的9.53%侵蚀性降雨量占总降雨量的39.41%。(2)15a间共观测到1|123d降雨,降雨总量达4866.98mm多年平均降雨量304.19mm,年际变化趋势不明显,每年约10%的侵蚀性降雨事件造成土壤侵蚀。(3)河川径流量与输沙量呈极显著正相关关系(p<0.001),二者均呈波动减少的趋势当表层土壤处于缺水状态时,降雨对土壤侵蚀的影响延迟。(4)由于影响土壤水蚀的因素错综复杂,降雨量、侵蚀性降雨量和降雨侵蚀力均不能独立反映流域土壤侵蚀过程。  相似文献   

18.
近60年关中-天水经济区降水量特征分析   总被引:1,自引:0,他引:1  
降水等气候要素变化将会影响农业生产。采用传统统计、空间插值和距平累积分析等方法,对关中—天水经济区及其周边26个代表性气象站点1951—2009年59a系列的降水实测资料进行了分析。结果表明:(1)降水量从西北向东南递增,不同的降雨强度在各年代分布不均,并且降水日数与降水量变化不完全一致。(2)1950s—1970s降水量减少,1980s后降水量增加,进入1990s后,降水量又开始减少,2000年后降水量略有增加。(3)降水量变化特征大致可分为3个阶段。大部分站点年降水量1968年或1975年以前高于多年平均降水量,1968—1990年或1975—1990年期间,年降水量围绕多年平均降水量震荡,1990年后,降水量普遍低于多年平均值。  相似文献   

19.
黑龙江省降雨侵蚀力的变化规律   总被引:4,自引:1,他引:3  
 利用黑龙江省16个气象站1960—2000年日降雨量资料,采用日降雨量侵蚀力模型计算降雨侵蚀力,对黑龙江省降雨侵蚀力变化规律及其与降雨量的关系进行分析。结果表明:1)黑龙江省1960—2000年年降雨侵蚀力、年降雨量、侵蚀性降雨量都呈升高的趋势,年降雨侵蚀力、年降雨量和侵蚀性降雨量变化速率分别为1.47MJ.mm/(hm2.h.a)、0.29 mm/a和0.35mm/a;2)黑龙江省16个气象站中有11个气象站降雨侵蚀力倾向率为正值,牡丹江降雨侵蚀力升高幅度最大,为15.6MJ.mm/(hm2.h.a),有5个气象站的倾向率为负值,其中齐齐哈尔降雨侵蚀力降低幅度最大,为-16.8MJ.mm/(hm2.h.a);3)16个气象站除哈尔滨、克山、呼玛、通河外,侵蚀性降雨时间变化对侵蚀性降雨量变化的作用大于侵蚀性降雨强度变化对侵蚀性降雨量变化的作用,显示大部分站点侵蚀性降雨量变化主要由侵蚀性降雨时间变化引起的。研究结果可为土壤侵蚀预报以及水土保持规划与决策提供依据。  相似文献   

20.
北京地区旱稻作物需水与降水的耦合分析   总被引:8,自引:1,他引:8  
基于4a的田间试验资料,采用农田水分平衡法确定了旱稻出苗后各生育阶段的需水量;利用1971年-2000年北京地区逐日降水资料,计算了旱稻各生育阶段在不同降水保证率下的降水量,并选取25%、50%、75%和95%保证率作为典型的湿润年、平水年、干旱年和极枯水年,进行旱稻各生育阶段降水与作物需水的耦合度分析和补灌量估算。结果表明:旱稻出苗后总需水量平均为596.1 mm,需水强度平均为4.3 mm/d,需水强度峰值出现在孕穗-抽穗阶段。4种降水年型下旱稻出苗后降水和旱稻需水的耦合度分别为0.82、0.71、0.50和0.39,所需的补灌量分别为106.6、171.1、296.0和363.9 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号