首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose

Heavy metals are among the most common environmental pollutants, which can be introduced into coastal areas from natural and anthropogenic sources, and thereby possibly impact marine organisms and human population. Therefore, the aim of this study was to evaluate the pollution level of Montenegrin coastal sediments by determining the concentrations of 10 metals and metalloids (Fe, Mn, Zn, Cu, Ni, Pb, Cr, Cd, As, and Hg) during one whole decade.

Materials and methods

Sediment samples were collected from 11 sites along the Montenegrin coast during the 2005–2016 exposure to different levels and sources of anthropogenic impact. The extent of pollution was estimated by determining total element concentrations in the sediment. Mineralized samples were analyzed for Cu, Ni, Fe, Mn, Cr, As, Pb, Zn, Cd, and Hg. Pollution status was evaluated using the contamination factor, pollution load index, and geo-accumulation index, as well as statistical methods, such as Pearson correlation coefficient (r) and cluster analysis (CA).

Results and discussion

This study showed that concentrations of individual metals at some locations were extremely high. The metal concentrations (in mg kg?1) ranged as follows: Fe 1995–45,498; Mn 135–1139; Zn 10–1596; Cu 3.8–2719; Ni 2.94–267; Pb 0.1–755; Cr 2.5–369; Cd 0.1–5.4; As 0.1–39.1; and Hg 0.01–14.2. The calculated concentration factor and pollution load index indicates enrichment by either natural processes or anthropogenic influences. The geo-accumulation index value (Igeo) showed that one location was strongly or extremely polluted (3.78?<?Igeo ≤?6.15) with Hg in all investigated years, while extreme Igeo values for four bioactive elements, Pb, Cd, Cu, and Zn, were found in only a few single samples.

Conclusions

On the basis of the obtained values, it can be concluded that generally higher metal contents were distributed in Boka Kotorska Bay sites, although some extreme values were also recorded at the locations outside of the Bay. Geo-accumulation index and pollution load index showed that the metal levels were high enough to pose risk to the ecosystem.

  相似文献   

2.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

3.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

4.
The objective of this study was to investigate changes of total concentrations and various extract-defined Al and heavy metal fractions in Slovak agricultural soils during the last 25 years. We compared 7 stored soil samples collected between 1966 and 1970 with samples collected in 1994 at the same sites. Seven fractions of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined with a sequential extraction procedure in all samples. Total concentrations of Cd, Zn, Mn, Ni, and Cu were lower in the 1994 samples; those of Al, Fe, Pb, and Cr were higher. Based on the initial concentrations, the average total concentration changes were: Cd(-10,3%)<Zn(-7,2%)<Mn(-4,8%)<Ni(-2,3%)<Cu(-1,4%)<Al(+2,1%)<Fe(+2,9%)<Cr(+7,4%)<Pb(+8,3%). This row is consistent with the decrease in metal mobility. The differences in salt-extractable metals showed the same pattern; however, changes were more pronounced than for total concentrations. The results suggest that decreases during the last 25 years are caused by higher leaching than deposition rates and increases vice versa. The highest increase in Cr and Pb concentrations is observed in the EDTA-extractable fraction, which mainly characterizes organically bound metals.  相似文献   

5.
Total content of trace elements (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn), was determined to a depth of about 1 m in the horizons of three representative podzolic soils (i.e., wet moor, dry moor, and dune soil) developed on the coarse sands of the Atlantic face of southwest France. In the aged soils (wet moor and dry moor), Cr, Cu, Ni, Pb and Zn, were highly concentrated in the B horizons whereas Cd accumulated in the litter. An estimate of metal balance was made in the soil profiles, comparing the total amount of metal recovered in the A-B horizons to the amount of indigenous metal determined in a rock matter (C) layer of a similar depth as the A-B horizons. Substantial long-term enrichment of the whole upper part of the profile (A-B horizons) of three representative sites was found for Cd (0.1–0.6 kg ha?1), Cu (3–12 kg ha?1), Ni (1–7 kg ha?1), Pb (20–26 kg ha?1), and, to a lesser extent, for Co, Mn, and Zn. Since the experimental site was remote from industrial, urban and agricultural activities, the increase in soil metal content was apparently caused by the deposition of metallic aerosols via long-range transport. Total long-term inputs are estimated for average values of Cd (0.6 kg ha?1), Cr (5 kg ha?1), Cu (12 kg ha?1), Ni (7 kg ha?1), Pb (25 kg ha?1) and Zn (6 kg ha?1) for the 1 m depth. Several Atlantic areas of Europe are probably affected by a similar metal input.  相似文献   

6.
This paper contributes to increase the knowledge of the contents and sources of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) to agricultural soils in Castellón province (Spain), a representative area of the European Mediterranean region. The surface horizons of 77 agricultural soils under vegetable crops were sampled and heavy metals were analysed by atomic absorption spectroscopy (AAS) after microwave extraction using the USEPA 3051A method. Mean heavy metal contents were similar to those obtained in other areas of this region. However, heavy metal contents (e.g. Cr, Pb) in some soils were above the maximum limit set in the 86/278/CEE Directive. Multivariate analysis (correlation analysis and principal component analysis – PCA) was performed so as to identify the sources of heavy metals to soils. Co, Fe and Ni were highly correlated amongst them (r?>?0.800; p?<?0.01), whereas Cr and Mn were less correlated with Co, Fe and Ni (r?>?0.500; p?<?0.01). Other relationships among heavy metals (i.e. Cu, Pb and Zn) were also identified, although correlation coefficients were not so high as those among Co, Fe and Ni (r?<?0.500; p?<?0.01). Contents of Co, Fe, Mn and Ni were interpreted to be mainly associated with parent rocks corresponding to the first principal component (PC1). On the other hand, Cd, Cu, Pb and Zn were interpreted to be mainly related to anthropogenic activities and comprised the second (Pb and Zn) and the third (Cd and Cu) principal components (PC2 and PC3, respectively), designated as anthropogenic components. Remarkably, Cr appears to be related in the study area to both the lithogenic and the anthropogenic components. Lithogenic elements were highly correlated with soil properties. Positive relationships with CEC (r?>?0.200; p?<?0.05) and clay (r?>?0.400; p?<?0.01), and negative relationships with carbonates (r?>??0.400; p?<?0.01) and sand (r?>??0.300; p?<?0.01) were observed. Anthropogenic elements were less correlated with soils properties, since these elements are generally more mobile because they form more soluble chemical species associated to anthropogenic sources. Particularly, no correlation was found between Cd and Zn and soil properties. These findings extend results achieved in other parts of the region, highlighting the need to set soil quality standards in order to declare soils affected by anthropogenic pollution, particularly in the case of anthropogenic metals such as Cd, Cu and Pb, and also Cr and Zn in some areas. Further knowledge from other areas in this region would improve the basis for proposing such standards at regional level, which is a priority objective in Europe according to the European Thematic Strategy for Soil Protection.  相似文献   

7.
Knowledge of differentiation of pollutants in urban runoff between dissolved and particulate matter is of great concern for a successful design of a water treatment process. Seasonal variations in pollutant load are of equal importance. Ten metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), as dissolved and particulate bound, was studied in the runoff from a major urban highway during a winter season and its following summer. Studded tyres and winter salting were expected to have an impact on the runoff water quality. The dissolved part of Al, Cd, Co, Cr, Mn and Ni was significantly higher in winter in comparison with summer (p?<?0.01). For Fe, however, the dissolved part was lower during winter. No significant difference was found for Cu, Pb and Zn between the two seasons. The mass concentration (mg kg?1) for all metals was significantly higher over the summer except for Al and Co, which showed a higher mass concentration during the winter. The concentration of selected metals vs. total suspended solids (TSS) showed a linear relationship (r 2?>?0.95) during winter runoff events except for Cd. A good correlation (r 2?>?0.90) was also found for the summer period for Al, Cu, Fe, Mn, Ni and Zn. It is suggested that the metal pollutant load during winter could be assessed indirectly by measurement of TSS.  相似文献   

8.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

9.
The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), “Dano” compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm3) of heavy metals in the leachate were as follows: Cd (3.6–11.5)?<?Mn (4.8–15.4)?<?Cu (13.4–35.5)?<?Zn (27.5–48.0)?<?Cr (36.7–96.5)?<?Ni (24.4–165.8)?<?Pb (113.8–187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.  相似文献   

10.
Forty-six surface sediment samples taken along the beds of boththe Jordan and Yarmouk Rivers were analysed for Pb, Cd, Zn, Fe andHg by atomic absorption spectrophotometer. Extraction techniqueswere used to establish the association of the total concentrations of Pb, Cd, Zn and Fe in the sediment samples withtheir contents in the exchangeable, carbonate, Fe/Mn oxides, organic and residual fractions.In the sediments of the Jordan River the recorded heavy metalsconcentrations were as follow: 8.1 ppm for Pb, 0.63 ppm for Cd, 20.3 ppm for Zn, 6 ppm for Hg and 1265.6 ppm for Fe; whereas in the sediment of Yarmouk River were 8.4 ppm for Pb, 0.67 ppm for Cd, 26.4 ppm for Zn, 6.2 ppm for Hg and 1370 ppmfor Fe. Pb, Cd, Zn, and Fe concentrations in the sediments ofboth rivers reflect the natural background value in shale, whereas Hg is moderately enriched. I-geo (geo-accumulation index) of metals in the sediments under study indicates thatthey are uncontaminated with Pb, Zn and Fe; contaminated tomoderately contaminated with Cd; and strongly contaminated with Hg. Heavy metal content in the sediments were found to be significantly influenced by different physico-chemical parameters. The effect of these physico-chemical parameters canbe arranged in the following order: clay fraction > organicmatter fractions > carbonate fraction > silt fraction. As sequential extraction procedure shows that the total concentration of the heavy metals are largely bound to the residual phase (retained 79.5% of Pb, 38% of Cd, 54.4% of Zn and 51.6% of Fe in Jordan River Sediments; and 88.6% of Pb, 48.2% of Cd, 37.6% of Zn and 59.5% of Fe in the YarmoukRiver sediments). The following sequence of mobility are suggested: Fe > Cd > Zn > Pb in Jordan River sediments, and Fe > Zn > Cd > Pb. in Yarmouk River sediments.  相似文献   

11.
Wet Deposition of Trace Metals in Singapore   总被引:3,自引:0,他引:3  
The concentrations of 12 trace metals (Al, Cd, Cr, Cu, Co, Fe,Mn, Ni, Pb, Zn, V, and Ti) in wet depositions are reported. Eighty four rainwater samples were collected using an automated wet-only sampler in Singapore for one year (2000) and subjected to chemical analysis using ICP-MS. Based on the volume-weighted meanconcentrations measured, the trace metals were classified into three groups: Al and Fe with an average concentration of largerthan 15 μg L-1, Cr, Cu, Mn, Ni, Pb, Zn, V, and Ti withconcentrations between 1 and 10 μg L-1, and finally Co and Cd with concentrations lower than 1 μg L-1. Elementenrichment factors were calculated to distinguish between naturaland anthropogenic sources. The calculation of crustal enrichmentfactors with Al as the reference element indicated that while Ti,Fe and Mn originated from crustal sources, the remaining trace metals (Cd, Cr, Co, Cu, Ni, Pb, Zn and V) were mainly derived from anthropogenic sources. The removal of the trace metals from the atmosphere by precipitation was influenced by the rainfall amount as well as pH. The magnitude of the measured average annual wet deposition fluxes of Al, Fe, and combustion-generatedelements such as V, Ni, and Cu is higher than that reportedfor other sites outside Singapore, owing to abundant rainfallthroughout the year in this region.  相似文献   

12.
The fluxes of metals (Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Pb, Cd, Cr, and Ni) in two spruce forest soils in S. Sweden were quantified using the lysimeter technique. Amounts in precipitation (dry and wet), throughfall, litterfall and annual accumulation in biomass were also quantified, as well as stores in soil and biomass. The metal concentrations of the soil solutions varied greatly according to season. The leaching of some metals (Fe, Cu, Pb, Cr, and organic forms of Al) was associated with the leaching of organic matter. These complexes were leached from the A horizon in considerable amounts. They were precipitated in the upper B horizon and only small amounts were transported further downward. By contrast, the leaching of Na, Mg, Ca, Mn, Cd, Zn, Ni, and inorganic forms of Al increased with increasing soil depth. The concentrations of these metals also increased with increasing soil solution acidity. The highest concentrations were often found at the transition to the C horizon. The amounts of Na, K, Mg, Ca, Mn, Al, Zn, Cd, Cr, and Ni leached from the rooting zone were found to be larger than the amounts deposited from the atmosphere, the main source of these metals being the mineral soil. The reverse was true of Ph, Cu, and Fe, the sink being the upper part of the B horizon.  相似文献   

13.
Concentrations of trace metals in mosses Hylocomium splendens (Hs) and Pleurozium schreberi (Ps) are compared along with wet deposition at 8 sites in Sweden. Cd, Mn, Zn and Cr concentrations were similar in both mosses, while Cu, Fe, Pb, Ni and V levels were 14 to 24% higher in Hs than in Ps. The comparison to wet deposition estimates indicates that concentrations in mosses are also influenced by other factors than the adsorption of precipitation. No correlation was observed between the wet deposition of Mn, Cr and Ni and moss concentrations.  相似文献   

14.
Environmental pollution due to uncontrolled e-waste recycling activities has been reported in a number of locations in China. In this study, heavy metal pollution from primitive e-waste processing facilities was investigated. The pollution is due to high concentrations of metals present in the surrounding soils and vegetables. The highest enrichment factor values due to e-waste wastewater and waste discharges were found at Anqiaotou Village and Beian Village. Vegetables from the vicinity of the e-waste processing sites were found to have higher heavy metal pollution index values in comparison with those from the background site. The bioaccessibilities of heavy metals were decreased in the order of Cd?>?Pb?>?Sn?>?Zn?>?Ni?>?Cr. The e-waste processing site was badly polluted by Cd, Pb, Zn, Ni and Cr, with its pollution level decreased in the following order: Cd?>?Pb?>?Cr?>?Ni?>?Zn?>?Sn. Additionally, the greatest risk among six metals in the e-waste processing areas is caused by Cd and Pb. The risks associated with the consumption of contaminated vegetables grown in e-waste processing regions may be a potential health concern.  相似文献   

15.
For productive utilisation of effluent–contaminated agricultural land, mobilisation and statistical analysis of potentially toxic elements in soil and plants of fields irrigated with mixedindustrial effluent have been undertaken. Total Fe,Mn, Zn, Cu, Pb, Ni and Cr have been estimated in soiland plant species of contaminated and noncontaminatedsites. 18 plants species and 18 root adjacent soilsamples from contaminated Kalipur area and 11 plantsspecies and 11 root adjacent soil samples fromuncontaminated Madhabpur area comprising majorcrops, vegetables and weeds have been included in thestudy. It is revealed that Hibiscusesculentus, Lycopersicon esculentum and Luffa acutangula growing in effluent–contaminated field show mobilisation ratio <0.5 for most of the PTE (Potentially Toxic Elements) likeCu, Pb, Ni, Cr and Cd and normal morphology.Surprisingly, weeds in particular, show highmobilization ratio >0.5 and simultaneously exhibithealthy gigantic morphology at the early floweringstage. Coriandrum sativum, Raphhanussativus, Solanum melongena, Spinaceaoleracea, Oryza sativum, Brassica oleraceashowed mobilization ratio >0.5 butmaintained normal growth. Based on mobilization ratioand external morphology, we suggest the cultivation ofplants H. esculentus, L. acutangula, L. esculentum in land irrigated with industrial effluent. The highest andsecond highest enrichment factor (EFpp)was found for Cd and Pb, respectively. Pearson'scorrelation coefficient indicated that the metal levelin soil is not the main factor governing metaluptake. This study will help in selecting plantspecies for cultivation in contaminated fields.  相似文献   

16.
为进一步探讨云南会泽铅锌冶炼厂历史遗留的环境问题,掌握新址所在区域土壤环境质量状况,以会泽铅锌冶炼厂新、旧场址周边土壤作为研究对象,随机布设14个采样点,采集42个土壤样品,采用电感耦合等离子体发射光谱仪和原子荧光光谱仪测定土壤样品中的Cr、Cu、Mn、Ni、Pb、Zn、Cd、As、Hg。采用综合污染指数法、地积累指数法、潜在生态危害指数法和健康风险评价方法对土壤中重金属污染特征及其健康风险进行评价。结果表明,云南会泽铅锌冶炼厂周边土壤中Cr、Cu、Mn、Ni、Pb、Zn、Cd、As和Hg的平均含量水平分别为92.25、226.81、1 567.45、65.16、394.66、1 451.63、11.16、43.81、0.47 mg·kg-1,除Cr、Hg外,其他重金属含量均超过《国家土壤环境质量标准》二级标准值,其中Cd的最高超标倍数为274倍。地积累指数评价结果表明,该区域土壤中Cd污染最为严重,处于偏重-极重污染范畴;潜在生态危害综合指数评价结果显示:该区域重金属污染处于强-很强的生态风险程度;健康风险评价结果表明:旧场址周边土壤中Pb、Cd对儿童均具有显著的潜在健康风险。  相似文献   

17.
Soils in areas of mining and smelting of Pb–Zn ores in Southern Poland are strongly enriched in heavy metals (Zn, Pb, Fe, Cd, Tl, As). The highest concentrations of Zn (<55,506 mg kg?1), Pb (<8,262 mg kg?1), Cd (<220 mg kg?1) and Tl (<67 mg kg?1) are linked to the fine fractions of upper soil layers in sites contaminated by past exploitation and processing of ores. The high stress of metals, and the negative influence of acid waste drainage has limited the development of flora and fauna in these areas. The increasing ability of plants to grow is due to the positive symbiotic action of fungi and bacteria. The mycorrhizal communities were identified in rhizospheres rich in unstable Zn–Pb–Fe sulphides such as sphalerite, galena, pyrite and marcasite and carbonates of Zn (smithsonite) and Pb (cerussite). They occur in associations with sulphates, e.g., gypsum. In parts of fungi, secondary mineral phases containing Zn, Pb, Fe and Mn occur. Metal-bearing aggregates formed during symbiotic action between myccorhiza and bacteria connected with them. They enhance the binding of bio-available ions of Zn, Pb and Mn in the most unstable phases. Metal contents in the mycorrhizal parts of the rhizospheric soils were determined by Atomic Absorption Spectroscopy. Mineralogical investigations involved X-ray diffraction, scanning electron microscopy with energy dispersive spectrometry.  相似文献   

18.
A total of 50 farmland soil samples were collected from the Yanqi County, Xinjiang, China, and the concentrations of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined by standard methods. The spatial distribution, pollution level and ecological risk status of heavy metals were analyzed based on GIS technology, the Geo-accumulation Index (Igeo), the Pollution Load Index (PLI) and the Potential Ecological Risk Index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn of farmland soils exceeded the background values of irrigation soils in Xinjiang by 1.5, 1.40, 1.33, 2.63, and 4.92 times, respectively. Cd showed a no-pollution level, Zn showed a partially moderate pollution level, Pb showed a slight pollution level, and Cr, Cu, As, Mn, and Ni showed no-pollution level, compared to the classification standard. The PLI values of heavy metal elements of farmland soils varied from 0.83 to 1.89, with an average value of 1.29, at the moderate pollution level. (2) The Individual Potential Ecological Risk Index for heavy metals in the study area was ranked in the order of: As > Ni > Cu > Cd > Pb > Cr> Zn. The RI values of heavy metals of farmland soils varied from 3.45 to 11.34, with an average value of 6.13, at the low ecological risk level. (3) Cu and Mn of farmland soils were mainly originated from the soil parent material and topography of the study area. As, Cd, Ni and Pb were mainly originated from human activities, and Cr and Zn may originated from both natural and anthropogenic factors in the study area.  相似文献   

19.
Heavy metal pollution was assessed in soils collected from 0–15, 15–30 and 30–45-cm depths of three industrial (FMC, PMC and CMC), and two municipal (BSD and MLF) waste disposal sites around Chittagong city in 2008. Soils were analysed for pH, organic carbon, total nitrogen, available P, exchangeable Ca, Mg, K and Na, and total Cd, Pb, Cu, Mn and Zn. The pH, organic C, total N, available P, total Cd, Pb, Cu and Mn, and contamination indices for Cd and Pb varied significantly among sites. Mean Cd, Pb, Cu, Mn and Zn were in the range 0.5–1.9, 54–86, 25–50, 261–624 and 204–330 mg kg?1, respectively. Contamination indinces for Cd, Pb, Zn and Cu were estimated by comparison with respective threshold values. Contamination indices showed that the sites MLF and FMC had low Cu contamination. Other sites were not contaminated with thisheavy metal. All sites except PMC were highly contaminated with Cd, FMC was moderately contaminated and the others had low Pb contamination. FMC was highly contaminated, but the others were moderately contaminated with Zn. The integrated contamination index revealed that PMC had low contamination and the other sites were highly contaminated with heavy metals.  相似文献   

20.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号