首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to investigate the effects of integrated nitrogen (N) management on soil fertility and crop productivity. Application of N sources in different proportions significantly (P ≤ 0.05) enhanced soil total N, organic matter, grain N uptake, straw N uptake, and grain yield. Maximum grain yield, total soil N (%), and organic matter (%) were recorded from the treatment of poultry manure as compared with other sole N sources. Among integrated application of N sources, 25% poultry manure + 75% mineral N source produced the greatest grain yield. Maximum total soil N and organic matter were observed in the combined application of 75% poultry manure + 25% mineral N. Maximum grain N and straw N uptake was recorded from the treatment applied with farmyard manure as sole N source. However, among integrated application of N sources, 25% poultry manure + 75% mineral N source resulted in the greatest grain N and straw N uptake.  相似文献   

2.
Abstract

Nitrogen (N) deficiency is a very common problem of alkaline soils. Incorporation of organic residues with urea could be promising practice for improving soil properties and crop yield. This study was aimed, to evaluate the responses of two maize cultivar (Azam and Jalal) to organic wastes and Urea (sole organic residues i.e. seed cake (SC), poultry manure (PM), press mud (PrM) and mineral nitrogen (urea) and their combinations with urea (25%, 50% or 75%) applied at 150?kg N ha?1 under field conditions. Significant differences were recorded for leaf area index, plant height, number of grains ear?1, 1000 grain weight, biological and grain yield to N sources. Maize cultivar Jalal performed significantly better than Azam for all tested traits. The performance of both cultivars was significantly better when N was applied as either SC/PM with urea at 25:75, SC and PM with urea at 25:25:50, 100% sole urea, SC/PrM with urea at 50:50, or all organic N sources (25%) with urea (75%). Integration of organic wastes with urea gave the higher maize yield however, it was similar to the yield obtained from sole urea but due to allied environmental and health hazards, the sole use of urea could not be encouraged.  相似文献   

3.
The productivity of cotton is lowest in India and far below that of the world average productivity. Suitable management practices like intercropping and judicious combination of organic and inorganic manures are considered as yield improvement technologies and can avoid environmental pollution. However, which intercrop is suitable for the study area and what combination of nutrients will perform better needs to be investiaged. With this background and to test-verify the same, field experiments were conducted on cotton with split plot design to evaluate cotton based intercropping system along with nutrient management practices for enhancing the cotton productivity. Five intercropping systems viz., sole cotton, cotton + onion, cotton + blackgram, cotton + greengram and cotton + lucerne were included in the main plot. The subplot consisted of combinations of inorganic and organic manures namely, 100% recommended inorganic nitrogen (N), 75% inorganic N + 25% N through poultry manure, 75% inorganic N + 25% N through sunnhemp, 75% inorganic N + 25% N through farm wastes, 75% inorganic N + 25% N through weed compost. The results revealed that sole cotton followed by cotton + blackgram intercropping and 75% inorganic N + 25% N through poultry manure recorded better growth and yield attributes, higher cotton yield during both the years. Cotton + onion resulted in the maximum cotton equivalent yield of 2396 kg ha?1 followed by cotton + blackgram (2240 kg ha?1). Better N use efficiency and post-harvest soil available N, phosphorus (P) and potassium (K) was also associated with cotton + blackgram intercropping and 75% inorganic N + 25% N through poultry manure. Benefit: cost (BC) ratios were also higher in the same treatment. It could be concluded from these results that the cotton productivity is higher under the sole crop of cotton, however, the cotton equivalent yield is significantly higher with intercropping and these treatments proved that soil fertility status can be sustained with integrated plant nutrient management practices and intercropping systems.  相似文献   

4.
With respect to the important effects of nitrogen (N) on plant growth and fruit production, a five-year experiment was performed to evaluate the effects of different sources of N fertilization including chemical and organic on the quantity and quality of citrus fruit. Using five-year old trees, different types of fertilization including ammonium sulfate, urea coated with sulfur, ammonium nitrate and manure were tested using seven treatments in five replicates from 2002 to 2007. Different plant quantitative and qualitative parameters were determined. The most effective strategy on fruit yield production was the use of urea coated with sulfur and manure with 92.46 kg ha?1 fruit yield followed by ammonium sulfate and manure (87.06 kg ha?1) and ammonium sulfate (86.43 kg ha?1). The combination of mineral and organic fertilization may be the most suitable fertilization strategy for citrus production.  相似文献   

5.
Although current recommendations in Brazil suggest the application of mineral and organic fertilizers, there is little information regarding the interaction between them in melon plants. This study aimed to evaluate the effects of mineral and organic fertilization in the plant development, nutritional status, and fruit yield of yellow melon. The following fertilizations were evaluated: mineral fertilization; bovine manure; bovine manure associated with mineral fertilization; poultry litter; and poultry litter associated with mineral fertilization. Bovine manure and poultry litter were applied at rates equivalent to 15 m3 ha?1 and 5 m3 ha?1, respectively. Phosphorus and potassium were applied based on the results of the soil analysis and nitrogen based on the expected yield of 20 to 30 t ha?1 of fruits. Phosphate and organic fertilizers were applied at the time of preparation of the beds, while nitrogen and potassium were supplied daily through irrigation water. Goldex F1 melon hybrid seedlings were used in the experiment. Plants were collected to evaluate the dry matter production at beginning of flowering, beginning of fruiting, fruit growth, and fruit harvest. Leaves were collected at flowering stage to evaluate the nutritional status of plants. Harvest was made when the fruits reached the intense yellow coloration. Organic fertilizers alone and combined to mineral fertilizer did not affect the dry matter yield of leaves, stems, fruits and shoot, the concentrations of macro and micronutrients in melon leaves, the nitrogen accumulation in the plant, and the yield of the yellow melon. The application of bovine manure associated to mineral fertilization showed the lowest values of nitrogen recovery applied. Bovine manure application resulted in increase of nitrogen organic forms in soil.  相似文献   

6.
Field experiments were conducted in 2010 and 2011 at the Agricultural College of Shiraz University to evaluate the effects of cattle manure and nitrogen (N) fertilizers on soil properties such as soil organic carbon (SOC), soil organic nitrogen (SON), soil electrical conductivity, soil pH and corn yield under two tillage systems. Treatments included tillage systems in two levels as conventional tillage and reduced tillage as subplots, cattle manure (0, 25 and 50 tons ha?1) and N fertilizer (0, 125 and 250 kg N ha?1) as sub-subplots. Results showed that SOC and SON were significantly affected by tillage system in both years of the experiment. SOC and SON were higher in reduced tillage compared to conventional tillage. Tillage system had no significant effect on grain yield, plant height and 1000 seed weight. Increased cattle manure rates at 25 and 50 tons ha?1 increased grain yield by 27% and 38%, respectively, in 2010 and 25% and 25% in 2011. The results showed that application of cattle manure combined with N fertilizer might be an efficient management to increase soil productivity in southern Iran, in soils with poor organic content. Additionally, reduced tillage showed to be an efficient method to increase soil organic matter.  相似文献   

7.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

8.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

9.
A 2-year pot experiment (2005–2006) was conducted in a greenhouse using rice variety Manawthuka on high-fertility Kasuya soil and low-fertility Futsukaichi soil. Fermented cow manure (CM) and poultry manure (PM) were applied as organic nitrogen (N) sources. In every manure application, 20 kg urea ha–1 was also applied at basal. Dry matter, grain yield, and nitrogen uptake were greater in PM than CM and significantly greater in Kasuya soil. In 2006, they increased in Futsukaichi soil but decreased in Kasuya soil. Apparent nitrogen recovery was greater in PM than in CM and increased in both soils in 2006 because of residual benefits from manure application. The apparent phosphorus recovery was greater in CM than in PM; however, large plant phosphorus accumulation was observed in PM. In both soils, the efficiency of CM is very low, and CM-only application is unlikely to achieve an optimal rice yield in the short term.  相似文献   

10.
ABSTRACT

The effect of deficit irrigation (DI) on wheat crop yield, soil physical parameters and on nitrate nitrogen movement in soil profile was evaluated under application of dairy manure and nitrogen fertilizer. Two levels of DI were taken as I0.6 (60% FC) and I0.8 (80% FC) along with two dairy manure levels (20 and 25 Mg ha?1) and three nitrogen levels (80, 100, and 120 kg ha?1). The grain yield was high under I0.8 than I0.6, whereas the irrigation level has no significant effect on soil organic carbon contents. Dairy manure, irrigation, and nitrogen indicated strong interaction with each other for all yield-related parameters during both years of study, however, results for 2nd year were highly positive. Soil nitrate nitrogen movement was significantly affected under I0.8 with high rate of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1). Results concluded that combined application of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1) under DI level I0.8 resulted in high grain yield. To overcome water scarce conditions, further experiments can be designed by addition of various organic matters in different combination that enhances the yield and soil health.  相似文献   

11.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

12.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

13.
Crop response to manure application may extend beyond the year of application due to residual nutrient availability. A field experiment was conducted to evaluate feedlot manure application (at 0 22.5, 45, 90 and 180 Mg ha?1) and subsequent residual effects (24-yr) on wheat and sorghum grain yields. Sorghum grain yields increased significantly with manure and nitrogen (N) fertilizer application. However, winter wheat grain yield showed no consistent response to manure and fertilizer application in the 9-yr when manure was applied. Averaged across the subsequent 24 years, residual feedlot manure and annual N fertilizer application significantly increased sorghum and winter wheat grain production. Application of cattle manure did increase soil organic matter content, pH and plant available soil nutrients. Our finding showed that growers could take advantage of the long-term benefits of nutrients supplied from manure application to bolster crop production, improve soil quality and reduce fertilizer input cost.  相似文献   

14.
The decomposition and the associated nitrogen (N) dynamics of organic N sources are affected by their contact with soil. While several authors have examined the effect of surface application or incorporation of crop residues on their decomposition rate, less information is available about the relationship between the placement of animal manure and their N mineralization rate. This study investigated the influence of chicken manure and cattle manure placement on soil N mineralization. The manures were incorporated or surface applied at 175 mg N kg?1, and N release was periodically determined over 56 days by measuring inorganic N [nitrate (NO3 ?) N and ammonium (NH4 +) N] in a 2 M potassium chloride (KCl) extract at a ratio of 1:10 (w/v). Results indicated that the control soil released a maximum of 64 mg N kg?1 soil at day 21, a sixfold increase over the initial concentration, which indicates its substantial mineralization potential. Manure treatments showed an initial increase in net NO3 ?-N content at the start of the experiments (until day 7) before an extended period of immobilization, which ended at day 21 of the incubation. A small but positive net N mineralization of all manures was observed from 28 days of incubation. At each sampling time, the mean mineral N released from the control was significantly less (P < 0.01) than surface-applied chicken manure, incorporated chicken manure, and surface-applied cattle manure. Treatments exceptions were at days 21 and 28 where N immobilization was at its peak. In contrast, incorporation of cattle manure showed a different N-release pattern, whereby the mineral N amount was only significantly greater than the control soil at days 42 and 56 with 84 and 108 mg N kg?1 soil respectively. Incorporation of chicken manure and cattle manure did not favor nitrification as much as surface application and cattle manure caused a much greater immobilization when incorporated than when surface applied.  相似文献   

15.
An experiment was conducted to study the effect of organic manure and chemical fertilizers on soil properties and vegetable crops in the cabbage-brinjal-red amaranth cropping pattern at the homestead in a Grey Terrace Soil (Aric Albaquept) of Bangladesh. There were eight treatments: poultry manure (PM) at 5 t ha?1, cowdung (CD) at 10 t ha?1, household waste (HW) at 10 t ha?1, PM at 2.5 t ha?1 + chemical fertilizers (CF), CD at 5 t ha?1 + CF, HW at 5 t ha?1 + CF, CF, and Control. The lone CF treatment indicates 100% chemical fertilizers and any manure + CF indicates supplementary or reduced rate of fertilizers. The PM at 2.5 t ha?1 + CF treatment performed the best yield for cabbage and brinjal, and HW at 5 t ha?1 + CF yielded the highest for red amaranth. The highest uptake of nitrogen, phosphorus, potassium, and sulfur was also found in the treatment that produced the highest yield. Bulk density, organic carbon, and nutrient availability in soil as determined after two-crop cycles were improved due to the applications of manure.  相似文献   

16.
The use of organic materials as a source of nutrients on agricultural lands ameliorates soil physical properties as well as being an environmentally friendly way of disposing of their wastes. This study was conducted to determine effects of three organic materials (poultry litter, cattle manure, leonardite) on yield and nutrient uptake of silage maize. Poultry litter and cattle manure were applied based on phosphorus (P) or nitrogen (N) requirements of the crop whereas leonardite was applied only one dose (500 kg ha?1) and also combined with three inorganic fertilizer doses (100%, 75%, 50% of recommended inorganic fertilizer dose). According to the results, the highest green herbage yield and nutrient uptake values were observed in LEO-100 whereas N-based treatments significantly decreased yield and nutrient uptake of silage maize. The use of organic materials as a combination with inorganic fertilizer in silage maize cultivation is highly beneficial for sustainable forage production.  相似文献   

17.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

18.
The influence of manure and diammonium phosphate (DAP) mineral fertilizer on germination, leaf nitrogen content, nitrate accumulation and yield of vegetable amaranth (Amaranthus hypochondriacus) was investigated. Field trials were set up at the University of Nairobi Field Station at the Upper Kabete Campus during the long rains of March–May in 2007 and 2008. Trials were laid out as complete randomized block design with four fertilization treatments: 20, 40, and 60 kg nitrogen (N) ha?1 supplied by DAP (18:46:0), 40 kg N ha?1 supplied by cattle manure and an unfertilized control variant. The vegetables were harvested at three maturity stages at 6, 7, and 8 weeks after planting. Results indicated that there were significant differences between treatments in germination percentage, leaf nitrogen content, nitrate accumulation and vegetable yield. Plants that received manure had a higher germination percentage than those that received the same amount of N supplied by the chemical fertilizer DAP. The yields generally increased from week 6 to week 8. The highest yield was recorded in plots receiving 40 kg N ha?1 from DAP at eight weeks after planting. Plots that were supplied with manure recorded the lowest yield when compared to the fertilizer treated plots at all rates. Leaf nitrogen content increased with increasing rate of N but only when N was supplied by DAP fertilizer. The leaf nitrogen content decreased with increasing age of the plants. The leaf nitrate content increased with increase in DAP application rate. Results indicate that manure application produced quality vegetables in terms of low nitrate levels, but leaf nitrogen and vegetable yields were low. DAP application effected higher yields, but the vegetables had high though acceptable nitrate levels.  相似文献   

19.
Abstract

During the last century, concerns about nitrate presence in the groundwater have tremendously increased worldwide, mainly because of its detrimental consequences on environment and human health. There are different factors contributing their past in nitrate pollution, farm manure is given due consideration. Knowing above facts, a field study was performed to check the effect of different farm yard manure (FYM) levels with urea on nitrate distribution in the soil profile and yield of wheat crop. The experiment was set out in a randomized complete block design, consisted of application of nitrogen at 125?kg ha?1 from urea, 80?kg ha?1 of N from urea +10 tons FYM ha?1 and 20 tons FYM ha?1 with three replications. Wheat (cultivar S7ehar-2006) was sown as test crop. Soil samples were examined to measure the nitrate concentration from four different depths (0–25, 25–50, 50–75, and 75–100?cm) after harvesting. Results showed that the straw yield, total biomass, spike length, and number of grains per spike and 1000-grain weight were significantly influenced by fertilizer strategies. All manure treatments significantly affected the infiltration rate and concentration of nitrate at different depths of the soil profile. Farm yard manure showed greater nitrate concentration up to 50?cm depth as compared to alone urea and combined application, while at the depth of 100?cm, combined application of urea and FYM showed a minimum concentration of nitrates than alone application of either urea or FYM.  相似文献   

20.
Experiments were conducted in an attempt to study the impact of using different organic residues as fertilizers on grain yield, magnitude of nitrous oxide (N2O) emissions, and soil characteristics. Five fertilizer treatments including conventional nitrogen (N) fertilizer, cow manure, rice straw, poultry manure, and sugarcane bagasse were applied in the rice field in 2012. The maximum reduction in seasonal N2O emissions (10–27%) was observed under the influence of rice straw application over conventional N fertilizer. The experiment was repeated for a second season in 2013 with the same treatments for further confirmation of the results obtained during the first year of experimentation. The application of rice straw also showed a slight advantage by increasing grain yield (4.38 t ha?1) compared to control. Important soil properties and plant growth parameters were studied and their relationships with N2O emission were worked out. The incorporation of organic residues helped in restoring and improving the soil health and effectively enhancing grain yield with reduced N2O emission from rice fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号