首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
The diagnosis and recommendation integrated system (DRIS) approach was used to interpret nutrient analyses of leaf tissues from pomegranate cv. Bhagwa orchards grown in southwestern Maharashtra, India. The DRIS norms were established for three growth stages,viz. 50% flowering, fruit development and first harvesting of pomegranate. Various nutrient ratios were obtained from high-yielding population and were used to compute DRIS indices for diagnosing nutrient imbalances and their order of limitation to yield. Nutrient sufficiency ranges at 50% flowering derived from DRIS norms were 1.32–2.15% nitrogen (N), 0.18–0.24% phosphorus (P), 1.29–1.99% potassium (K), 0.64–1.20% calcium (Ca), 0.23–0.45% magnesium (Mg), 0.16–0.26% sulfur (S), 103.04–149.12 mg kg?1 iron (Fe), 39.60–72.85 mg kg?1 manganese (Mn), 15.99–26.10 mg kg?1 zinc (Zn), 6.16–9.32 mg kg?1 copper (Cu), 23.38–39.88 mg kg?1 boron (B) and 0.29–0.47 mg kg?1 molybdenum (Mo). Similarly, the sufficiency range at fruit development and first harvesting was developed for computing DRIS indices. The requirement of Fe, Mg, S, Zn and N by the pomegranate plant was higher at 50% flowering and fruit development stages. According to these DRIS-derived indices, 87.85, 73.83, 70.09, 69.16 and 65.42% orchards were deficient in Fe, S, Mg, Zn, and N, respectively, at 50% flowering, while 70.03, 66.36, 63.55, 61.68, and 68.22% orchards were found to be deficient in respective nutrients during the fruit development stage.  相似文献   

2.
The Diagnostic Recommendation and Integrated System (DRIS) was employed to interpret nutrient analyses of leaf tissues from ber fruit tree orchards grown in semi-arid and arid areas of Punjab in northwest India. The DRIS norms were established for various nutrient ratios obtained from the high-yield population and were used to compute DRIS indices, which assessed nutrient balance and their orders of limitation to yield. Nutrient sufficiency ranges derived from DRIS norms were 0.688–1.648%, 0.184–0.339%, 1.178–1.855%, 1.064–1.768%, 0.234–0.391%, and 0.124–0.180% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) and were 55–205, 26–80, 17–33, and 5–11 mg kg?1 for iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively. According to these DRIS-derived sufficiency ranges, 79%, 76%, 76%, 75%, 84%, and 72% of samples were sufficient, whereas 13%, 15%, 21%, 14%, 7%, and 18% of total samples were low in N, P, K, Ca, Mg, and S, respectively. For micronutrients, 84%, 85%, 77%, and 86% of samples were sufficient, whereas 6%, 3%, 8%, and 2% of samples were low in Fe, Mn, Zn, and Cu, respectively.  相似文献   

3.
Abstract

The Diagnostic and Recommendation Integrated System (DRIS) was employed for interpreting nutrient analyses of leaf tissue of guava fruit trees (Psidium guajava L.) cultivated in Punjab, northwest India. Standard reference DRIS norms were established for various nutrient ratios and used to compute DRIS indices, which assessed nutrient balance and order of limitation to yield. The DRIS evaluation and sufficiency range approach were equally effective and in agreement for diagnosing deficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S), manganese (Mn), zinc (Zn), and copper (Cu). The results also show that the position of leaf tissue sampled does not have a major effect on the DRIS diagnosis. Nutrient sufficiency ranges derived from DRIS norms were 1.41–1.65, 0.10–0.17, 0.51–0.97, 1.16–2.12, 0.31–0.51, 0.18–0.28% for N, P, K, Ca, magnesium (Mg), and S and were 105–153, 58–110, 15–29, and 6–16 mg Kg?1 for iron (Fe), Mn, Zn, and Cu, respectively. According to these sufficiency ranges 35, 62, 51, 75, 70, and 68% of samples were sufficient, and 4, 29, 36, 9, 10, and 22% of samples were low in N, P, K, Ca, Mg, and S, respectively. More than 50 and 2% of the guava trees selected for sampling was found to deficient in N and P, respectively. For micronutrients, 15, 6, and 7% of samples were found to be low in Mn, Zn, and Cu.  相似文献   

4.
Diagnostic and recommendation integrated system (DRIS) norms were established for various nutrient ratios obtained from the high-yield population of maize cultivated in submountainous areas of Punjab and were used to compute DRIS indices. Nutrient sufficiency ranges derived from DRIS norms were 1.67–3.12, 0.23–0.43, 0.89–2.56, 0.21–0.50, 0.1–0.32, and 0.10–0.20% for nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) and were 181–278, 27–75, 14–29, and 4–8 mg kg?1 for iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively. According to these DRIS-derived sufficiency ranges, 95, 94, 95, 87, 90, and 86% of samples were sufficient whereas 4, 3, 4, 2, 2, and 2% of samples were low in N, P, K, Ca, Mg, and S, respectively. In micronutrients, 80, 90, 85, and 68% of samples were sufficient, whereas 36 17, 10, 14, and 31% samples had excessive Fe, Mn, Zn, and Cu, respectively. Thus, the DRIS approach can be employed to obtain the fertility status of the soil, and the amount of each nutrient can be computed for balanced utilization of fertilizers.  相似文献   

5.
ABSTRACT

The objective of this work was to establish and compare Diagnosis and Recommendation Integrated System (DRIS) norms with the sufficiency range approach, and apply these methods on nutritional diagnosis of Arabian coffee, in field samples collected in summer and winter in Southern Brazil. DRIS norms and sufficiency range were established in groves with average biennial yield equal or above 3000 kg ha? 1. The “t” test was used to verify the differences between the sufficiency range and the DRIS norms. The foliar concentrations of nitrogen (N), phosphorus (P), and sulfur (S) were higher in summer, and iron (Fe), and manganese (Mn) in winter. The reference values should be specific for the period of the year. There were differences in the foliar nutritional diagnosis, between the DRIS method and the sufficiency range approach. In samples during the summer analyzed with DRIS, copper (Cu), S, potassium (K), and zinc (Zn) were considered more limited nutrients and Mn, S, K, and calcium (Ca) when the sufficiency range was used.  相似文献   

6.
Diagnosis and Recommendation Integrated System (DRIS) approach was employed to monitor the nutrient status of cotton (Gossipium hirsutum) in southwestern districts of Punjab, North-West India. DRIS norms for macro, secondary and micro nutrients in cotton plant are developed. Considering these DRIS norms, the most limiting nutrient for cotton plant in the region is identified along with the order in which the other nutrients become limiting. The DRIS approach indicated that 11, 3, 8, 5, 2, 4, 2, 3, 6 and 2 percent of the total cotton leaf samples collected were low in nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively. Leaf tissues of cotton plant were also found to contain high to excessive content of N, P, K, Ca, Mg, S, Fe, Mn Zn and Cu in 11, 7, 15, 19, 25, 18, 66, 33, 9 and 25 percent samples, respectively. DRIS derived sufficiency concentration ranges obtained from survey of cotton fields in this region were 2.22 to 5.20% N, 0.20 to 0.47% P, 1.05 to 2.14% K, 1.66 to 2.86% Ca, 0.34 to 0.57% Mg, 0.65 to 1.11% S, 106 to 172 mg kg?1 Fe, 35 to 68 mg kg?1 Mn, 18 to 33 mg kg?1 Zn, and 5 to 8 mg kg?1 Cu. The results elucidate that DRIS technique can be used for macro, secondary and micro nutrients indexing of cotton crop irrespective of its cultivar.  相似文献   

7.
Abstract

Diagnosis and Recommendation Integrated System (DRIS) norms for nitrogen (N), phosphorus (P), potassium (K), sulfur (S), chlorine (Cl) and sodium (Na) and nutrient sufficiency ranges for Aloe vera, Kalanchoe blossfeldiana, Lavandula multifidi, and Rosmarinus officinalis were based on two experiments. DRIS norms and nutrient ratios were computed and selected. Nutrient sufficiency ranges were developed using the data of the whole population according to the DRIS approach. The development of DRIS norms revealed that only K. blossfeldiana and R. officinalis showed limiting nutrients. The nutrient sufficiency ranges for each species expressed in mg g?1 were: A. vera (N (9–28), P (1–3), K (37–48), S (8–10), Cl (47–50), Na (17–37)), K. blossfeldiana (N (16–22), P (2–3), K (35–39), S (7–10), Cl (45–54), Na (7–19)), L. multifida (N (15–16), P (1–7), K (18–37), S (7–8), Cl (41–60), Na (21–49)), R. officinalis (N (9–23), P (2–5), K (31–48), S (7–8), Cl (36–40), Na (7–12)). The establishment of these DRIS norms will useful to manage the nutritional status of the species studied under saline conditions.  相似文献   

8.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

9.
Abstract

A regional survey was conducted in commercial orchards of pomegranate (Punica granatum L.) in order to develop diagnostic norms and for evaluation of yield limiting nutrients in low yielding orchards. The leaf nutrient status was interpreted using Diagnosis and Recommendation Integrated System (DRIS) and Compositional Nutrient Diagnosis (CND). The correlation structure among the nutrients was extracted by Principal Component Analysis (PCA). The departure of DRIS indices from their CND counterparts was relatively small and a highly significant positive correlation was obtained between DRIS and CND indices. The three principal components explained 59.5% of the variation in the high yielding population and the designated PCS were (N+S+Zn+Fe‐Mn‐), (N+P+Ca+Zn‐), and (K‐S+). Pomegranate is mainly grown on marginal soils with low fertility and hence more than two or three nutrients were found to be limiting yields. However, nitrogen (N) and zinc (Zn) were the most common yield limiting nutrients. The DRIS and CND indices for low‐yielding orchards are reported and discussed.  相似文献   

10.
ABSTRACT

Diagnosis and recommendation integrated system (DRIS) norms were computed from the data on leaf mineral composition, soil available nutrients, and corresponding mean fruit yield of three years (1999–2002), collected from the set of 57 irrigated commercial ‘Nagpur’ mandarin (budded on Citrus jambhiri Lush) orchards, representing 26 locations and 3 basalt derived soil orders (Entisols, Inceptisols, and Vertisols) rich in smectite minerals. The DRIS norms derived primarily from spring-cycle index leaves from non-fruiting terminals sampled during August to October (6–8 months old) suggested optimum leaf macronutrient concentration (%) as: 1.70–2.81 nitrogen (N), 0.09–0.15 phosphorus (P), 1.02–2.59 potassium (K), 1.80–3.28 calcium (Ca), and 0.43–0.92 magnesium (Mg). While, optimum level of micronutrients (ppm) was determined as: 74.9–113.4 iron (Fe), 54.8–84.6 manganese (Mn), 9.8–17.6 copper (Cu), and 13.6–29.6 zinc (Zn) in relation to fruit yield of 47.7–117.2 kg tree? 1. Likewise, DRIS indices for soil fertility developed from dripline soil samples collected at 0–20 cm depth corresponding to similar level of fruit yield, the optimum limit of soil available nutrients (mg kg? 1) was observed as: 94.8–154.8 N, 6.6–15.9 P, 146.6–311.9 K, 401.0–601.6 Ca, 85.2–369.6 Mg, 10.9–25.2 Fe, 7.5–23.2 Mn, 2.5–5.1 Cu, and 0.59–1.26 Zn. Primary DRIS indices developed on the basis of leaf and soil analysis revealed deficiency of N, P, K, Fe, and Zn. The nutrient constraints so diagnosed were further verified through fertilizer response studies carried out on a representative Typic Haplustert soil type facing multiple nutrient deficiencies, and accordingly suggested the revised fertilizer schedule.  相似文献   

11.
《Journal of plant nutrition》2013,36(12):2831-2851
ABSTRACT

The Diagnosis and Recommendation Integrated System (DRIS) approach evaluates plant nutritional status. The Diagnosis and Recommendation Integrated System is based on a comparison of crop nutrient ratios with optimum values from a high-yielding group (DRIS norms). Several researchers affirm that once DRIS norms based on foliar composition have been developed for a given crop, they are universal and applicable to that particular crop grown at any place and at any stage of its development. But different diagnoses with DRIS norms established for the same crop but under different growth conditions have been found. The objectives of this study were (i) to evaluate the confidence intervals of three DRIS norms of sugarcane crop, (ii) to compare sugarcane nutritional diagnosis with three DRIS norms, and (iii) to evaluate the universal use of DRIS norms in sugarcane crop. Sugarcane DRIS norms were tested. Means for nitrogen (N)/phosphorus (P), N/calcium (Ca), N/copper (Cu), manganese (Mn)/N, N/zinc (Zn), Ca/P, Cu/P, Mn/P, Zn/P, potassium (K)/Ca, K/Cu, Mn/K, Zn/K, Mn/Ca, Zn/Ca, Cu/magnesium (Mg), Mn/Mg, Zn/Mg, Mn/Cu, Zn/Cu, and Zn/Mn of these three DRIS norms were significantly different (?p<0.05). The sugarcane nutritional diagnosis derived from norms published in the literature was different. These three DRIS norms were not universally applicable to the sugarcane crop. Therefore, in the absence of DRIS norms locally calibrated, norms developed under one set of conditions only should be applied to another if the nutrient concentrations of high-yielding plants from these different set of conditions are similar.  相似文献   

12.
Sub-optimum production in pineapple fields in India is a common feature in Alfisols. The diagnosis and management of nutrient constraints assume a greater significance in maximizing production sustainability. DRIS norms were computed from the data bank of 324 sub-plots on leaf mineral composition, soil available nutrients, and corresponding mean yield representing three diverse pineapple belts for 3 seasons during 2002 –04. DRIS norms derived primarily from basal portion of ‘D'leaves sampled at 4th to 5th month suggested optimum leaf nutrient concentration viz. 1.21–1.85% nitrogen (N), 0.13–0.18% phosphorus (P), 1.19–1.62% potassium (K), 0.27–0.35% calcium (Ca), 0.43–0.56% magnesium (Mg), and 78.4–102.5 iron (Fe), 41.5–58.3 manganese (Mn), 7.4–10.2 copper (Cu), and 12.2–15.8 zinc (Zn) (ppm) in relation to fruit yield of 55–72 tons ha?1. Likewise, DRIS norms for soil fertility corresponding to similar level of fruit yield were determined. The norms were further observed validating the leaf/soil test values obtained from productive plots, suggesting the DRIS as a dynamic interpretation tool for diagnosis of nutrient constraints using both, leaf as well as soil analysis.  相似文献   

13.
Various approaches for the Diagnosis and Recommendation Integrated System (DRIS) indices were employed like Beaufil's ER, Elwali and Gascho and Jones. As per the Beaufil's approach of DRIS indices, the nutrient requirements in the initial stage of the apple tree were magnesium > nitrogen > sulfur > phosphorus > copper > zinc > iron > manganese > boron > calcium > potassium (Mg > N > S > P > Cu > Zn > Fe > Mn > B > Ca > K) and in the later stage at 40–50 years, the nutrient requirements were S > Cu > Mg > Fe > P > N > Ca > Mn > K > Zn > B, thus demanding a foliar application of magnesium salt and urea which are required in high amounts in the initial stage; however in the later stage, the yield depression was not attributed to the nutrient deficiency but rather trees' genetic make-up which destabilizes the higher yield in the period of 50 years. Nutrient sufficiency ranges for apple derived from DRIS norms were 1.91–2.24, 0.18–0.26, 1.11–1.61, 1.74–1.88, 0.30–0.33 and 0.28–0.30% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), respectively.  相似文献   

14.
豫西地区红富士苹果叶片营养诊断   总被引:6,自引:1,他引:5  
通过22个有代表性果园苹果叶片矿质营养分析,采用诊断施肥综合法(DRIS)对豫西红富士苹果进行了叶片营养诊断。结果表明,豫西红富士苹果叶片N、P、K、Fe、Mn、Cu、Zn的适宜含量分别为:22.54±3.00 g/kg、2.42±0.28 g/kg、9.31±1.40 g/kg、104.47±15.03 mg/kg、33.89±5.77 mg/kg、3.38±0.39 mg/kg、29.71±4.91 mg/kg,N:P:K的适宜比例为1:0.08~0.14:0.31~0.55。DRIS诊断参数确定为N/P、K/N、K/P、Cu/N、P/Mn、Cu/P、P/Zn、K/Fe、K/Cu、Zn/N和K/Zn,这11种比例关系的变异程度均表现出低产园(变异系数范围为20.44%~40.82%)明显高于高产园(变异系数范围为8.69%~23.95%);高产园和低产园的营养不平衡指数(NII)分别为39和88。对Fe、Mn和Zn元素需求强度较大的果园分别占供试果园的86%、82%和50%。相对于高产园,低产园元素间关系较不平衡;总体而言,豫西红富士苹果园需求强度较大的元素是Fe、Mn或Zn,其次是N或P。  相似文献   

15.
Previous research has shown that the Diagnosis and Recommendation Integrated System (DRIS) is useful to identify the nutrient most likely to limit yield of soybean (Glycine max). However, recent work with other crops has shown that DRIS diagnoses are sometimes unsatisfactory due to large numbers of false positve (F+) diagnoses, which would lead to recommendation of unnecessary fertilizer application. This paper reports a reconsideration using the prescient diagnostic analysis approach of data previously used to establish the diagnostic utility of DRIS for soybean. In addition to previously‐published evaluation criteria, the approach is extended by defining an efficiency rating which accounts for differences in the incidence of sufficient and deficient cases. Using this evaluation approach, DRIS phosphorus (P) and potassium (K) diagnoses of soybean using numerous sources of norms and methods to calculate function values and nutrient indices led to unacceptable efficiency ratings (<67%), even though accuracies often exceeded 90%. In one test, diagnoses of nitrogen (N), P, and K by both DRIS and sufficiency ranges were low in accuracy and efficiency ratings. In several other tests, poor ratings for P diagnoses often followed from low accuracy among deficient cases; i.e. false negative (F‐) diagnoses were excessive. In contrast, K diagnoses were often poor due to low accuracy among cases of sufficiency: false positive (F+) diagnoses were excessive. Despite much modification, DRIS diagnoses of soybean N, P, and K status among data sets of known response to fertilizer application are not sufficiently reliable to support routine adoption of DRIS for diagnosis.  相似文献   

16.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

17.
Plantations of hybrid poplars adapted to relatively poor soils and cold conditions are being established in abandoned fields and forest sites in southern Quebec. Hybrids of Populus maximowiczii are well adapted to these sites but little is known about their nutritional requirements. The objectives of this study were to develop nutritional norms (CVA, DRIS, CND) for three of these hybrids: 915508, Populus euramericana or canadensis X Populus maximowiczii; 3729, Populus nigra X Populus maximowiczii; and 915303, Populus maximowiczii X Populus balsamifera, and to apply the norms on some sites recently planted in southern Quebec. Six plantations (two per clone) were used for the determination of nutritional norms. In each plantation, individual trees were fertilized with nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) according to a factorial design with three levels of application for each nutrient (35 = 243 treatments). Tree diameter and height, unit foliar mass and foliar chemistry (N, P, K, Ca, and Mg) of each tree were determined two years after fertilization. CVA, DRIS and CND norms were determined using a boundary-line approach with each plantation. Nutritional norms could be established for most combinations of clones and nutrients. CVA, DRIS and CND indices produced with published optimum nutrient concentrations for hybrid poplars closely related to P. maximowiczii were generally in agreement with the ones developed in our study. Differences in nutritional norms among P. maximowiczii hybrids/clones were small but hybrid/clone specific norms could provide more precise estimates of tree nutrition. The application of the norms on some representative sites of southern Quebec revealed more frequent nutrient imbalances than true nutrient deficiencies with generally excessive Ca and Mg, and limiting N, P, and K.  相似文献   

18.
Abstract

A nutrient concentration vs. yield data bank was established for vines grafted on Dog Ridge (Vitis champini) rootstock for developing DRIS ratio norms during bud differentiation stage (BDS) and flowering stages (FS). The data were further subdivided into medium‐ and low‐yielding population based on yield performance. DRIS ratio norms were developed for medium‐yielding population, while diagnoses of nutrient imbalances were made in the low-yielding population. Sixty‐six nutrient expressions were chosen as diagnostic norms. Among the nutrient ratios selected to form diagnostic parameters phosphorus/nitrogen (P/N) (0.260), potassium/nitrogen (K/N) (1.761), phosphorus/zinc (P/Zn) (0.0056) had greater physiological rationale during flowering stage. The ratios of N with P (N/P 3.42) and K (N/K 0.68) were found to be more critical during BDS. Group differences between low‐ and medium‐yielding population were determined using discriminant analysis. The nutrient concentration during FS in medium‐ and low‐yielding populations differed significantly, and magnesium (Mg) accounted for nearly 60.97% of the variation. The difference in mean nutrient concentration during BDS and FS was mainly due to Mg followed in importance by sodium (Na). During BDS Na, followed by Mg and calcium (Ca) were the most common yield‐limiting nutrient, while there was an accompanying excessive accumulation of K, manganese (Mn), and iron (Fe). During FS, Fe, copper (Cu), and K were the most common yield‐limiting nutrients whereas Ca, N, and Mg were on the excessive range.  相似文献   

19.
Abstract

In prescient diagnostic analysis, conclusions about the need for fertilizer application based upon nutrient diagnostic methods are compared to independently‐determined correct diagnoses based upon yield responses to nutrient application. If a nutrient is diagnosed as being required (i.e., deficient or insufficient), the diagnosis is positive; no requirement is a negative diagnosis. Diagnoses are verified and classified as either true or false by their agreement with observed presence or absence of significant yield increases in response to application of the nutrient in question, A diagnostic method is considered acceptable only if: 1) at least 50% of all verifiable diagnoses are correct; 2) positive diagnoses are true more often than false; and 3) the net yield effect attributable to indicated nutrient treatments is positive. Using this approach, previously published Diagnosis and Recommendation Integrated System (DRIS) and published or derived concentration‐based diagnoses of wheat, corn and alfalfa were evaluated. DRIS and sufficiency range (SR) diagnoses for. wheat were acceptable based upon the above criteria for N, P and K, but only DRIS diagnosed S requirements satisfactorily. DRIS diagnoses of P and K in corn were acceptable, but N and S diagnoses exhibited marginal to unacceptable accuracy and yield responses; SR diagnoses were equal for P and K, and superior for N and S. For alfalfa, false positive N and K diagnoses at one location and false positive K and false negative P diagnoses at another location made accuracy and yield effects of DRIS unacceptable. These results demonstrate that neither SR nor DRIS diagnoses are consistently superior or even acceptable for wheat, com and alfalfa nutrient diagnoses.  相似文献   

20.
The leaf nutritional status of mango orchards was assessed using diagnosis and recommendation integrated system (DRIS). The DRIS norms, which showed higher variance and lower coefficients of variation, are found to have greater diagnostic precision. As per DRIS indices, a relative deficiency for magnesium, zinc, and boron corresponding to relative sufficiency for calcium, nitrogen, phosphorus, sulfur, and potassium was detected in 9-year-old mango orchards. For the younger orchards (6–7 year old), the order of requirement of nutrients was found to be calcium > sulfur > potassium > boron > nitrogen > phosphorus > magnesium > zinc. Boron was found as the most yield-limiting elements in all age group of plants. When the DRIS indices were compared on the basis of soil pH, calcium and magnesium were most yield-limiting nutrients below pH 5.5, while nitrogen, zinc, and boron were found to be most limiting above pH 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号