首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Soil subsidence of Florida Histosols caused by microbial oxidation following drainage of these soils has resulted in decreased depth. Soil pH has increased from tillage operations and vertical movement of carbonates from underlying limestone bedrock through evapotranspiration and seepage irrigation. This study was conducted to determine sugarcane (Saccharum spp.) yield response to banded elemental sulfur (S) (granular 90% S and granular 80% S with 5% manganese (Mn)) in soils with unamended pH ranging from 6.5 to 7.2. Four field experiments were established as small-plots on Histosols in the Everglades Agricultural Area (EAA). Each experiment was a randomized complete block design with six replications and elemental S rates of 0, 90, 224, and 448 kg S ha?1. Less than optimum leaf Mn at two locations were associated with Mehlich 3-extractable Mn<5 g m?3. There were no sugarcane yield responses to elemental S with unamended pH<7.2, although S significantly reduced in-row pH.

Abbreviations: EAA, Everglades Agricultural Area; ICP, inductively coupled argon plasma; KSM, kg sucrose Mg?1 cane; MAP, monoammonium phosphate; M3-Mn, Mehlich 3-extractable Mn; RCB, randomized complete block; STM5, granular 80% S with 5% Mn; MCH, Mg cane ha?1; MSH, Mg sucrose ha?1  相似文献   

2.
High soil pH and excessive calcium carbonate (CaCO3) in the Everglades Agricultural Area of south Florida reduce the availability of phosphorus and micronutrients to crops. Sulfur (S) amendment is recommended to reduce soil pH and enhance nutrient supply. The study’s objective was to determine the sulfur amendment effectiveness on soil pH and nutrient availability in organic soil as CaCO3 content increases in soil. An experiment of four S rates (0, 90,224, and 448 kg ha?1) and three added CaCO3 (0%, 12.5%, and 50% by volume) in organic soil was established. Sulfur application had limited effects on soil pH reduction as CaCO3 level increased and therefore failed to enhance nutrient availability; however, it increased sulfate concentration in soils, which could be at risk for export from the field. Unexpected increases in manganese concentration with added CaCO3 was associated with reducing conditions due to increased soil bulk density, which changed the soil physical properties.  相似文献   

3.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

4.
High pH soils limit availability of pH sensitive nutrients including phosphorus (P), even though abundant levels are present. Application of such nutrients to the soil is ineffective because they quickly get tied up in unavailable forms. Elemental sulfur (S) application in a narrow band to lower root zone pH and increase nutrient availability to the crop is a possible economically feasible solution. A four year field study was conducted in which S was applied to sugarcane (Saccharum spp.) at rates up to 1120 kg S ha?1 each of the 1st three years in a band using different application methods. Sulfur application effects on soil pH were gradual, causing only a slight reduction in the application zone after one year; but was long lasting, resulting in continuing substantial declines in soil pH in an adjacent zone four years after the first S application. Soil available P, sulfate (SO4)-S, and salinity levels increased with increasing S applied. Sugarcane plant growth, as indicated by leaf area index during the grand growth period responded to moderate S application levels. Sugarcane yields increased linearly in the plant crop, but showed quadratic responses to S applications in the 1st through 3rd ratoon crops. Initial soil available P levels prior to the first treatment application were at the critical level considered adequate for crop requirements, yet growth and yield increases in response to S application suggest that the critical available soil P levels for sugarcane may be higher than previously established. Sulfur application at rates beyond those necessary to produce maximum yields resulted in salinity problems which probably reduced yields. The ‘stool splitter’ application method, which slices the plant stool using a coulter and places the fertilizer directly in the middle of the furrow caused crop damage and stand loss which persisted for the remainder of the sugarcane crops. Based on the results of this study, a single application of elemental S at up to 1120 kg S ha?1 directly below the seed cane at planting is recommend for sugarcane on a calcareous soil, with no additional applications in later crops.  相似文献   

5.
Foliar nutrient analysis is a useful diagnostic tool to complement soil testing as a best‐management practice with sugarcane (Saccharum spp.). This study was conducted to determine sugarcane production limits at leaf nutrient concentrations less than optimum. Eight Florida sugarcane growers participated in a survey of leaf nutrient values in 2004, 2005, and 2006. A total of 412 leaf samples were collected from individual commercial sugarcane fields, from which there were 389 harvest data/leaf data combinations. Fields were selected to be representative of plant cane, first ratoon, and second ratoon crops; mineral and organic soils of the area; and major commercial sugarcane cultivars. Leaf silicon (Si), magnesium (Mg), and manganese (Mn) concentrations had the strongest correlations with tons sugarcane ha?1 on organic soils, and leaf nitrogen (N), Mg, and Si concentrations had the strongest correlations with tons sugarcane ha?1 on mineral soils. Boundary lines were used to define practical limits of tons sugarcane ha?1 for leaf nutrient concentrations less than optimum. A table was developed that provides approximate leaf concentrations of nine nutrients at which 10 and 25% losses in relative tons sugarcane ha?1 were estimated. Boundary‐line analysis indicated that sugarcane production was most limited nutritionally in survey fields by insufficient Mg, iron, N, and Si on mineral soils and by insufficient Si and Mn on organic soils.  相似文献   

6.
In the southwest of Iran over 130,000 ha of land are under sugarcane (Saccarum officinarum). In these sugarcane fields, about 400 kg ha?1 diamonium phosphate (DAP) and 400 kg ha?1 urea are applied annually. Four sugarcane growing sites were selected for this study: Haft-tapeh, Karoon, Shoeibieh and Ghazali with cultivation histories of 36, 20, 2 and 1 years, respectively. For each area, soil samples (0–30 cm) were taken from a transect of uncultivated, and both furrows and ridges of cultivated land. Electrical conductivity (EC), pH, clay, and calcium carbonate and organic carbon (OC) contents, Cl, Cd, Ni and Zn of 101 soil samples were measured. Cadmium profile distribution to a soil depth of 300 cm was determined, and the heavy metal concentrations in sugarcane and the associated soil samples of the three sugarcane sites were measured. The Cd and Ni contents among the sugarcane sites differed where Cd was related to clay content and Ni was related to OC content of soils. Cadmium content in sugarcane cultivated soil was lower compared to uncultivated soil even after years of application of P fertilizers. Nickel and Cd contents of sugarcane were much higher than levels in top soils but there was no significant relationship between Cd or Ni contents of sugarcane and soil chemical properties. The Zn content of soils decreased as either EC or Cl concentration of soils increased. There were no significant differences in Zn contents between different sugarcane sites and also between cultivated and uncultivated soils. Results also indicated that Cd was accumulated in bagasse and Ni was primarily accumulated in bagasse and molasses, but these heavy metals of white sugar were lower than the detectable values.  相似文献   

7.
High soil pH causes leaf nutrient deficiencies and reduces sugarcane yield. Soil pH in Florida histosols has been increasing as these soils subside and depth to limestone is decreased. A factorial experiment of four sulfur (S) rates and three added calcium carbonate (CaCO3) levels in soil was designed to determine S-amendment effectiveness in reducing pH and increasing nutrient availability in sugarcane as calcium (Ca) carbonate levels were increased. Sulfur-amendment and increased CaCO3 level had limited effects on yield and leaf nutrient concentrations during the growing season. Most leaf nutrients were within optimum range except nitrogen (N), phosphorus (P), iron (Fe), and manganese (Mn). Unexpected increases in Mn concentrations with added CaCO3 were associated with reducing conditions due to increased soil bulk density. High soil pH caused Mn deficiencies in the plants. Soil pH, P and Mn concentrations were important factors in predicting sugarcane yield.  相似文献   

8.
Current sugarcane nitrogen (N) rate recommendations are based of crop age and soil type. Fertilization is typically done up to two months prior to rapid N uptake by sugarcane crop. This study was established to evaluate the effect of N rate and application timing on sugarcane yield and quality. Treatments included four different N rates (0, 45, 90, and 135 kg N ha?1) and four different application times (mid-April, late-April, mid-May, and late-May) arranged in a split-plot design with application time as the main plot and N rate as the sub-plot. Two of three site-years showed a significant positive effect of N rate on sugarcane yield. Further, the critical N rates range from 40 to 60 kg N ha?1 for responsive years, which is lower than current N rate recommendations. Results indicated that N fertilization could be delayed to later in the growing season in 5 of 6 sites.  相似文献   

9.
The application of partially decomposed animal manure can acidify the soil by nitrification and may cause problems with phosphorus (P) availability. This study investigated the influence of applying wood ash to two soils amended with partially decomposed cattle or chicken manure on pH and P. The treatments consisted of two soils, a clay loam and sandy loam, each amended with partially decomposed chicken or cattle manure applied at 0, 5, or 15 t ha?1, and wood ash was applied to each manure treatment at rates of 0 or 2 t ha?1. The addition of wood ash significantly increased pH, thereby making more P available in soil and maize (Zea mays L.) tissues for both soils after being amended by manure. Both chicken and cattle manure significantly increased all the measured variables compared to the unamended soils. These results suggest that wood ash is an important amendment that could be used to amend partially decomposed manure, thereby not jeopardizing P availability to crops.  相似文献   

10.
The effects of carbofuran, a widely used carbamate pesticide, on soil enzymatic activities such as fluorescein diacetate hydrolysis (FDAH), dehydrogenase, and acid and alkaline phosphatases were studied at different time intervals in unamended soil and soil amended with inorganic fertilizers and vermicompost, cropped with tomato plants. The results showed that all enzymatic activities varied with carbofuran application rates and increased significantly up to 1.0 kg active ingredient (a.i.) ha?1 dose of carbofuran. The most significant increase was observed at 0.20 kg a.i. ha?1 dose both in unamended and amended soils. This showed that carbofuran was not toxic to all enzymatic activities studied upto 1.0 kg a.i. ha?1 dose of carbofuran in both systems. A significant decrease in all enzymatic activites were observed at higher dose of carbofuran both in unamended and amended soils relative to their respective controls. Highest enzymatic activities were observed in vermicompost amended soil and minimum in fertilized soil compared to control. The results indicated that the growth of tomato plants was significantly higher at 0.20 kg a.i. ha?1 dose of carbofuran in all the cases and followed the order: fertilized soil > vermicompost amended soil > natural soil and was positively correlated with the enzyme activities.  相似文献   

11.
Soil pH and nutrient contents influence the uptake and utilization of nutrients required for plant growth. Soil characteristics in the canola-growing areas of the Western Cape Province of South Africa are often very variable. Hence, the major aim of this research was to determine the effects of soil and climatic differences as experienced at different localities on macro- and micronutrient contents and uptake in canola plants fertilized with different nitrogen (N) and sulfur (S) application rates. Plants fertilized with 0, 15, and 30 kg S ha?1 in combination with N rates of 0 and 90 kg ha?1 were sampled at 90 days after planting (DAP) (flowering stage) at Altona, Elsenburg, Langgewens, Roodebloem, and Welgevallen localities in the Western Cape during 2009 2010, and 2011. Nutrient content in canola plants were affected by locality and interactions between locality and N application rates. Sulfur content within the plants remained less than the sufficient quantity of 0.5%, and a dilution effect on elemental concentration in canola especially at greater N rates (plus lack of sufficient S) is apparently evident from the results. The results also reveal that canola S application should match S adsorption capacity of the low pH soils of the Western Cape.  相似文献   

12.
Abstract

Silicon (Si) is a beneficial nutrient for sugarcane (Saccharum spp.) and yield responses to Si amendment have been determined on soils with low soluble Si. Because a soil test Si calibration has not been published for sugarcane grown on Florida mineral soils, the objectives were to determine sugarcane yield response to silicon soil amendment on two mineral soils (Entisol and Spodosol) and to relate sucrose yield to soil-extractable Si. Calcium silicate application rates were 0, 3.4, and 6.7?Mg ha?1 (Site 1) and 0, 2.2, 4.5, and 6.7?Mg ha?1 (Site 2) in small-plot (120 m2 plot?1) experiments, with Si application resulting in significant increases in biomass and sucrose ha?1. Calcium silicate requirements of 6.7 and 4.3?Mg ha?1 were determined with initial acetic acid-extractable Si of 21 and 46?g m?3, respectively. Nonlinear models indicated that Si amendments will be required with acetic acid-extractable Si <105?g m?3.  相似文献   

13.
An on-farm field experiment was conducted on an acidic soil to investigate the effects of combined use of lime and deficient nutrients on herbage yield of alfalfa (Medicago sativa L.). Omitting lime and limiting nutrients led to elevated concentrations of aluminium (Al), iron (Fe), and manganese (Mn) in alfalfa leaves and stems and caused severe reductions in herbage yield of alfalfa. Combined use of lime (2 t ha?1) and nutrients [phosphorus (P): 20 kg ha?1, sulfur (S): 20 kg ha?1, zinc (Zn): 4 kg ha?1, and boron (B): 2 kg ha?1] had the maximum increase in groundcover, root biomass, nodulation, leaf retention, leaf-to-stem ratio, herbage yield, crude protein, and nutrient composition of alfalfa. These beneficial effects were due to raised soil pH; improved calcium (Ca), P, S, Zn, and B nutrition; and reduced Al, Mn, and Fe toxicity. Aluminium and all the nutrients except copper (Cu) were more concentrated in alfalfa leaves than stems.

Aluminum concentration was about three times greater in the lower leaves than in upper leaves. Lower leaves also had much greater concentrations of Ca, Mg, K, S, Fe, Mn, Cu, and B compared with upper leaves. In contrast, P and Zn concentrations were greater in the upper leaves than in lower leaves. Results suggest that the combined use of lime and all the limiting nutrients may realize potential beneficial effects of alfalfa on acidic soils where more than one essential nutrient is deficient. This may increase growth potential, nitrogen contributions, and groundcover by alfalfa and reduce soil erosion and runoff.  相似文献   

14.
This study investigated the use of waste amendments (green waste compost (GWC) and water treatment sludge (WTS) cake) in improving the nutrient and revegetation status of contaminated soil obtained from a former industrial site that has heavy metal and hydrocarbon contamination. The waste amendments were mixed with the contaminated soil at application rates equivalent to 90 and 180 t ha?1 (wet weight) and placed in plastic pots. The unamended soil serves as the control. Reed canary grass and white mustard were allowed to grow on the amended and unamended contaminated soil in the glass house. After a 30- day growth period, soil nutrient status was observed and was found to be higher in the amended contaminated soil than the control. In the amended soil, organic matter, total nitrogen, total potassium and soil nitrate were highest in contaminated soil amended with GWC at 180 t ha?1 and lowest in contaminated soil amended with WTS cake at 90 t ha?1. Above-ground dry mass of reed canary grass and white mustard grown on amended contaminated soil increased by 120–222% and 130–337%, respectively, as compared to the control, showing that improved fertility of contaminated soils thereafter, enhanced revegetation.  相似文献   

15.
Information on the effects of phosphorus (P) and sulfur (S) applications on crop response and soil-P status of two-row malt barley (Hordeum vulgare L.) under high-input conditions are limited in alkaline soils despite widespread fertilizer-P and -S use. A field study was conducted during the 2015 and 2016 growing seasons where the barley cultivars (ABI-Voyager and Moravian 69) were grown at five rates of P (0, 37, 73, 110, and 147?kg P ha?1) and three rates of S (0, 112, 224?kg S ha?1). ABI-Voyager had significantly greater biological yield (17,023?kg ha?1) and grain yield (7433?kg ha?1) but a lower (44%) harvest index (HI) than Moravian 69 (15,037?kg ha?1, 7168?kg ha?1 and 49%, respectively). Grain yield increased with rate of P-application until 37?kg P ha?1 where the maximum calculated yield was obtained at 98?kg P ha?1 by a quadratic model. Sulfur application had no significant effect on any of the measured crop or soil parameters. Olsen P increased linearly with greater fertilizer-P applications, indicating grain-P removal was not sufficient to reduce or retain STP concentrations at initial levels when P was applied. Crop-P uptake and soil-P response to fertilizer P applications are important, as remaining soil P is available for subsequent crop usage and may have potential negative environmental impacts. Thus, cultivar selection and appropriate fertilizer-P and S management will ensure optimal agronomic and economic returns while minimizing potentially negative environmental impacts for two-row malt barley produced in the western United States.  相似文献   

16.
ABSTRACT

Biotic interaction of cover crops (CCs) can have a legacy effect on succeeding crops mediated by changes in nutrient dynamics. Depending on species, CCs influence nitrogen (N) dynamics by sequestering N and subsequent N release. Interactions of three CC species, Austrian Pea (Pisum sativum L.), winter rye (Secale cereal L.), and winter camelina (Camelina sativa L.), and three different soils were studied under greenhouse conditions on wheat (Triticum aestivum L.) grain yield and soil N availability. CCs were grown for two months and then incorporated, followed by the planting of wheat. CC biomass production ranged from 0.10 to 2.05 Mg ha?1 in this order by species: Pea> Rye> Camelina. Biomass production by soil was in the order of Casselton>Ada>Minot. Succeeding wheat grain yield and grain N uptake was highest under pea in the order of pea>camelina>control>rye. Rye reduced grain yield and N uptake. Wheat yield ranged from 2.19 to 3.24 Mg ha?1 depending on CC species-soil interaction. The N balance showed a 3–79% higher N surplus with the CCs. The N balance ranged from 78 kg N ha?1 for the control to 140 kg N ha?1 for pea. N surplus was greater for a pea in all soils, indicating pea can be regarded as an effective cover that can efficiently recycle N and provide additional agronomic benefits. Greater N balance with CCs shows that CCs can increase the amount of N accounted for in the system, which can significantly affect the N dynamics throughout the growing season.  相似文献   

17.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

18.
A calibrated soil test for phosphorus (P) fertilizer application to sugarcane (Saccharum spp.) grown on organic soils in southern Florida is an important best-management practice for minimizing P loads in water draining to the Everglades. The current calibration uses water as the soil extractant, which has the limitations of being very sensitive to pH and being most applicable to short-season crops. Phosphorus fertilizer rate studies at six locations (20 total crop years) were analyzed to develop an updated soil-test P calibration for sugarcane on organic soils. Phosphorus extracted with water, acetic acid, and Bray 2 did not consistently relate well to crop response. A new P soil-test calibration for sugarcane is proposed based on Mehlich 3 soil extraction, with a maximum rate of 36 kg P ha?1 with ≤ 10 g P m?3 in preplant soil samples and no P recommended with >30 g P m?3.  相似文献   

19.
High yield agricultural systems, such as high tunnel (HT) vegetable production, require a large supply of soil nutrients, especially nitrogen (N). Compost is a common amendment used by HT growers both to supply nutrients and to improve physical and biological soil properties. We examined commercially-available composts and their effects on soil N, plant N uptake, and tomato yield in HT cultivation. In addition, a laboratory study examined N and carbon (C) mineralization from the composts, and the usefulness of compost properties as predictors of compost N mineralization was assessed under field and laboratory conditions. The field study used a randomized complete block design with four replications to compare four compost treatments (all added at the rate of 300 kg total N ha?1) with unamended soil and an inorganic N treatment (110 kg N ha?1). Tomatoes were grown in Monmouth, Maine during the summers of 2013 and 2014. Compost NO3?-N and NH4+-N application rates were significantly correlated with soil NO3?-N and NH4+-N concentrations throughout the growing season. Marketable yield was positively correlated with compost total inorganic N and NO3?-N in both years, and with NH4+-N in 2014. There were no significant differences among composts in percentage of organic N mineralized and no correlations were observed with any measured compost property. In the laboratory study, all compost-amended soils had relatively high rates of CO2 release for the initial few days and then the rates declined. The compost-amended soils mineralized 4%–6% of the compost organic N. This study suggested compost inorganic N content controls N availability to plants in the first year after compost application.  相似文献   

20.
A field study was carried out to evaluate the potential of wood ash as a fertilizer in grassland systems in combination with enriched N organic wastes. Six treatments including manure or digestate, each combined with wood ash at 0, 1, and 3 t?ha?1 were spread onto the soil to an amount equivalent to 120 kg?N ha?1. Three soil samplings and one cutting was carried out within one growing season (3 months). A higher pH value was found in manure-treated plots, the pH rise being proportional to the amount of wood ash added. Those plots amended with digestate were characterized by a larger content of total C, NH4 +, and total P (TP) regardless of the amount of ashes. Microbial activity, assessed by basal respiration and microbial biomass carbon of the differently treated soils, was not affected neither by the nature of the organic waste nor by the amount of wood ash added. However, amending soil with digestate resulted in a more efficient soil microbial community, as shown by the lower values of the metabolic quotient. Such effects were accompanied by a higher percentage of plant cover, particularly of leguminous plants in digestate-treated plots. The time of sampling (seasonal effects) was found to influence the soil pH and electrical conductivity (EC), as well as the nutrient content (total N, NH4 +, and NO3 ?). Overall, the combined use of wood ash and biogas digestate can constitute an efficient way for the disposal and recycling of both products and additionally, it may constitute an environmentally friendly alternative to mineral fertilizers for acid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号