首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Balanced plant nutrition is essential to achieve high yields of canola (Brassica napus L.) and get the best economic return from applied fertilizers. A field study was conducted at nine site‐years across eastern Canada to investigate the effects of nitrogen (N), sulfur (S) and boron (B) fertilization on canola nutrient uptake, nutrient balance, and their relationship to canola yields. The factorial experiment consisted of four N rates of 0 (N0), 50 (N50), 100 (N100), and 150 (N150) kg ha?1, two S rates of 0 (S0) and 20 (S20) kg ha?1, and three B treatments of 0 (B0), 2 kg ha?1 at preplant (B2.0P), and 0.5 kg B ha?1 foliar‐applied at early flowering stage (B0.5F). Each site‐year used the same experimental design and assigned treatments in a randomized complete block design with four replications. Fertilizer S application greatly improved seed yields at six out of nine site‐years, and the highest N use efficiency was in the N150+S20 treatment. Sulfur application generally increased seed S concentration, seed S removal, and plant total S uptake, while B fertilization mainly elevated straw B concentration and content, with minimal effect on seed yields. At the early flowering stage, plant tissue S ranged from 2.2 to 6.6 mg S g?1, but the N : S ratio was over or close to the critical value of 12 in the N150+S0 combination at five site‐years. On average across nine site‐years, canola reached a plateau yield of 3580 kg ha?1 when plants contained 197 kg N ha?1, 33 kg S ha?1 and 200 g B ha?1, with a seed B content of 60 g B ha?1. The critical N, S, and B values identified in this work and their potential for a posteriori nutrient diagnosis of canola should be useful to validate fertilizer requirements for canola production in eastern Canada.  相似文献   

2.
A field experiment was carried out in a semi-arid region of Iran during the 2006–2007 growing season to investigate canola seed yield as affected by nitrogen (N) and natural zeolite (Z) rates. This experiment studied N efficiency and N leaching loss in a sandy soil. Experimental treatments consisted of a factorial combination of three N levels (90, 180, and 270 kg N ha?1) and four zeolite rates (0, 3, 6, and 9 t zeolite ha?1). The result showed that the greatest seed yield (2452.3 kg ha?1) was obtained from the N270Z9 treatment whereas the control treatment (N0Z0) produced the lowest seed yield (1038.3 kg ha?1). Moreover, use of 270 kg N ha?1 without zeolite (N270Z0) led to the greatest amount of N leaching loss (144.23 kg ha?1). Zeolite application clearly reduced N leaching loss in all N rates. This justified low N-use efficiency in high N applications. More N uptake and more canola seed yield is attributed to zeolite application.  相似文献   

3.
Seedrow-placed urea minimizes soil disturbance in reduced tillage systems, but it generally decreases seedling emergence (or stand density) at nitrogen (N) rates adequate for optimum crop yield. Two three-year field experiments were conducted on canola (Brassica napus L.) and spring wheat (Triticum turgidum L.) at Melfort Research Farm, Saskatchewan, Canada, to determine the influence of N rate (40, 80 and 120 kg N ha?1), N source [untreated urea (urea), polymer-coated urea (ESN), and urea treated with Dicyandiamide (DCD) and N-(n-butyl) thiophosphoric triamide (NBPT or AgrotainTM) (SuperU) in 2007, or NBPT only (AgrotainU) in 2008 and 2009], and placement (side-banded N and seedrow-placed N, using knives to create 2 cm wide band), plus a zero-N control, on seedling emergence, seed and straw yield, protein concentration (PC) in seed, and N uptake in seed and straw. For both crops, side-banded N had no detrimental effect on seedling emergence compared to the zero-N control for all rates and sources. Seedrow-placed ESN had little or no effect on seedling emergence of wheat or canola. Conversely, seedrow-placed urea, SuperU or AgrotainU reduced seedling emergence for wheat at the 80 and 120 kg N ha?1 rates and reduced canola seedling emergence substantially at all rates, but particularly at the 80 and 120 kg N ha?1. Seed yield and N uptake were generally greater with ESN than urea and also SuperU or AgrotainU, when the fertilizers were seedrow-placed at high N rates. The findings suggest the effectiveness of ESN in providing greater seedrow-placed N application options for producers.  相似文献   

4.
《Journal of plant nutrition》2013,36(7):1145-1161
Abstract

Production of new high-yielding canola hybrids has been extremely prolific and, as a consequence, very little work has been performed to assess the fertility requirements of these crops. A series of experiments (14 site-years) was carried out over three years (1999–2001), primarily to assess the nitrogen (N) fertility of canola hybrid cultivars and at the same time ascertain whether the associated phosphate and sulfur (S) fertility are influenced by N application. All experiments included 12 rates of N (0 to 220 kg N ha?1 in 20 kg ha? 1 increments) and three rates of either P2O5 or S (0, 20, and 40 kg ha? 1) with blanket application of other nutrients. Although differences in the performance of individual canola hybrid cultivars can be significant in some cases, the term “hybrid” in this study does not refer to the performance of one specific cultivar, but to the group of hybrids tested. Under an identical nutrient regime, on average, hybrid cultivars produced a 17% higher seed yield, but did not reach maximum potential; on average, this result, occurred under a higher N fertility regime at which hybrid cultivars produced 33% higher yields than did conventional cultivars. To maintain maximum yield, hybrids must be supplied with phosphate and S at levels that are similar to those used on conventional cultivars. Hence, it would appear that hybrids are more efficient scavengers of soil nutrients, a fact that may have serious ramifications for the fertility of the following crops.  相似文献   

5.
ABSTRACT

Crop production in arid regions is characterized with high temperature, drought and salinity which decrease water and nutrient use efficiency. This study was conducted to investigate the effect of wheat residue mulch in relation to N fertilizer application rates for cotton productivity under dryland condition of Uzbekistan. Main plots were control of no mulch addition and a 5 t ha?1 mulch treatment. These plots were split into 5 N rate plots of 0, 70, 140, 210 or 280 kg of N ha?1. The results showed that mulching pattern decreased soil temperature by 0.7–1.5°C as compared to conventional treatment (CT), regardless of N fertilization rates. The soil water storage increased by 41.8, 17.3, 48.0 mm in the flowering, boll formation and ripening stages of cotton, respectively under mulching treatment. Soil available N concentration and nutrients uptake by plants consistently increased with the increase of N fertilization rates with positive correlations. At flowering period, the plant height, chlorophyll content, stem diameter, and a number of fruit branches in plants were higher by 32.3%, 46.8%, 26.7% and 55.3%, respectively at 210 kg N ha?1 under mulching treatment as compared to the non-fertilized control. The highest cotton yield was obtained at 210 kg N ha?1 application under mulching treatment. The correlation difference between mulch and N application rates was higher (R2 = 0.97) than the difference in CTs and N application rates (R2 = 0.89). This study showed that mulching had a greater impact to preserve nutrients and water resources in the soil, thereby improved cotton growth and yield.  相似文献   

6.
In order to investigate the effects of nitrogen (N) and zinc (Zn) fertilizers on seed yield, oil percentage, glucosinolate content, and nutrient uptake of canola (Brassica napus L. cv. Okapi), irrigated with saline and ultra-saline water, field experiments were conducted in Agriculture Research Centre of East Azarbaijan, Iran, during three consecutive years: 2011, 2012, and 2013. The experiments were carried out based on randomized complete block design arranged in factorial with three replications. The experimental treatments included N rates at three levels (0, 50, and 100 kg ha?1), Zn rates at three levels (0, 5, and 10 kg ha?1), and saline water at two levels (8 and 16 dS m?1 as saline and ultra-saline water). According to the results, N and Zn application had a significant effect on the plant height, pod number per plant, and seed yield. However, the value of these traits decreased as a result of the higher salinity level (from 8 to 16 dS m?1). From the results, the glucosinolate content was not affected by N or Zn fertilization, whereas, salinity increased the glucosinolate content from 27.51% to 30.06% when saline water and ultra-saline water were applied, respectively. In addition, the effect of ultra-saline water on the decrease in the N, phosphorous, potassium, and calcium uptake and the increase in the sodium and chlorine accumulation in canola seed was significant. However, Zn application could diminish adverse effects of salinity on phosphorus uptake. For instance, under ultra-saline water conditions, application of 10 kg ha?1 Zn increased the seed phosphorus content compared with control treatment. In general, it seems that nutrients’ supply, especially N and Zn, can be considered as an effective solution to diminish adverse effects of salinity.  相似文献   

7.
ABSTRACT

Seed yield and nutrient use efficiency are related to biomass accumulation and nutrient uptake in the growing season. Biomass accumulation and nutrient uptake of canola (Brassica napus L. and Brassica rapa L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.) and the relationship to days after emergence (DAE) or growing degree days (GDD) were determined during the 1998 and 1999 growing seasons in field experiments at Melfort, Saskatchewan, Canada. In general, biomass accumulation and nutrient uptake increased with time at early growth stages and reached a maximum at late growth stages. Significant R2 values for both biomass accumulation and nutrient uptake indicated that a cubic polynomial type equation was suitable to represent these parameters as a function of DAE. All oilseed crops maximized biomass at mid way to the end of pod forming stages (74–84 DAE or 750–973 GDD). Maximum biomass accumulation rate occurred at the early to late bud forming stage (42–49 DAE or 390–498 GDD), and it was 146–190 kg ha?1d?1 for canola, 158–182 kg ha?1d?1 for mustard, and 174–189 kg ha?1d?1 for flax. Maximum nutrient uptake occurred during flowering to early ripening (59–82 DAE or 597–945 GDD). Maximum nutrient uptake rate normally occurred at branching to early bud formation (21–42 DAE or 142–399 GDD). There was a close correlation between biomass accumulation and nutrient uptake, and among nutrients, suggesting interrelated absorption. For nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and boron (B), respectively, maximum nutrient uptake rate was 2.3–4.5, 0.3–0.5, 2.5–5.7, 0.7–1.1, and 0.005–0.008 kg ha?1d?1 for canola; 2.3–3.9, 0.4–0.5, 2.6–4.9, 1.2–1.4, and 0.006–0.008 kg ha?1d?1 for mustard; and 3.2–4.0, 0.3–0.4, 2.9–4.1, 0.3–0.5, and 0.004–0.009 kg ha?1d?1 for flax. In general, maximum nutrient uptake rate and amount occurred earlier than maximum biomass accumulation rate and amount, and maximum rates of both nutrient uptake and biomass accumulation occurred earlier than their maximum amounts. The findings suggest that for high seed yields, there should be adequate supply of nutrients for plants, particularly to sustain high nutrient uptake rate at branching to bud forming stage and high biomass accumulation rate at early to late bud forming stage.  相似文献   

8.
Six cultivars of canola (Brassica napus L.) were grown with six levels of applied nitrogen (N) fertilizer (urea 46% N) at six locations in south Western Australia (SWA) during 2010 and 2011. The aim of the experiment was to determine if the seed yield (SY) increase (response) of the canola and associated herbicide technologies were different to applied N. Open pollinated (OP) and hybrid cultivars of associated herbicide technologies (Triazine Tolerant, TT; Roundup Ready, RR; Clearfield, CL) were used. Varieties had large SY differences with no N applied. Generally, RR hybrid of 2011 tended to have the highest SY, except for Katanning 2011 where several varieties obtained the same SY. The average amount of N required for 90% of the maximum SY was 113 kg N ha?1 and economic breakeven N rates were less than or equal to 100 kg applied N ha?1. The average rate of return on investment in fertilizer N was $1.60.

In four out of six experiments RR hybrids had the highest oil concentration with no applied N. N decreased the oil concentration in all canola types, except at Gibson 2010. At Gibson in 2010, N application increased the oil concentration to about 100 kg N ha?1 with further additions of N decreasing the oil concentration. There was a linear relationship where N application decreased the oil concentration and increased protein concentration of the seed. In this study, the summation of oil percentage and protein concentration in the seed was on average 65%, with RR hybrids producing 67%.

In most aspects, RR hybrids outperformed RR, OP and other canola types; however, hybrid TT and hybrid CL canola did not consistently outperform their OP counterpart. We suggest that current N fertilizer recommendation models are useful for all canola types currently grown in SWA; however, adjustments should be made to take into account the higher SY and oil concentration potential of RR hybrids compared to TT canola at every rate of applied N.  相似文献   

9.
Two pot experiments were carried out under controlled environment conditions in the growth chamber to assess the potential use of alfalfa powders and distiller grains as organic fertilizers. Two types of dehydrated alfalfa powders (one with canola meal protein extraction by-product and one without) and two types of distiller grains (dried distillers grain with distillation solubles added and wet distillers grain without solubles) from wheat-based ethanol production were evaluated. Four different nitrogen (N)-based amendment application rates (0, 100, 200 and 400 kg N ha?1) were used along with urea applications made at the same N rates to a Brown Chernozem (Aridic Haploboroll) loamy textured soil collected from south-central Saskatchewan, Canada. Canola biomass yield, N, phosphorus (P), potassium (K), zinc (Zn), and cadmium (Cd) uptake were measured along with soil properties including pH, salinity, organic carbon, total nitrogen, phosphorus and extractable nutrients and cadmium before and after canola growth in each of the treatments. Application of alfalfa powder and distiller grain amendments resulted in significant canola biomass yield increases along with increased N, P, and K uptake compared to the unfertilized control. However, only a portion of the N added (~30% to 50%) in the organic amendments was rendered available over the five week duration of the experiments. Amendments that had higher N content and lower carbon (C):N ratios such as dried distillers grain with solubles resulted in greater canola N uptake. Reduced germination and emergence of canola seedlings was observed at high rates of addition of distillers grain (400 kg N ha?1), the reason for which is unclear but may be due to a localized salt or toxicity effect of the amendment. The amendment with alfalfa powders and distiller grains resulted in small increases in residual soil nutrients. Effects on pH, salinity, organic carbon and extractable metals tended to be small and often not significant. Alfalfa powders and distillers grains appear to be quite effective in supplying nutrients, especially N, for plant growth over the short-term.  相似文献   

10.
With regard to the low cation-exchange capacity and large saturated hydraulic conductivity of sandy soils, a field experiment was carried out in 2006–2007 to determine the impact of zeolite on nitrogen leaching and canola production. Four nitrogen (N) rates (0, 90, 180, and 270 kg ha–1) and three zeolite amounts (3, 6 and 9 t ha?1) were included as treatments. The results demonstrated that the highest growth parameters and seed yield were attained with 270 kg N ha?1 and 9 t zeolite ha?1. However, the highest and the lowest seed protein percentage and oil content were obtained with 270 kg N ha?1 accompanied by 9 t zeolite ha?1, respectively. Nitrate concentration in drained water was affected by nitrogen and zeolite. The lowest and highest leached nitrate values were found in control without N and zeolite (N0Z0) and in treatments with the highest N supply without zeolite (N270Z0), respectively. In general, nitrogen-use efficiency decreased with an increase in N supply. Application of 9 t zeolite ha?1 showed higher nitrogen use efficiency than other zeolite amounts. Also, application of more N fertilizer in soil reduced nitrogen uptake efficiency. In total, application of 270 kg N ha?1 and 9 t zeolite ha?1 could be suggested as superior treatment.  相似文献   

11.
A field experiment was conducted over 9?years (1999 to 2007 growing seasons) in northeastern Saskatchewan on a S-deficient Gray Luvisol (Typic Haplocryalf) soil. The objective was to determine the relative effectiveness of N alone versus combined annual application of N (120?kg N?ha?1) and S (15?kg S?ha?1) fertilizers to a wheat–canola rotation on storage of total organic C (TOC) and N (TON) and on the light fraction organic C (LFOC) and N (LFON) in soil. Compared to N alone, annual applications of S fertilizer in spring in a combination with N resulted in an increase in soil of TOC (by 2.18?Mg C?ha?1), TON (by 0.138?Mg N?ha?1), LFOC (by 1,018?kg C?ha?1), and LFON (by 42?kg N?ha?1). The relative increases in organic C or N due to S fertilizer application were much higher for the light organic fractions (36.9% for LFOC and 27.5% for LFON) than for the total organic fractions (9.2% for TOC and 7.3% for TON). The findings demonstrate the importance of a balanced/combined application of N and S fertilizers to crops in storing more organic C and N in this S-deficient soil.  相似文献   

12.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

13.
In order to investigate the effect of nitrogen (N) and sulfur (S) fertilizers on yield and seed quality of three canola cultivars, a factorial based on randomized complete block experiment was conducted during 2005–2006 in Iran. Treatments included four nitrogen rates (0, 75, 150, and 225 kg N ha?1 source of urea), four sulfur rates (0, 100, 200, and 300 kg S ha?1), and three cultivars (‘Pf’, ‘Option-500’, and ‘Hyola-401’). Results indicated cultivar had a significant effect on all studied traits. ‘Option-500’ and ‘Hyola-401’ cultivars had the highest seed yield, protein content, and N:S ratio in seed. The levels of 150 and 220 kg N ha?1 resulted in the maximum protein content. Increasing N levels resulted in N content and decreased the oil content. The interaction effect between S and N levels showed the highest N content in seed was obtained with 300 kg S ha?1 and 225 kg N ha?1.  相似文献   

14.
Carbon sequestration via sound agronomic practices can assist in combating global warming. Three long-term experiments (Experiment 502, Experiment 222, and The Magruder Plots) were used to evaluate the effect of fertilizer nitrogen (N) application on soil organic carbon (SOC), total nitrogen (TN), and pH in continuous winter wheat. Soil samples (0–15 cm) were obtained after harvest in 2014, analyzed, and compared to soil test results from these experiments in 1993. Soil pH decreased with increasing N fertilization, and more so at high rates. Nitrogen application significantly increased TN in Experiment 502 from 1993 to 2014, and TN tended to be high at high N rates. Fertilizer N significantly increased SOC, especially when N rates exceeded 90 kg ha?1. The highest SOC (13.1 g kg?1) occurred when 134 kg N ha?1 was applied annually. Long-term N application at high rates increased TN and SOC in the surface soil.  相似文献   

15.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

16.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

17.
Abstract

Yield and kernel quality of rainfed maize as affected by N fertilizer has been generally evaluated through the application of granular N sources at high rates. The purpose of this work was to estimate the response of maize yield and quality (kernel hardness—floating index, weight and test weight -, P uptake and protein) to foliar N application and preceding granular N. Data for this report were collected in 2014 and 2015 in a long-term experiment established in 2002 under permanent beds in a split plot arrangement. Main plot treatments were three foliar N rates (0, 4.5 and 9?kg ha?1) laid out on the top of four preceding granular N rates (0, 20, 40 and 60?kg ha?1) applied from 2002 to 2013 as subplots. Weather conditions were relatively wetter in 2014 than 2015. In 2014, test weight and floating index improved over that in 2015. Foliar application of 9?kg N ha?1 enhanced yield and protein. In 2014, yield response to preceding N rates showed an increasing trend whereas in 2015 response was null. Kernel P uptake response to preceding N rates showed a differential reaction among foliar N rates; 9?kg ha?1 showed the greatest uptake. Kernel floating index was associated to kernel P uptake. Apparently, this relationship has not been previously reported. Results suggests that the application of 9?kg N ha?1 to foliage of rainfed maize grown in permanent beds has the potential to substitute the traditional fertilization practice of granular N sources.  相似文献   

18.
Does net soil nitrogen (N) mineralization change if N‐fertility management is suddenly altered? This study, conducted in a long‐term no‐tillage maize (Zea mays L.) fertility experiment (established 1970), evaluated how changing previous fertilizer N (PN) management influenced in situ net soil N mineralization (NSNM). Net soil N mineralization was measured by incubating undisturbed soil cores with anion and cation exchange resins. In each of three PN fertilizer application plots (0, 84, and 336 kg N ha?1), another three fertilizer application rates (0, 84, and 336 kg N ha?1) were imposed and considered the current fertilizer N (CN) management. Generally, PN‐336 (336 kg N ha?1) had significantly greater NSNM than PN‐0 (0 kg N ha?1) or PN‐84 (84 kg N ha?1), which reflected differences in soil organic‐C (SOC) and soil total‐N (STN). The three CN rates had no significant effect on NSNM when they were applied to PN‐0 or PN‐84, but CN‐336 (336 kg N ha?1) had significantly higher NSNM than CN‐0 (0 kg N ha?1) or CN‐84 (84 kg N ha?1) in the PN‐336 plots. The CN or “added N interaction” used the indigenous soil organic matter (SOM) pool and the added sufficient fertilizer N. Environmental factors, including precipitation and mean air temperature, explained the most variability in average daily soil N mineralization rate during each incubation period. Soil water content at each sampling day could also explain NSNM loss via potential denitrification. We conclude that “added N interaction” in the field condition was the combined effect of SOM and sufficient fertilizer N input.  相似文献   

19.
ABSTRACT

An experiment was replicated simultaneously at two sites of floodplain soils of Bangladesh to find out the optimum application rate of zinc and boron fertilizers for crops under cauliflower-maize-transplant aus rice pattern. Randomized complete block design with three replications was used in the experimentation. The first crop of the pattern received four zinc levels (0, 2.0, 4.0, and 6.0 kg ha?1), and three boron levels (0, 1.5, and 3.0 kg ha?1). In second crop, two additional treatments receiving 2.0 kg Zn ha?1 and 2.0 kg Zn ha?1 + 1.5 B ha?1 were added; in the third crop, another four treatments were added by further application of 2 kg Zn ha?1 in each. Other nutrients viz. N, P, K, and S were used equally at recommended rates for all plots. In such a 3-crop pattern, application of 4.0 kg Zn ha?1 and 1.5 kg B ha?1 at a time to the first crop or 2.0 kg Zn ha?1 to each of the first two crops along with 1.5 kg B ha?1 to the first crop was sufficient to achieve satisfactory yield of the crops. Considering system productivity, nutrient uptake, and protein and Zn concentrations of crops, the aforesaid doses were found promising.  相似文献   

20.
Nutrient supply through organic sources usually requires fortification for timely and optimum release of plant nutrients to achieve optimum crop performance. A pot experiment was conducted in a screen house to determine the optimum rate of cassava peel compost (CPC) fortification that supports optimum Amaranthus (Amaranthus cruentus L.) plant nutrient contents and residual soil nutrient contents. A compost of cassava peel and poultry manure was applied at 2.5; 5.0 and 7.5 t ha?1each complemented with either 25 or 50 kg nitrogen (N), using nitrogen, phosphorus and potassium (NPK) 20-10-10 at 2 weeks before sowing Amaranthus. An unfertilized treatment served as control. Seeds were sown in plastic containers with a surface diameter of 24 cm filled with 5 kg soil, with a drain underneath. Seedlings were thinned to 4 plants/pot 2 weeks after planting. Plants were harvested at 5 weeks by ratooning and plant re-growth also harvested after 5 weeks. Soil pH was lower with high rates of 5.0 and 7.5 t ha?1 CPC while the organic matter content was increased with increased CPC rate. Soil N was reduced but reflected in increased plant shoot and root N, with compost application. Soil P was generally increased but was not reflected in plant contents. Soil K contents were reduced and were reflected in increased plant contents. Application of 2.5 t ha?1 CPC, fortified with either 25 or 50 kg N ha?1 gave the optimum Amaranthus shoot nutrient contents with optimum residual soil nutrient contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号