首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以中等肥力土垫旱耕人为土为供试土壤,在冬小麦(Triticum aestivum)不同生育期采集0-100 cm土层土壤样品,研究不同施肥及杂草处理对半湿润农田生态系统土壤NO3--N动态变化的影响。结果表明,1)土壤剖面NO3--N含量随施氮量增加而显著增加,0-100 cm土层NO3--N累积量与施氮量线性相关;在越冬期、返青期和拔节期,相关系数r分别为0.995、0.971和0.949。2)冬小麦生长过程中,土体NO3--N含量先降低后回升,在拔节期最低;成熟期土壤有机氮矿化产生的NO3--N是收获后土壤剖面残留NO3--N的主要贡献者。3)在越冬期、返青期、拔节期和成熟期,施磷(PN135)与不施磷(P0N135)处理相比,施磷可显著减少土体NO3--N累积量,减少量分别为N 61.4、26.9、36.6和5.5 kg/hm2;磷肥对减少土壤NO3--N残留累积量的影响以越冬期表现最为显著,成熟期表现不显著。4)在施磷的基础上,不同杂草处理土壤剖面NO3--N累积量在每公顷施氮45 kg(PN45)及施氮90 kg (PN90)时存在一定差异,但不显著;而在每公顷施氮180 kg(即PN180)的高氮处理下,差异显著。每公顷施氮135 kg(PN135),的中氮处理,在越冬期清除杂草后土壤剖面中NO3--N累积量在拔节期显著高于其它杂草处理。  相似文献   

2.
不同施氮水平对深层包气带土壤氮素淋溶累积的影响   总被引:18,自引:6,他引:12  
为研究深层包气带土壤中氮素的迁移规律,采用田间小区试验,研究了不同施氮水平(142.5、285和427.5kg/hm2)对夏玉米种植期间0~500cm包气带土壤中氮素淋溶累积的影响。结果表明,不同施氮水平对NO3--N、NH4+-N和总氮有显著影响,施氮越多,NO3--N、NH4+-N和总氮在土壤中的淋溶累积也就越多,夏玉米生育期间土壤中氮素的淋溶累积含量随着夏玉米生长逐渐减少。在0~200cm土层中,收获后不同施肥水平土壤中NO3--N和总氮累积量随施氮量增加而增多,285kg/hm2施氮水平NH4+-N累积量最多,427.5kg/hm2施氮水平NH4+-N累积量最少,但相差不超过0.1kg/hm2,收获后土壤中氮素累积量有损失。夏玉米生育期间不同施氮水平对土壤NO3--N、NH4+-N和总氮的影响深度主要为0~145cm。粉砂壤土中氮素更易累积,砂质壤土中氮素较易随水分淋溶至下层。142.5kg/hm2施氮水平可有效减少NO3--N在土壤中的淋溶损失,降低土壤中NH4+-N和总氮的含量,对地下水构成的潜在污染风险最小。北京地区地下水埋深较深,NO3--N不易淋溶至地下水,但长期大量施用氮肥、田间土壤大孔隙的存在等会加速NO3--N向深层土壤迁移,对地下水水质构成威胁。  相似文献   

3.
根据不同植被类型和不同植被恢复年限,在位于半干旱黄土高原丘陵沟壑区延安安塞纸坊沟流域采集68个剖面样品,探讨植被恢复过程土壤剖面中残留矿质态氮的变化;同时采取该流域连续14年施用不同肥料处理的坡地长期定位试验剖面土样,研究连续施肥对农田土壤剖面残留NO3--N累积的影响。结果表明,NH4 -N在土壤剖面中的分布和累积基本不受植被恢复及植类型的影响,但NO3--N在土壤剖面中的累积量随植被恢复而下降。林地、草地和农田0~50cm土层平均累积的NO3--N分别为17 4kg/hm2,14 9kg/hm2和39 9kg/hm2;林地和草地剖面中NO3--N累积量所占矿质氮总累积量比例远小于NH4 -N,而对农田土壤,剖面中NO3--N累积量所占比例与NH4 -N所占比例基本相当;农田土壤剖面中NO3--N累积量所占比例显著大于林地和草地。长期定位试验结果进一步证明了在农田连续施用氮肥会显著增加土壤剖面中残留NO3--N累积,当农田退耕还林还草后,累积的这一部分NO3--N因植物吸收利用、土壤生物固定和损失等途径而下降,最终达到低而稳定的水平。  相似文献   

4.
施氮和秸秆还田对小麦-玉米轮作农田硝态氮淋溶的影响   总被引:12,自引:0,他引:12  
连续4 a采用渗漏计测定法研究了陕西关中小麦-玉米轮作区施氮和秸秆还田对土壤剖面90 em处NO3--N淋溶的影响.结果表明,NO3--N淋洗主要发生在7、8、9月份或灌溉后,年际间变异较大.监测期内各处理渗漏液NO3--N浓度和淋失量的变幅为0~103.5 mg L-1和0~21.8 kg hm-2,二者均随施氮量的增加呈增加趋势.小麦施氮150 kg hm-2、玉米施氮180 kg hm-2时,连续4a作物均能获得高产.施氮量继续增加,产量不再增加,0 ~100 cm土层NO3--N累积量和90 cm处NO3--N淋失量却相应增加.秸秆还田2 a后作物显著增产,2010年和2011年分别增产15.1%和14.2%,但对NO3--N累积和淋溶的影响不显著.回归分析显示,NO3--N年淋失量和0~ 100 cm土层累积量均随年施氮量的增加呈指数形式增加,说明施氮量越高,NO3--N年淋失量和累积量越高,二者占施氮量的比例也越高.  相似文献   

5.
施肥与灌水对硝态氮在土壤中残留的影响   总被引:34,自引:1,他引:34  
通过田间试验研究不同施氮量与灌水量对春玉米和冬小麦田土壤中硝态氮分布与累积的影响,结果表明,春玉米收获后0~2 m土壤中累积硝态氮185.7~748.0 kg/hm2,其中1 m以上占57.9%~70.1%。由于施用氮肥而增加的硝态氮占施N量的1.8%(N 112.5 kg/hm2),50.7%(N 225 kg/hm2),56.7%(N 337.5 kg/hm2)和77.0%(N450 kg/hm2)。不施N和施N 112.5 kg/hm2时春玉米田土壤剖面没有明显累积峰;施N等于或高于225 kg/hm2时在60~80 cm土层有明显累积峰,施氮量高的峰值较高;施N 450 kg/hm2时在120~140 cm深度出现另一个累积高峰。冬小麦收获后土壤0~2 m硝态氮累积量为74.9~328.8 kg/hm2,其中1m以上占67.8%~90.7%。由于施用氮肥而增加的硝态氮占施N量的19.5%(N 112.5 kg/hm2),35.6%(N 225 kg/hm2),58.9%(N 337.5 kg/hm2)和56.4%(N 450 kg/hm2)。冬小麦田收获后土壤深层(1~2 m)没有明显的硝态氮累积,即使施氮量高达450 kg/hm2时也只在表层40 cm以上累积较多。不论是春玉米还是冬小麦,当生育期施氮量大于225 kg/hm2时0~2 m土层均有明显的硝态氮累积,施氮量高的累积量较高。施氮量是造成土壤中硝酸盐累积的主要因素,灌水量对春玉米田硝态氮的向下迁移有显著影响。  相似文献   

6.
灌溉对土壤硝态氮淋吸效应影响的研究   总被引:38,自引:3,他引:35  
在陕北米脂县无定河谷地沙壤质土壤上进行了灌水量对土壤硝态氮的淋失和作物吸收效应影响的研究( 简称淋吸效应) 。结果表明,灌水量在0~4000m3/hm2范围内,与玉米产量和玉米吸N 量之间的关系均呈线性相关。土壤剖面中NO3--N 遗留量主要集中分布在0 ~60cm土层内,出现的高峰在40cm ;在0 ~80cm 土层内的NO3--N 遗留量随灌水量的增加而降低;80 ~320cm 土层内的NO3--N 与灌水量之间无明显相关,320 ~400cm 土层内NO3--N 是随灌水量的增加而增高。不同深度的土壤剖面中NO3--N 遗留量与灌水量之间均呈双曲线相关;氮素损失率以未灌溉和灌水量4000m3/hm2处理的为最低,据此提出了土壤NO3--N 淋吸效应的概念。  相似文献   

7.
黄土高原坡地苹果园土壤肥力及矿质氮累积分析   总被引:6,自引:2,他引:4  
采用田间取样与室内分析相结合的方法,研究了黄土高原坡地苹果园肥力状况与矿质氮累积.结果表明,坡地苹果园土壤肥力低,氮、磷严重缺乏,钾相对丰富,土壤属于砂壤土,通气性强,保肥、保水性差.0-60 cm土层土壤有机质含量为9.24~28.12 g/kg,全氮为0.22~0.60 g/kg,速效磷为0.17~16.08mg/kg,速效钾为80.06~168.39 mg/kg;黄土高原坡地苹果园中NO_3~--N有深层累积分布,累积深度大于2 m,在180-200 cm层最高累积量达249.61 kg/hm2,而NH_4~+-N无深层累积.不同施肥处理对土壤剖面中的NH_4~+-N和NO3--N含量分布影响不同,对NH4+-N含量和分布影响不明显,但不同施肥方式对NO3--N含量分布影响显著.施加氮肥促进NO_3~--N深层累积,施加磷肥有助于降低土层中的NO_3~--N含量,缩小富集量的分布范围.  相似文献   

8.
研究了山东省桓台县高产麦田系统中N肥对土壤硝态氮(NO3--N)积累及冬小麦产量和吸N量的影响。结果表明,冬小麦收获后施用150kg/hm2N肥的0~90cm土层土壤NO3--N与小麦播种前相比,基本保持平衡;而常规施用300kg/hm2N肥则使0~90cm土层土壤NO3--N含量显著提高,特别是60~90cm土层土壤NO3--N含量上升了39.9kg/m2,对浅层地下水造成潜在污染。建议供试条件下的合理施N肥量为150kg/hm2,这样既兼顾产量,又兼顾生态效益。  相似文献   

9.
通过田间裂区试验研究了不同施氮量(N 0、150、210和270 kg/hm2)和灌水量(900、1200、和1500 m3/hm2)对夏玉米土壤硝态氮分布累积、氮素平衡以及氮肥利用率的影响。结果表明,夏玉米收获期各处理土壤硝态氮在表层(0—20 cm)含量最高,在0—200 cm剖面均呈现先减少后增加再减少的变化趋势;土壤剖面NO3--N累积量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理。作物吸氮量、氮素表观损失量均与施氮量和总氮输入量呈显著相关,氮素输入量每增加1 kg,作物吸氮量仅增加0.301 kg,而表观损失量增加0.546 kg,是作物吸氮量的1.8倍左右。随施氮量的增加土壤剖面中NO3--N的损失量逐渐减少。夏玉米子粒吸氮量和收获指数随施氮量的增加有增加的趋势;氮肥回收效率和氮肥农学效率均以处理W1500N150最高,分别为46.15%和12.98kg/kg;氮肥生理效率以处理W1200N150最大,为34.49 kg/kg。本试验条件下,以水氮处理W1500N150的土壤硝态氮残留量、表观损失量较低,夏玉米氮肥回收效率和农学效率较高。  相似文献   

10.
通过3年田间试验,探索贵州黄壤坡耕地玉米-小麦间套作体系作物增产、环境友好的适宜氮肥施用量。本研究设置6个小麦氮肥用量(N 0、90、120、150、180和240 kg/hm~2)和6个玉米氮肥用量(N 0、146、195、244、293和390 kg/hm~2),分别用N0、N1、N2、N3、N4、N5表示。结果表明:玉米在0~146.25 kg/hm~2的施氮量下,籽粒产量随着施氮量提高而增加,超过146.25 kg/hm~2施氮量,籽粒产量呈下降的趋势;玉米在0~243.25kg/hm~2的施氮量下,植株氮素累积量随着施氮量提高而增加,超过243.25 kg/hm~2的施氮量,植株氮素累积量呈下降的趋势。小麦在0~150 kg/hm~2的施氮量下,籽粒产量和植株氮素累积量随着施氮量提高而增加,超过150kg/hm~2施氮量,籽粒产量和植株氮素累积量呈下降的趋势。玉米-小麦间套作在0~236.25 kg/hm~2的施氮量下,籽粒产量随着施氮量提高而增加,超过236.25 kg/hm~2施氮量,籽粒产量呈下降的趋势;玉米-小麦间套作在0~315 kg/hm~2的施氮量下,植株氮素累积量随着施氮量提高而增加,超过315 kg/hm~2施氮量,植株氮素累积量呈下降的趋势。3年试验周期内氮素利用率较低,不超过25%;土壤中残留无机氮随着施肥量的增加而增加,并以NO3--N为主,100 cm土体累积的NO3--N与周年施氮量呈正相关(R2=0.746 3)。N0、N1、N2、N3、N4、N5处理的0~100 cm土体累积无机氮分别为275.5、301.5、292.1、366.5、431.2、616.9 kg/hm~2,N0、N1、N2、N3、N4、N5处理的耕层土壤无机氮占100 cm土体内土壤无机氮的比例分别为18.1%、19.0%、27.3%、26.2%、33.9%、22.1%。耕层无机氮表聚效应较弱,而土体累积无机氮含量较高。当每年施氮量为225.6~264.6 kg/hm~2时,籽粒产量为3 784.8~3 888.2 kg/hm~2,NO3--N积累量在217.5~228.9 kg/hm~2,增施氮肥,有利于籽粒增产,土壤NO3--N积累量平均增速为0.29 kg/kg,是贵州黄壤坡耕地麦-玉间套作体系氮肥适宜施用量,更有利于黄壤区农业的可持续发展。  相似文献   

11.
华北山前平原典型厚包气带硝态氮分布累积规律   总被引:5,自引:1,他引:4  
梁慧雅  王仕琴  魏守才 《土壤》2017,49(6):1179-1186
包气带是连接大气层和含水层水分和养分转换的纽带,也是农田NO_3~–-N分布和累积的重要场所和向含水层淋失的通道,因此研究包气带土壤中NO_3~–-N的分布累积规律对防止地下水NO_3~–-N污染至关重要。本文以中国科学院栾城试验站典型的厚包气带为对象,在无施肥处理(N0)和施氮肥600 kg/(hm~2·a)(N600)两种处理的多年试验田中,利用Geoprobe获取0~10.5 m深度土壤样品,研究厚包气带NO_3~–-N垂向分布、累积规律,并分析其影响因素。结果表明:N0中NO_3~–-N基本保持不变,长年施氮肥600 kg/(hm~2·a)使得NO_3~–-N淋溶至10.5 m,并在深层包气带中形成累积,累积的峰值由土壤的质地和含水量决定;NO_3~–-N的分布和累积主要受水分运移、土壤质地和反硝化作用影响。  相似文献   

12.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

13.
施氮和豌豆/玉米间作对土壤无机氮时空分布的影响   总被引:4,自引:1,他引:3  
为探明甘肃河西走廊绿洲灌区豌豆/玉米间作体系土壤无机氮时空分布现状和过量施用氮肥对环境的影响,2011年在田间试验条件下,采用土钻法采集土壤剖面样品,采用Ca Cl2溶液浸提、流动分析仪测定土壤无机氮含量的方法,研究了不同氮水平[0 kg(N)·hm?2、75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2、450 kg(N)·hm?2]下豌豆/玉米间作体系土壤无机氮时空分布规律。结果表明:作物整个生育期内,灌漠土无机氮以硝态氮为主,其含量是铵态氮的7.55倍。在玉米整个生育期内,与不施氮相比,75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2和450 kg(N)·hm?2处理的土壤硝态氮含量分别增加29.7%、67.5%、88.2%和134.3%。与豌豆收获期相比,在玉米收获时土壤硝态氮含量平均降低44.2%。间作豌豆和间作玉米分别比对应的单作在0~120 cm土层硝态氮含量降低6.1%和5.1%。豌豆/玉米间作体系土壤无机氮累积量在不同施氮量和不同生育时期都是表层(0~20 cm)最高。豌豆收获后,0~60 cm土层土壤无机氮累积量间作豌豆和间作玉米分别比相应单作降低4.9%和1.9%,60~120 cm土层降低10.8%和9.2%;玉米收获后0~60 cm土层平均降低28.2%和9.4%,60~120 cm土层平均降低23.5%和12.5%。土壤无机氮残留量间作豌豆比单作豌豆在0~60 cm土层降低4.9%,60~120 cm降低10.9%。因此,施用氮肥显著增加了土壤无机氮含量和累积量,且主要影响土壤硝态氮。过量的氮肥投入会因作物不能及时全部吸收而被大水漫灌和降雨等途径淋洗到土壤深层,造成氮肥损失和农田环境污染。间作能显著降低土壤无机氮浓度和累积量,特别在作物生长后期对土壤无机氮累积的降低作用更加明显。  相似文献   

14.
华北山前平原农田生态系统氮通量与调控   总被引:4,自引:2,他引:2  
针对华北太行山前平原冬小麦-夏玉米轮作农田, 研究农田常规施肥[400 kg(N)·hm-2·a-1]条件下作物氮素吸收与损失通量过程, 并根据各氮素输出通量特征开展管理调控。研究结果表明, 全年小麦-玉米轮作农田系统氮输入总量为561~580 kg(N)·hm-2, 输出量468~494 kg(N)·hm-2, 两季作物总盈余86~93 kg(N)·hm-2, 其中有机氮为24~36 kg·hm-2。氨挥发和NO3--N 淋溶损失是该区域农田氮素损失的主要途径, 是氮肥利用率低的重要原因。平均每年因氨挥发而造成的肥料氮损失量为60 kg(N)·hm-2, NO3--N 淋溶损失量为47~84kg(N)·hm-2, 两者占施肥总量的30%。每年因硝化-反硝化过程造成的肥料损失很小, 仅为5.0~8.7 kg(N)·hm-2。通过施肥后适时灌水、合理调控灌水时间与用量, 以及利用秸秆还田与肥料混合施用等管理措施可改善氮素的迁移和转化规律, 有效减少氨挥发和NO3--N 淋溶损失, 并结合缓/控释肥与精准施肥技术, 充分利用土壤本身矿质氮素, 可有效提高养分利用效率和作物产量, 改善农田生态环境与促进农业持续和谐发展。  相似文献   

15.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

16.
对不同施肥条件下23年小麦连作地和苜蓿连作地土壤矿质氮分布和累积进行研究,探讨种植浅根系和深根系植物对硝态氮淋溶的影响。结果表明,不施肥(CK)和单施磷(P)肥,小麦和苜蓿连作地土壤硝态氮主要集中在0—60 cm土层,0—60 cm土层以下硝态氮含量变化稳定并小于2 mg/kg。氮肥、磷肥和有机肥配施(NPM)时,小麦连作地土壤硝态氮累积在20—100 cm和140—320 cm土层,年累积速率可达42.12 kg/(hm2.a);苜蓿连作土壤硝态氮主要集中在0—60 cm土层,仅在200—300 cm土层出现轻微累积,年累积速率仅为1.01 kg/(hm2.a)。在不施肥和单施磷肥下,种植小麦或苜蓿对土壤硝态氮残留量影响不显著,而氮、磷和有机肥配施时,小麦连作地土壤硝态氮残留量迅速增加,并与不施肥、单施磷肥处理有显著差异;苜蓿连作地土壤硝态氮残留量虽有少量增加,但与不施肥、单施磷肥处理无显著差异。不施肥、单施磷肥和氮、磷和有机肥配施,小麦连作、苜蓿连作地土壤剖面铵态氮含量主要在10—20 mg/kg之间波动,在土壤剖面无明显的累积现象,铵态氮残留量受施肥和作物种类的影响不显著。  相似文献   

17.
采用田间小区试验,监测夏玉米不同生长期土壤水分和硝态氮剖面含量变化,研究不同施氮量对其时空变化及籽粒产量、水肥利用效率的影响,探讨氮肥对水肥资源高效利用的调节作用。结果表明:不同施氮处理,土壤剖面水分和硝态氮随土壤深度的变化趋势基本一致,即表层50 cm土壤水分和硝态氮含量较高且呈降低态,50-110 cm相对较低且波动较小,灌浆期二者均达到最低值;各生长期表层50 cm土壤含水量呈不施氮处理均高于施氮处理,50-110 cm土层则相反;施氮能提高土壤硝态氮含量,土壤硝态氮运移受土壤水分状况和含量的影响,含量越高,向下移动越深;施氮能显著提高水分利用效率及籽粒产量,增产效果明显(增产28.52%-37.86%),二者均以施氮240 kg/hm^2处理最高;随施氮量的增加籽粒产量及籽粒吸氮量和水分利用效率增幅均表现为先升高后降低之趋势,当施氮量超过240 kg/hm^2后,籽粒产量和水分利用效率提高并不显著;不施氮与施氮处理氮素生产力、氮肥利用率之间均存在极显著差异。在本试验条件下,从控制土壤硝态氮积累及取得较高的产量和氮素利用率综合考虑,夏玉米的适宜施氮量范围应控制在120-240 kg/hm^2较好。  相似文献   

18.
模拟土柱条件下黑土中肥料氮素的迁移转化特征   总被引:3,自引:0,他引:3  
为明确肥料氮素在土壤中的迁移转化动态特征,利用模拟土柱方法,研究了3倍常规施肥量条件下不同肥料处理(尿素、硫铵)黑土的矿质氮变化。结果表明:不同氮肥处理的氮素养分迁移转化特征有明显差异。对照处理(不施肥)土柱内各层次间NH4+-N和NO3--N含量差异不明显;施用尿素或硫铵后,表层0~50mm土层的NH4+-N和NO3--N含量比不施肥对照分别升高100.8~3408.1mg·kg-1、113.4~388.0mg·kg-1和126.7~4671.1mg·kg-1、51.4~63.3mg·kg-1,且在培养前14d内变化最大。在整个培养期内,施用硫铵处理各层次NH4+-N平均含量比尿素处理高2.54~1423.7mg·kg-1,NO3--N平均含量低4.38~335.1mg·kg-1;而尿素处理各层次的硝化率是硫铵处理的0.79~9.12倍。表明肥料氮素的迁移与转化集中在0~50mm土层内,尿素处理的氮素转化速率较硫铵处理高。  相似文献   

19.
减氮配施有机物质对土壤氮素淋失的调控作用   总被引:2,自引:1,他引:1  
采用室内土柱模拟试验方法,研究不同氮肥施用下1m土体中氮素的分布和移动特征,揭示土壤氮素动态变化规律。结果表明:FN(农民习惯施无机氮用量)、RN(根据土壤养分供应和作物需求确定的推荐无机氮用量)显著增加了土壤上层NH_4^+-N和NO_3^--N向下层淋失。RN+HA(与推荐无机氮纯养分相等的锌腐酸尿素)和RN40%+OMB(推荐无机氮肥减60%基础上配施自制有机调理物质)可延长上层土壤NH_4^+-N峰值出现时间,降低下层NH_4^+-N。淋溶结束后,等氮量下增施HA较RN降低60cm以下NH_4^+-N残留29.7%~54.2%;降低60—80cm NO_3^--N累积17.4%。RN40%+OMB处理无机氮肥用量最小,0—20cm的NH_4^+-N最高,40—100cm稳定在2.0mg/kg左右;0—20,20—40cm土层NO_3^--N较RN+HA增加12.3%和2.0%,显著降低40cm以下NO_3^--N残留。RN+HA和RN40%+OMB较RN的土壤总无机氮残留分别减少7.4%和20.2%,降低表观淋失率。因此,RN40%+OMB可较好地抑制氮素下移,降低氮素淋失风险,为减少氮素淋失、明确合理氮肥施用方式提供科学依据。  相似文献   

20.
针对蔬菜灌溉水肥渗漏问题,采用田间试验和室内分析相结合,研究了番茄膜下沟灌灌水量与土壤硝态氮的根层外渗漏关系,分析了灌水量与不同根层土壤硝态氮的淋溶和保蓄特征,结果表明:灌溉不施肥条件下灌水量与土壤硝态氮淋溶量和淋溶率、灌溉施肥条件下灌水量与土壤施入硝态氮的保蓄率和渗漏率均呈直线关系;灌溉均会引起浅根层(0—20 cm)硝态氮淋溶,灌溉施肥条件下7.5~15 mm灌水量范围硝态氮积累有一个峰值,而22.5~45 mm范围则有两个峰值;灌水量在7.5~15mm之间,灌溉不施肥条件下根层土壤硝态氮淋溶率为0,灌溉施肥条件下土壤硝态氮渗漏率为0~5.19%;灌水量在22.5~45 mm之间,灌溉不施肥土壤硝态氮淋溶率为5.38%~19.08%,灌溉施肥条件下根层土壤硝态氮渗漏率为21.91%~61.96%。日光温室番茄膜下沟灌能减少肥料淋溶与渗漏的节水灌水量为15 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号