首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用长期定位试验研究了太湖地区不同施肥处理下油菜生长期间水稻土CO2排放通量,耕作方式为水稻-油菜轮作,并对CO2排放通量和土壤(5cm)温度、土壤水分含量进行了回归模拟。结果表明,不同施肥处理平均土壤呼吸CO2排放速率在49.37~85.97CO2-Cmg·m^-2·h^-1之间,与不施肥处理相比,长期施用肥料显著提高了土壤呼吸CO2排放速率,且在油菜的两个生育期,施肥对土壤呼吸释放CO2的促进作用,花角期显著高于角果发育成熟期。相关分析表明,土壤呼吸CO2排放强度与土壤水分、土壤温度有显著的正相关关系。通过计算Q10,无肥处理(NF)较其他肥料处理(CF、CFM、CFS)对土壤温度有更大的敏感性。  相似文献   

2.
通过布置室内盆栽试验,观测不同N、P肥施用量处理对不同母质和肥力水平红壤水稻土微生物生物量C、N和基础呼吸强度的影响.结果表明,不同红壤水稻土速效养分含量随施肥量的增加而增加,但微生物生物量、呼吸强度和呼吸熵并不一直呈上升趋势.第三纪和第四纪高肥水稻土微生物生物量C在超过2倍常规施肥量后呈下降趋势,第三纪低肥水稻土则随施肥量增加而呈上升趋势.不同土壤的微生物生物量N则在超过1.5倍常规施肥量后呈下降趋势,不同土壤问微生物生物量N变化表现为第四纪高肥水稻土>第三纪高肥水稻土>第三纪低肥水稻土.施肥条件下,红壤水稻土的基础呼吸强度在超过1.5倍常规施肥量后,即随施肥量增加而下降.但土壤呼吸熵随施肥量变化并没有一致的规律.  相似文献   

3.
以长白山阔叶红松林暗棕色森林土为研究对象,研究不同形态氮(N)添加对土壤不同粒级团聚体CO2和N2O排放的影响。采用室内短期培养试验(15 d),研究对照(CK)、氯化铵(NH4Cl,含N 150 mg kg-1)和硝酸钠(Na NO3,含N 150 mg kg-1)添加对全土(bulk soil)、大团聚体(250~1000μm)、微团聚体(53~250μm)、粉粒+黏粒(53μm)土壤组分CO2和N2O排放的影响。结果表明:CO2的排放量为大团聚体微团聚体全土粉粒+黏粒;NH4+-N添加对全土和各粒级团聚体的CO2排放没有显著影响;NO3--N添加对大团聚体和微团聚体的CO2排放有促进作用,并且在微团聚体中影响显著(P0.05),但对全土和粉粒+黏粒的CO2排放影响不显著。不同形态N添加对全土和各粒级团聚体N2O排放影响不同,NO3--N添加显著促进了N2O的排放,NO3--N添加后N2O排放量为全土大团聚体微团聚体粉粒+黏粒;NH4+-N的添加抑制了N2O的排放,NH4+-N添加后的土壤大团聚体、微团聚体和粉粒+黏粒的N2O排放量间无显著差异。由此可见,不同形态N添加影响土壤组分的CO2和N2O排放,且作用效果不一。  相似文献   

4.
三氯生(Triclosan, TCS)和三氯卡班(Triclocarban, TCC)是典型的药品与个人护理用品,在土壤生态系统中被广泛检出,且存在增加土壤微生物抗药性及抑制土壤呼吸的潜在风险,但目前有关TCS和TCC对土壤氮转化过程及氧化亚氮(N_2O)排放的影响尚不清楚。基于此,采用室内培养实验和15N稀释-富集法,结合氮转化数值模型,研究了不同浓度梯度下TCS(2和5mg·kg~(-1))和TCC(1和2 mg·kg~(-1))的单独及联合存在对水稻土氮初级转化速率以及N_2O排放的影响。结果表明,1mg·kg~(-1)TCC及5mg·kg~(-1)TCS+2mg·kg~(-1)TCC处理对水稻土氮素的矿化-同化无显著影响,其余TCS和TCC处理均显著促进了氮的矿化-同化循环。此外,TCS和TCC处理显著降低了自养硝化速率、硝态氮的微生物固定速率以及硝酸盐异化还原成铵(Dissimilatory nitrate reduction to ammonium, DNRA)速率(2 mg·kg~(-1)TCS处理及5mg·kg~(-1)TCS+2mg·kg~(-1)TCC对DNRA速率无显著影响)。值得关注的是,TCS和TCC单一和联合处理均显著增加了N_2O的累积排放量,其累积排放量为对照的1.13倍~1.44倍。本研究表明,TCS和TCC改变了水稻土好氧氮转化过程,可能对稻田生态系统氮循环产生不利影响;TCC和TCS对水稻土N_2O排放的促进作用也增加了稻田生态系统对温室效应和臭氧层破坏的潜在贡献,因此,未来评价TCS和TCC土壤生态风险时,应考虑其对氮转化过程和N_2O排放的潜在影响。  相似文献   

5.
针对宁夏引黄灌区稻田施氮严重过量现象,在宁夏引黄灌区的青铜峡稻田,采用静态箱-气相色谱法,通过田间试验研究常规施氮(N300)、优化施氮(N240)和不施氮(N0)对水稻不同生育期CO2、CH4和N2O通量以及稻田增温潜势(GWP)的影响。结果表明:CO2排放主要在水稻灌浆和成熟期,CH4排放主要发生在水稻孕穗期,而N2O排放关键期在水稻的分蘖和拔节期。与N0处理相比,施氮能显著增加稻田CO2、CH4和N2O排放通量以及稻田GWP;常规施氮处理中CO2、CH4和N2O的累积排放量分别为18446.87、146.57 kg C·hm-2和2.93 kg N·hm-2;为期一年的优化施氮没有显著增加水稻生育期内稻田CO2排放,但使灌区稻田CH4和N2O排放分别显著降低了24.42%和36.28%。总的来看,为期一年的优化施氮使宁夏引黄灌区稻田GWP显著降低了26.70%。未来应结合土壤有机碳氮形态和含量变化以及土壤微生物技术,分析长期优化施氮对土壤温室气体通量的影响机制。  相似文献   

6.
为给我国旱地低碳农业可持续发展提供科学依据,2018 — 2020年在陇东黄土高原雨养区冬小麦田设置夏闲期种植绿肥和不同施氮量田间试验,通过测定土壤N2O和CH4排放通量,计算N2O和CH4累积排放量等指标,分析不同处理对土壤N2O和CH4排放通量和累积排放量的影响。结果表明,在2个轮作周期内,不同处理的N2O排放峰主要出现在冬小麦播种施肥后,峰值范围平均11.24~31.85 μg N2O-N/(m2·h)。土壤CH4排放无明显峰谷变化趋势,而围绕着零值上下波动,变化范围-46.8~24.5 μg CH4-C/(m2·h)。与休闲-冬小麦处理相比,麦黑豆-冬小麦轮作处理在绿肥填闲期和冬小麦生长期土壤N2O累积排放分别显著增加了26.8%~44.2%和6.2%~52.3%,土壤CH4累积吸收分别显著减少了7.9%~76.3%和4.0%~28.4%。可见,豆科绿肥填闲种植可增加土壤N2O排放,减少土壤CH4的吸收。  相似文献   

7.
对华北平原小麦-棉花(麦棉)、小麦-大豆(麦豆)、小麦-玉米(麦玉)轮作田的CO2和N2O排放通量进行了测定,分析了温室气体排放通量与土壤中碳、氮元素、气温以及施肥等之间的关系。主要结论:1)麦棉、麦豆、麦玉田的土壤CO2平均排放通量分别为CO2-C 141.7、109.8、128.2 mg.m-2.h-1,其中夏播作物的排放通量高于小麦季;2)麦棉、麦豆及麦玉田作物生长季的土壤N2O平均排放通量分别为N2O-N 98.8、38.9、44.7μg.m-2.h-1,也表现为麦后季作物的排放量高于小麦季;3)同一生育期中不同处理的N2O排放主要与土壤中无机氮含量相关,不同生育期的N2O排放通量主要受不同生育期的土壤温度及水分状况的影响;4)在施肥灌溉后的9 d内土壤N2O排放通量较高,之后逐渐降低,至施肥后22~27 d即与不施肥处理的排放持平。  相似文献   

8.
采集南方几种重金属污染下的水稻土,通过室内培养的方法研究土壤CO2排放的动态变化以及微生物学指标的差异。结果表明,在60d的培养期内,前7d土壤呼吸速率较高,占了整个排放量的30.89%~64.37%,并且这一阶段重金属对土壤呼吸速率的影响最大。重金属对土壤微生物生物量的影响表现出增加、抑制与无显著性差异的结果,而重金属对微生物熵及微生物代谢熵(qCO2)的影响却是极显著的,同时表现出增加与降低的不同结果。这说明土壤呼吸以及不同的微生物学指标,在长期的复合重金属污染条件下,其表现并不一致,微生物熵与代谢熵用于基本性质差异较大的土壤时,对重金属的响应更为灵敏。此外,土壤重金属的累积还能提高土壤中有机碳的含量。  相似文献   

9.
孙会峰  朱建国  谢祖彬  刘钢  蔺兴武 《土壤》2012,44(6):933-940
利用FACE (free-air carbon dioxide enrichment)平台,采用静态暗箱-气相色谱法,研究了大气CO2浓度升高对稻田土壤CO2通过土壤-大气(土气)和植被-大气(植气)界面排放的影响.在整个水稻生长季中,土气界面CO2排放通量与土壤表面水层深度指数负相关,且在中期烤田和收获前排水阶段出现较大值;而植气界面CO2排放通量与根系生物量的变化趋势基本一致.在低氮(N 125 kg/hm2)和常氮(N 250 kg/hm2)水平上,高浓度CO2(对照大气CO2浓度+200 μmol/mol)有提高水稻生物量、降低土气和植气界面CO2累积排放量的趋势.在水稻的拔节、抽穗和成熟期,较高的施氮量显著增加水稻地上部分生物量,促进植气界面CO2的排放.研究结果表明,未来大气CO2浓度升高的环境下,稻田生态系统有增加CO2的固定(增加水稻生物量),减少CO2的排放(土气和植气界面CO2的排放)的趋势,可能发挥着碳汇的作用.  相似文献   

10.
陈旸  李忠佩  车玉萍  周立祥 《土壤》2008,40(5):719-724
通过田间采样并布置室内培育试验,研究了红壤水稻土微生物生物量N和总N的矿化动态及其相互关系。结果表明,红壤水稻土微生物生物量N矿化速率和矿化量随培养时间延长而降低,随水稻土肥力水平提高而增加。12周培养期内,红壤水稻土微生物生物量N的一半以上被矿化,其中约1/2的矿化量出现在前4周;不同熟化程度红壤水稻土的累积矿化N量为73.0~127.8mg/kg,平均矿化速率为6.09~10.7mg/(kg·wk)。用双指数方程和一级动力学方程可以很好地模拟红壤水稻土微生物生物量N和总N的矿化过程。微生物生物量N和总N的矿化过程均可分为快速和缓慢2个阶段,培养的前8周是快速矿化阶段。2个模拟方程参数的比较表明,微生物生物量N矿化量占总N矿化量的比例为10.8%~49.5%,其矿化潜力大,持续矿化时间长,对保证土壤N素的持续供应有积极作用。  相似文献   

11.
淡水湿地不同围垦土壤非耕季节呼吸速率差异   总被引:1,自引:0,他引:1  
选择何种湿地利用方式,使得土壤固碳能力及CO2气体排放受到的影响最小,是合理利用湿地、减少温室气体排放的关键所在,湿地土壤呼吸不仅受环境条件的影响,还受土壤本身性状的影响。以皖江地区为研究区域,利用定位试验对天然湿地及不同围垦利用方式下土壤在非耕季节CO2排放通量、大气温度及表层土壤温度进行测定,并对其土壤TOC含量进行分析。结果表明,CO2排放通量:水稻田[700.70 mg/(m2·h)]> 旱地[433.80 mg/(m2·h)]> 天然湿地[302.66 mg/(m2·h)],天然湿地土壤TOC含量明显高于围垦旱地及水稻田(0-30 cm),说明天然湿地较围垦旱地和水稻田对大气中CO2浓度贡献最小,能存储更多的碳。探讨了CO2排放通量与温度的相关性,得出3种土壤类型CO2排放通量与大气温度和表层土壤温度均呈正相关关系。  相似文献   

12.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

13.

Purpose

The objective of the present study was to investigate the interactive effects of nitrogen (N) addition, temperature, and moisture on soil microbial respiration, microbial biomass, and metabolic quotient (qCO2) at different decomposition stages of different tree leaf litters.

Materials and methods

A laboratory incubation experiment with and without litter addition was conducted for 80 days at two temperatures (15 and 25 °C), two wetting intensities (35 and 50 % water-filled porosity space (WFPS)) and two doses of N addition (0 and 4.5 g N m?2, as NH4NO3). The tree leaf litters included three types of broadleaf litters, a needle litter, and a mixed litter of them. Soil microbial respiration, microbial biomass, and qCO2 along with other soil properties were measured at two decomposition stages of tree leaf litters.

Results and discussion

The increase in soil cumulative carbon dioxide (CO2) flux and microbial biomass during the incubation depended on types of tree leaf litters, N addition, and hydrothermal conditions. Soil microbial biomass carbon (C) and N and qCO2 were significantly greater in all litter-amended than in non-amended soils. However, the difference in the qCO2 became smaller during the late period of incubation, especially at 25 °C. The interactive effect of temperature with soil moisture and N addition was significant for affecting the cumulative litter-derived CO2-C flux at the early and late stages of litter decomposition. Furthermore, the interactive effect of soil moisture and N addition was significant for affecting the cumulative CO2 flux at the late stage of litter decomposition but not early in the experiment.

Conclusions

This present study indicated that the effects of addition of N and hydrothermal conditions on soil microbial respiration, qCO2, and concentrations of labile C and N depended on types of tree leaf litters and the development of litter decomposition. The results highlight the importance of N availability and hydrothermal conditions in interactively regulating soil microbial respiration and microbial C utilization during litter decomposition under forest ecosystems.
  相似文献   

14.
While it is well known that soil moisture directly affects microbial activity and soil organic matter (SOM) decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on SOM decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45% and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils. On average a greater priming effect was found in the high soil moisture treatment (up to 76% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (up to 52% increase). Greater plant-derived CO2-C and plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher in the high moisture treatment than in the low moisture treatment after correcting for the effects of plant-derived CO2-C and plant biomass. The response to soil moisture particularly occurred in the sandy loam soil by the end of the experiment. Possibly, production of root exudates increased with increased soil moisture content. Root exudation of labile C may also have become more effective in stimulating microbial decomposition in the higher soil moisture treatment and sandy loam soil. Our results indicate that moisture conditions significantly modulate rhizosphere effects on SOM decomposition.  相似文献   

15.
Significance of earthworms in stimulating soil microbial activity   总被引:9,自引:0,他引:9  
 The stimulatory effect of earthworms (Lumbricus terrestris L.) on soil microbial activity was studied under microcosm-controlled conditions. The hypothesis was tested that microbial stimulation observed in the presence of a soil invertebrate would be due to the utilization of additional nutritive substances (secretion and excretion products) that it provides. Changes in microbial activity were monitored by measuring simultaneously CO2 release and protozoan population density. The increase in CO2 released in the presence of earthworms was found to result from both earthworm respiration and enhanced microbial respiration. The stimulation of microbial activity was confirmed by a significant increase in protozoan population density, which was 3–19 times greater in the presence of earthworms. The respiratory rate of L. terrestris was estimated to be 53 μl O2 g–1 h–1. Earthworm respiration significantly correlated with individual earthworm weight, but there was no correlation between the increase in microbial respiration and earthworm weight. This finding does not support the hypothesis given above that enhanced microbial respiration is due to utilization of earthworm excreta. A new hypothesis that relationships between microbial activity and earthworms are not based on trophic links alone but also on catalytic mechanisms is proposed and discussed. Received: 26 August 1997  相似文献   

16.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

17.
Studies on earthworms in rice-based ecosystems tend to focus on some pest species, while the potential of these important soil engineers for beneficially affecting carbon storage and cycling is widely ignored. We carried out a microcosm experiment to quantify the impact of the tropical earthworm Pheretima sp. on the C turnover in paddy soils under different conditions of water saturation and N fertilization. The soil was sampled at the lowland farm of the International Rice Research Institute (Philippines). In the absence of earthworms, soil respiration showed a distinct hump-shaped maximum at intermediate levels of water saturation (4-fold higher than in hand-dry soil) and increased 1.5-fold with increasing amounts of N fertilization. Amounts of CH4 emitted, in contrast, were small at low to moderate soil humidity and became very high under conditions of water saturation (80-fold higher than hand-dry soil). No response to nitrogen addition was observed. Earthworms suppressed both the respiration maximum at intermediate saturation levels (by a factor of 1.4) and the stimulating impact of N fertilization (1.7-fold at maximum fertilizer level). On the other hand, earthworms strongly increased CH4 release under conditions of high water saturation (3-fold). No consistent response of the soil microflora (bacterial abundance, soil enzymes) to earthworm activity could be established. Our findings suggest that the stabilization of soil organic C via earthworm bioturbation is confined to the range of soil humidity that allows high activity of Pheretima sp. Under conditions of intensive agriculture, the stabilizing effect of the worms may even be augmented by the fact that they offset the positive effect of N fertilization on microbial respiration. Earthworms may thus play a vital role in reducing the CO2 flush from paddy soils after the conversion to non-flooded crops such as aerobic rice or maize. Acceleration of methane emission in very humid soils nevertheless points to a certain risk that is associated with increasing earthworm abundance in production systems that are still exposed to temporary flooding during the wet season.  相似文献   

18.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

19.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:4,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   

20.
Summary The effects of the presence of Folsomia candida on substrate-induced respiration, CO2-C evolution, bacterial count and NH 4 + -N were investigated in a grassland soil. Differences in these parameters, with the exception of NH 4 + , were correlated with the age of the collembolan Folsomia candida. In the presence of juvenile animals total CO2-C evolution was enhanced, but substrate-induced respiration and the bacterial count were unchanged. In fumigated soil with imagos, substrate-induced respiration and the number of bacteria were increased, but total CO2-C evolution was unaltered. Different food selection strategies between adults and juvenile animals may explain the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号