首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
泾惠渠灌区浑水泥沙输移特征   总被引:1,自引:2,他引:1       下载免费PDF全文
通过对泾惠渠灌区2013年夏秋灌期干支斗渠浑水资料的实时取样分析,探究渠灌区渠系挟沙水流含沙量及泥沙级配的时空变化规律,量化描述不同粒径悬移质泥沙颗粒的输移特征,旨在获得灌渠渠系内挟沙水流历经冲淤过程不同粒径悬沙沿程的垂向分布与输移规律,为渠灌区的运行及泥沙问题的处理提供理论基础。灌区内进行的原型取样测流工作在选定的具有代表性的干-支-斗渠线路上进行,观测分析了灌区渠系含沙量及不同粒径泥沙颗粒沿垂线分布的特征,验证分析了挟沙水流历经淤积过程含沙量分布的变化规律。通过对典型渠系线路不同粒径悬移质泥沙的沿程调整计算分析,表明不同粒径泥沙沿程的输移特征不同,各分组沙的冲淤特征并不都和全沙平均计算结果一致,其中级配曲线左端一定粒径范围(约>0.015 mm)的粗沙与全沙具有同冲同淤的规律。该研究可为泾惠渠灌区泥沙处理利用以及渠灌区浑水调控理论与技术的进一步研究提供依据。  相似文献   

2.
目前对灌区分水口水力性能的研究多集中在主渠和侧渠底部高程相等的情况下,对于普遍存在的侧渠底部高程高于主渠时的分流特性缺乏系统研究。该文在试验基础上,利用FLOW-3D软件对侧渠不同底高、主渠来流量的矩形渠道分水口进行了数值模拟研究,将主渠各断面水深、流速的模拟值与实测值进行对比,发现流速变化与实测值变化规律基本一致,相对误差均小于10%,利用FLOW-3D对分水口进行数值计算具有合理可信性。结果表明:分水口处的水面波动受主渠来流的影响,流量越大,波动越大;高于侧渠底高的水流会对低于侧渠底高的下层水流产生影响,使下层水流具有向上的流速分量,参与分水口分流;同一主渠来流量下,随侧渠底高的增加,侧渠进口断面最大流速和水深逐渐减小;侧渠进口断面靠近上游端的区域湍动较大,而在下游端靠近底部湍动能值较小。研究为灌区配水及水量控制提供了参考依据。  相似文献   

3.
李俊  陈宁生  卢阳 《水土保持通报》2013,33(1):29-33,156
震后环境下单沟高含沙水流与泥石流相互演化规律是泥石流工程防治的关键问题.以茂县牟托沟泥石流为例,探讨了牟托沟泥石流物源补给和微地貌在高含沙水流与泥石流相互演化过程中的重要性.首先分析了牟托沟地形地貌特点;其次利用容重分析了牟托沟高含沙水流与泥石流相互演化特征;最后采用一次泥石流固体物质总量的形态调查法和阶梯-深潭微地貌效应分析方法分析了高含沙水流与泥石流相互演化机理.研究表明:(1)牟托沟泥石流起动模式为冲蚀→冲沟→堵塞→溃决→泥石流的模式;(2)在弃渣和崩坡积物的影响下牟托沟易形成阶梯一深潭微地貌;(3)高含沙水流与泥石流的相互演化和一次泥石流固体物质总量关系密切.  相似文献   

4.
坡面径流小区流量观测是坡地水土流失状况研究的重要内容。该文提出了一种新型的含沙水流流量自动观测方法和测量系统。通过受力分析和水力推导,得到了无含沙水流流量测定计算模型和含沙水流流量校正公式。模型验证和参数标定的试验结果表明:无含沙水流的拉力输出值和流量之间的关系与推导得到的水力学模型非常吻合,决定系数可以达到0.99。含沙水流流量通过校正可以得到精度很高的观测结果,与人工观测平均相对误差仅为0.4%。因此,该含沙水流自动测量系统具有很好的可靠性和观测精度,有一定的应用前景。  相似文献   

5.
1999年7月14日靖边至西安的天然气管线在陕西省富县洛河穿越处断裂,引起了省政府和社会的关注.为总结经验,通过实地踏勘,结合以往的研究,从水流泥沙条件及设计方面就该事故发生原因进行了分析.结果表明造成事故的主要原因除管线埋设位置不利外还有对高含沙水流特性认识不足,对高含沙洪水冲刷规律认识不足,致使设计配重和设计埋深不够.建议在管道穿越多沙河流时,一定要按高含沙水流特点进行设计埋深的研究计算.  相似文献   

6.
山区浅层水流深度极浅且移动缓慢,降雨条件下其泥沙输移现象尚不明确。为探明受到降雨影响下的浅水河流均匀沙起动问题,该研究假设雨滴落入河道后会影响到整个水流区,形成雨滴群与水流混合的流体,从孔隙介质流理论入手,假设当降雨存在时床面泥沙颗粒增加了向上的附加力,进一步分析泥沙颗粒的受力情况,推导出层流水流泥沙颗粒起动关系表达式。从含沙水流流速分布规律得到启发,雨滴落入层流水流的状态类似于含沙水流,当降雨存在时层流水流流速分布仍然满足线性关系。利用无降雨泥沙起动经典试验数据,确定了拖曳力系数以及上举力系数,发现两者都是沙粒雷诺数的函数。利用已有研究的降雨实测数据,求出了8种降雨强度(0.254~152.4mm/h)下的雨滴直径分布概率密度表达式(R~2=0.998),进而求出雨滴的平均直径表达式,并给出受降雨影响的层流水流泥沙颗粒起动切应力计算模型。该研究模型表明降雨的存在使得泥沙起动所需的临界摩阻流速减小。通过与已有研究进行对比分析,该研究建立的受降雨影响的浅水泥沙颗粒起动计算公式具有最高的精度,平均误差仅为14.8%,能够为山区水沙灾害防治提供理论支撑。  相似文献   

7.
由于高浓度悬浮泥沙会显著改变明渠底部的流动特征,明渠高含沙流动的数值模拟需要考虑泥沙对底部边界条件的影响。该研究基于水沙混相模型研究了不同底部边界条件对明渠高含沙流动数值模拟的影响,引入5种底部边界条件,包括给定流速的第一类边界条件、给定流速梯度的第二类边界条件、标准壁函数以及两种分别改进紊动能和紊动能耗散率的第二类边界条件,并研究了各底部边界条件对流速、紊动能、涡粘系数和泥沙浓度的计算结果的影响。结果表明,在多种含沙条件下采用第一类边界条件、标准壁函数和改进紊动能的第二类边界条件的计算结果能保持较高的准确性,流速和泥沙浓度的平均相对误差分别小于5%和10%;第二类边界条件和改进紊动能耗散率的第二类边界条件仅适用于低含沙条件,在高含沙条件下会造成较大的计算误差;第一类边界条件和改进紊动能的第二类边界条件需要根据试验数据校正模型系数,由于工程流动较为复杂,通常难以提供全面的试验数据用于系数校正,因此它们在工程计算中应用范围有限;标准壁函数无须校正系数并自动调整底部边界的流速和紊动能,能够适应多种含沙条件,适用于引黄灌溉工程中渠道输水、泵站淤积等问题的数值研究。  相似文献   

8.
串联输水渠系耦合特性表现为针对单一渠池设计的控制器串联使用后控制性能较差。解耦算法可在一定程度上增强渠池的独立控制性能。该研究针对基于比例-积分-微分(Proportional-Integral-Differential,PID)反馈控制的上游方向解耦算法提出优化方案,首先对控制解耦算法中的解耦系数的选取范围进行验证;其次针对相邻渠池长度差异较大的情况,在算法中引入放大系数以提升解耦效果;最后通过对不同取水流量规模、渠道上下游运行流量减半的算例进行仿真分析,验证优化方案的控制性能。结果表明:1)解耦系数的合理取值范围为0.8~1.0;2)放大系数可选用相邻渠池水面面积之比;3)当串联渠系上下游设计过流能力差异较大时,放大系数的修正能显著提升控制效果。该研究提出的优化解耦算法可应用于不同规模复杂渠道系统的解耦控制器设计,对于灌区及引调水工程输水系统的智能化调度有一定参考价值,工程应用时建议结合具体渠道的特点,根据渠道的特性和用途综合考虑系数的取值。  相似文献   

9.
混凝土防渗渠道冬季输水运行中冻胀与抗冻胀力验算   总被引:1,自引:15,他引:1  
为了明确渠道冬季输水时防渗衬砌层结构的抵抗渠床基土冻胀破坏作用的能力,该文理论分析了大气负温下,介入刚性防渗面层对渠基土冻胀的约束,得到作用于坡板上冻胀力的作用形式为法向冻胀力和指向坡顶的切向冻胀力,对被视为底端简支、板内无接缝、受冻胀作用的构件受力进行理论分析,得到冬季输水渠道边坡板的冻胀问题属于非垂直非全周的冻拔问题的结果,并进一步根据力学基本原理研究了刚性面层(衬砌层)承受荷载力的求解方法。依据桩的抗冻拔验算和拉弯构件的强度验算可实现冬季输水渠道抗冻胀力的计算,建立了适用于防渗渠道刚性衬砌结构设计的方法,为冬季输水梯形混凝土防渗抗冻胀渠道衬砌层厚度的准确确定提供了计算方法。  相似文献   

10.
利用高含沙洪水治沙淤地的土壤养分、粒径分布特征分析   总被引:2,自引:0,他引:2  
对公乌素引洪灌区风沙地(对照)、新淤地、淤后耕地的0~100cm剖面分层取样,进行土壤养分含量、土壤颗粒粒径组成的测定,以分析利用高含沙洪水淤地治沙后土壤养分、粒径的分布特征。结果表明,新淤地的速效磷含量是原状风沙土的4.2倍,速效钾的2.5倍,碱解氮的2.4倍,全氮的2.7倍,全磷的1.3倍,有机质的3.3倍,其中速效钾、速效磷含量分别达到了全国第二次土壤普查养分标准的极高、丰富等级。将高含沙洪水引人沙漠盆地,经过多年多次淤积,淤积层累计达到或超过耕作层厚度,可以将沙漠变成高质量的农田。利用高含沙洪水淤地、治沙,是减少黄河河床淤积、治理沙漠、开发农田十分有效的途径。  相似文献   

11.
淤地坝“淤满”后的水沙效应及防控对策   总被引:3,自引:0,他引:3  
黄土高原大规模的淤地坝建设在减少黄河泥沙以及改善区域生态环境方面发挥了巨大作用.但是,在淤地坝“淤满”的极端条件下,关于其水沙效应变化及防治对策的研究还较少涉及.经分析,淤地坝“淤满”后:1)坝控范围内坡度降低,径流长度减少,沟道比降降低,而横断面由原来的“V”型沟道,演变为“U”型沟道;2)以关地沟4号坝为例,使用RUSLE计算,修建淤地坝前,坝控范围内平均每年土壤侵蚀模数为4 472 t/(km2 ·a),淤满后,土壤侵蚀模数下降至4 019 t/(km2·a),降幅约10%,“原地”减蚀作用显著,从修建至淤满阶段,拦沙作用巨大;3)淤地坝淤满后,坝地流速显著降低,从修建淤地坝前的0.83 m/s降至0.27 m/s,但坝体外坡的流速显著增加,特别是坡底,最大流速可达3.76 m/s;4)淤地坝淤满后,淤地坝“异地”减蚀作用会降低.基于上述变化,针对淤地坝淤满后的极端条件,本文提出如下防治对策:1)以小流域为单元,以溢洪道为主体,完善沟道排洪设施布设,提高支沟内以及支沟与主沟的连通度,提升排洪能力;2)遵循“因地制宜”原则,科学合理植树种草、修建梯田,加强坡面治理,减少坡面来水来沙,消耗和分散坡面来水侵蚀能量,降低坝地淤满后被损毁的风险;3)采取“截水沟和排水沟相结合,工程措施和植物措施相结合”的方法,做好坝体陡坡防治,提高坝体外边坡植被覆盖度.研究结果以期为黄土高原淤地坝建设提供理论支撑.  相似文献   

12.
高陡边坡降雨径流侵蚀输移能力是一个重要的科学问题。通过室内模拟降雨试验研究相同雨强不同坡度和坡长条件下的降雨径流侵蚀输移规律。结果表明:(1)试验条件下,水深与水力坡度的1/3次方呈负相关,与坡长的3/5次方呈正相关,流速与水力坡度和水深呈幂函数增加;(2)相同雨强裸坡条件下,径流含沙量与水力坡度的1/2次方呈正相关,与坡长的4/5次方呈正相关。水流挟沙能力约与水力坡度的1/2次方呈正相关。(3)降雨径流的水流紊动扩散作用与重力作用的比值较明渠水流偏大,表明雨滴打击的紊动作用较明显,给出挟沙能力公式。与常用的河流泥沙挟沙能力公式比较,系数偏大,指数偏小。研究成果对深入分析降雨径流侵蚀输移的机制具有重要意义。  相似文献   

13.
细沟侵蚀过程与细沟水流水力学参数的关系研究   总被引:7,自引:2,他引:7  
利用供沙土槽和试验土槽的双土槽径流小区 ,定量研究了在不同降雨强度下上方来水来沙对陡坡地细沟侵蚀产沙过程和细沟水流水力学参数的影响及其细沟水流水力学特征参数与细沟侵蚀产沙量的关系。结果表明 :坡面细沟侵蚀过程以侵蚀—搬运过程为主 ,坡上方来沙不仅被径流全部搬运 ,且上方来水在坡下方引起了另外的侵蚀产沙量 ,其值随上方来水含沙量的减少和降雨强度的增加而增大。上方来水的汇入或降雨强度的增大可使细沟水流流态由层流转化为紊流。上方来水对细沟水流水力学参数 (流速、水力半径、雷诺数、弗劳德数和阻力系数 )有重要影响。定量分析了细沟水流水力学特征参数 (流速、雷诺数和阻力系数 )与上坡来水引起坡下方净侵蚀产沙量的关系 ,建立了净侵蚀产沙量与细沟水流流速、雷诺数和阻力系数统计模型。  相似文献   

14.
为探究引黄地面灌溉条件下水沙在田间的分布规律,该文于尊村引黄灌区开展田间试验,研究灌溉水流推进过程,灌溉水含沙量沿畦长方向的变化及灌水后泥沙在田面的沉积状况。结果表明,引黄灌溉水在沿畦长方向推进的过程中,随着水分下渗和水力损失,其流量减小,挟沙能力沿畦长方向逐渐减弱;挟沙水流中的较大粒径颗粒逐渐沉积,水流中携带泥沙的中值粒径逐渐减小;灌水结束后,田面沉积泥沙粉粒质量分数占70%左右,田面沉积泥沙质量沿畦长方向逐渐减小,在畦尾有增大趋势,且畦田首端和畦田尾端的沉积泥沙粒径大小及其颗粒组成却相差不大。研究结果为开发和利用畦灌蓄沙、放淤改土等黄河水沙利用技术提供一定的科学依据和理论支持。  相似文献   

15.
针对坡面径流水深浅(1~5mm)和水动力学参数(流速、水深等)提取困难,给坡面侵蚀径流水流结构、能量耗散及泥沙输移等的深入研究带来困难的问题,基于水动力学原理和相似性理论,通过"非常规比尺模型"将径流水深进行放大,来研究坡面薄层含沙水流的水流相似过程。结果表明:(1)当薄层含沙水流水深放大2.5倍,含沙量在10~320kg/m~3时,薄层含沙水流原型和模型的水面线(阻力)、流速、侵蚀地形的误差分别为0~0.1%,0.1%~5.3%,0.9%~4.9%,误差均在允许范围之内,原型和模型满足几何、运动等相似比尺转换关系;(2)水深在0.5~1.25cm时,薄层含沙水流为紊流,原型和模型的流速垂向分布满足对数分布,可以用同一方程进行表达;(3)"非常规比尺模型"可以作为一种方法应用到薄层含沙水流的水动力学参数提取、水流结构、能量耗散、泥沙输移等的深入研究过程中。  相似文献   

16.
鲁俊  马莅茗 《农业工程学报》2020,36(12):123-128
为了解冲积性河流塑槽输沙需水量,合理调配水资源,以内蒙古河段为例,依据挟沙水流能量平衡方程,研究了冲积性河流挟沙水流的能量耗散原理及水流塑槽和输沙能量的分配模式,给出了反应冲积性河流冲淤状态的塑槽输沙需水量计算方法,由平滩流量、河道来沙量和冲淤量三者组成的关系确定塑槽输沙需水量。利用内蒙古河段1960-2013年实测资料,计算得到内蒙古河段塑槽输沙水量,汛期来沙量0.7~1.1亿t,塑造2 000~3 000 m~3/s的中水河槽、淤积水平控制30%以下,需要的汛期塑槽输沙水量为94.6~141.2亿m~3;分析了不同条件下汛期塑槽输沙水量变化规律:来沙量一定,同样的中水河槽规模,控制淤积水平越低,需要的塑槽输沙水量越大;来沙量一定,同样的淤积水平,塑造中水河槽规模越大,需要的塑槽输沙水量越大;控制同样淤积水平,塑造同样中水河槽规模,汛期来沙量越大,需要的塑槽输沙水量越大。内蒙古河段塑槽输沙需水量计算结果和结果变化规律可为黄河上游内蒙古河段水资源配置提供参考。  相似文献   

17.
黄土高原陡坡土壤侵蚀特性试验研究   总被引:9,自引:1,他引:8  
通过室内冲刷模拟试验对黄土高原陡坡土壤侵蚀特性进行系列研究.结果表明,陡坡径流平均流速随径流量和坡度的增大呈波动趋势增加.坡面径流平均含沙率,平均输沙率和平均剪切力均随流量的增加波动增加,随坡度的增加而呈抛物线形式变化,临界坡度值出现在21°和24°之间.坡面径流平均输沙率与平均剪切力之间量良好的线性关系.本研究对深入了解陡坡土壤侵蚀机理,合理确定退耕坡度具有重要意义.  相似文献   

18.
U 形渠道量水平板水力性能试验研究   总被引:1,自引:0,他引:1  
根据北方灌区渠道底坡缓且灌溉水流多泥沙的现状,该文针对U型渠道设计了平板量水装置。为了探索不同尺寸悬垂薄平板在明渠水流冲击作用下的水力学特性,确定流量与平板偏转角度之间的关系。分析水流流态,将渠道运动水流分为3部分,对平板部分水流应用闸孔淹没出流公式,建立流量计算模型,得出流量与角度的半经验关系式。对流量系数计算模型中的待定系数进行估计,得到了统一形式的流量公式。U型平板测流范围为9~44L/s,经验证,计算流量与实测流量之间最大相对误差为6.9%,平均相对误差为3.2%,其中收缩比0.547、0.439平板测流相对误差均小于5%,满足灌区量水要求。同一收缩比板型,相对水头损失随着流量增大而减小,不同收缩比板型,相对水头损失随着板型收缩比增大而增大,除收缩比0.715平板在小流量(本试验大约为10L/s)测流时,相对水头损失比在10%以上,其余平板测流时相对水头损失均小于10%,其中收缩比为0.439和0.337平板最大水头损失不超过上游总水头6%。经过综合分析,选择0.547到0.439为平板最佳收缩比测流范围。研究可为灌区量水设施的改进提供依据。  相似文献   

19.
细沟侵蚀产沙是黄土高原水蚀风蚀交错区坡面侵蚀产沙的主要来源,明确该区细沟侵蚀过程特征及其影响因素,对有效防控入黄泥沙和维护流域安全具有重要的科学意义和实践价值。选取水蚀风蚀交错区下垫面典型风沙土为研究对象,通过不同流量(3,5,7,9,11 L/min)、不同坡度(9°,12°,15°,18°,21°)组合下的室内水槽冲刷试验定量揭示风沙土细沟分离过程对坡度、流量以及流速的响应关系,并建立分离能力方程。结果表明:(1)分离能力对坡度和流量的响应均呈线性正相关关系,且相关性极显著。流量对风沙土分离能力的影响大于坡度。除了受到坡度、流量的影响,分离能力还受到坡度和流量叠合作用的影响,这3种因子对分离能力影响由强到弱依次为流量、坡度和流量的叠合作用、坡度,且分离能力与这3种因子的关系可用线性正相关关系表示。(2)流速可作为反映坡度和流量之间叠合作用的关键因子。细沟分离能力对流速的响应呈显著线性正相关关系,试验条件下,临界流速为0.607 m/s。(3)坡度与流量组合下,坡度、流量与坡度和流量叠合作用组合下,单个流速因子下以及坡度、流量与流速因子组合下的4个分离能力方程均能较好地预测和模拟风沙土的分离能力,其中考虑坡度、流量以及坡度和流量叠合作用的方程拟合效果最佳。该研究结果可为完善水蚀风蚀交错区细沟水蚀过程模型提供一定的理论基础。  相似文献   

20.
紫色土细沟水流输沙能力对近地表水流作用的响应   总被引:2,自引:0,他引:2  
地表径流与近地表水流耦合作用会引发强烈的土壤侵蚀。输沙能力作为土壤侵蚀的关键参数之一,对完善近地表水流作用下的土壤侵蚀过程具有重要的理论意义。通过限定性细沟模拟试验,采用从底部供水的方式构建近地表水流,在此基础上测定了距弱透水层不同饱和深度(5、10、15 cm)与水力条件(3个流量2、4、8 L·min–1,3个坡度5°、10°、15°)下细沟水流的输沙能力,进一步采用多变量非线性方程分析流量、坡度、近地表水流饱和深度及其交互作用对细沟水流输沙能力的影响。结果表明,输沙能力随近地表水流饱和深度的增加而增大,且增大的速率逐渐减小,最终输沙能力趋于稳定。细沟水流输沙能力与流量、坡度及近地表水流饱和深度呈正相关关系,与坡度相比流量对输沙能力的影响作用更大。试验结果为明确地表径流与近地表水流耦合作用的土壤侵蚀机制提供了一定的理论基础与科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号