首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yang  Ruijia  Tao  Jie  Huang  Qiaoyun  Tie  Boqing  Lei  Ming  Yang  Yuan  Du  Huihui 《Journal of Soils and Sediments》2019,19(3):1319-1327
Purpose

Heavy metal and metalloid commonly coexist in soils and sediments, and interact frequently with various minerals. The coexistence of Sb and Cd is commonly observed in Sb mine area, but their co-adsorption behaviors to soil minerals still remain poorly understood. This study aimed to elucidate the co-adsorption characteristics of Cd(II) and Sb(III) by ferrihydrite (Fh) under anoxic condition.

Materials and methods

Batch experiments were performed to determine the sorption capacity of Cd(II) and Sb(III) in both single and binary systems. The major functional groups that were responsible for Cd(II) and Sb(III) sorption were determined by X-ray photoelectron spectroscopy (XPS), while the thermodynamic sorption mechanisms were elucidated using isothermal titration calorimetry.

Results and discussion

Cd(II) sorption on Fh increases with increasing pH levels (4–8) whereas Sb(III) sorption shows less variation with pH level variations. The Langmuir adsorption capacity is 55.54 mg/g for Cd(II) and 188.19 mg/g for Sb(III). In Cd–Sb binary systems, Cd(II) sorption is significantly diminished whereas Sb(III) uptake is close to single Sb(III) sorption. XPS indicates the Fe–OH groups are mainly responsible for the binding of Cd and Sb, possibly through the formation of inner-sphere complexes. This hypothesis is further confirmed by the positive entropy (ΔS) after Cd and/or Sb binding. A larger ΔS in the binary Cd–Sb titration than in their single titrations implies the formation of a ternary Fh–Sb–Cd complex, which results in a higher disorder of the sorption system.

Conclusions

The presence of Sb(III) reduces Cd(II) sorption whereas Cd(II) has a negligible effect on Sb(III) sorption to ferrihydrite; moreover, Sb(III) and Cd(II) might form surface ternary complexes in binary systems. These new findings have important implications for predicting the sequestration, migration, and fate of Cd and Sb in soils.

  相似文献   

2.
The sorption of the iron‐cyanide complexes ferricyanide, [Fe(CN)6]3—, and ferrocyanide, [Fe(CN)6]4—, on ferrihydrite was investigated in batch experiments including the effects of pH (pH 3.5 to 8) and ionic strength (0.001 to 0.1 M). The pH‐dependent sorption data were evaluated with a model approach by Barrow (1999): c = a exp(bS)S/(Smax‐S), where c is the solution concentration; S is the sorbed amount; Smax is maximum sorption; b is a parameter; and a is a parameter at constant pH. Ferricyanide sorption was negatively affected by increasing ionic strength, ferrocyanide sorption not at all. More ferricyanide than ferrocyanide was sorbed in the acidic range. In the neutral range the opposite was true. Fitting the pH‐dependent sorption to the model resulted in a strong correlation for both iron‐cyanide complexes with a common sorption maximum of 1.6 μmol m—2. Only little negative charge was conveyed to the ferrihydrite surface by sorption of iron‐cyanide complexes. The sorption of iron‐cyanide complexes on ferrihydrite is weaker than that on goethite, as a comparison of the model calculations shows. This may be caused by the lower relative amount of high‐affinity sites present on the ferrihydrite surface.  相似文献   

3.
Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive barrier (PRB) technology and natural attenuation. We tested eight magnetite samples (one from Phoenix Environmental Ltd, one from Cerac, Inc. and six from Connelly-GPM, Inc.) that contained from 79 to 100% magnetite. The magnetites were reacted in the absence of light with either As(V) or As(III) in 0.01 M NaCl at 23°C at equilibrium pH 2.5–11.5 for 24 h. As(V) sorption showed a continuous drop with increasing pH from 2.5 to 11.5; whereas, As(III) sorption exhibited maxima from pH 7 to 9. Equal amounts of As(V) and As(III) were sorbed at pH 5.6–6.8. Higher amounts of As(III) were sorbed by the magnetites than As(V) at pH values greater than 6.8. The solution speciation test did not show any chemical reduction of As(V) in any magnetite suspension, which is consistent with the X-ray Photoelectron Spectroscopy (XPS) study of a Connelly-GPM magnetite (CC-1048) suspension. Conversely, XPS results show that the As(III) is partially oxidized in the magnetite (CC-1048) suspension. This is also consistent with the batch test results that also show more oxidation occurring at alkaline pH. Complete oxidation of As(III) occurred in a synthetic birnessite (δ-MnO2) suspension after 24 h of reaction. The minute impurities of Mn (possibly as an oxide form) in the magnetite samples may have been responsible for As(III) oxidation. In addition, the structural Fe(III) in magnetite and hydroxyl radicals in solution could also serve as oxidants for As(III) oxidation. The conversion of As(III) to As(V) in the magnetite suspensions would be beneficial in a remediation scheme for As removal, since As(V) is considered less toxic than As(III). Information from the present study can help predict the sorption behavior and fate of arsenic species in engineered PRB systems and natural environments.  相似文献   

4.
The spatial distribution and speciation of iron (Fe), manganese (Mn) and arsenic (As) around rice roots grown in an As‐affected paddy field in Bangladesh were investigated on soil sampled after rice harvest. Synchrotron micro‐X‐ray fluorescence spectrometry on soil thin sections revealed that roots influence soil Fe, Mn and As distribution up to 1 mm away from the root–soil interface. Around thick roots (diameter around 500 µm), Mn was concentrated in discrete enrichments close to the root surface without associated As, whereas concentric Fe accumulations formed farther away and were closely correlated with As accumulations. Near thin roots (diameter < 100 µm), in contrast, a pronounced enrichment of Fe and As next to the root surface and a lack of Mn enrichments was observed. X‐ray absorption fine structure spectroscopy suggested that (i) accumulated Fe was mainly contained in a two‐line ferrihydrite‐like phase, (ii) associated As was mostly As(V) and (iii) Mn enrichments consisted of Mn(III/IV) oxyhydroxides. The distinct enrichment patterns can be related to the extent of O2 release from primary and lateral rice roots and the thermodynamics and kinetics of Fe, Mn and As redox transformations. Our results suggest that in addition to Fe(III) plaque at the root surface, element accumulation and speciation in the surrounding rhizosphere soil must be taken into account when addressing the transfer of nutrients or contaminants into rice roots.  相似文献   

5.
结合吸附实验和X光吸收精细结构光谱(XAFS)分析,研究了草酸根和胡敏酸对As(V)在红壤中吸附的影响,分析了As(V)在红壤中的化学形态和微观结构以及草酸根、胡敏酸的影响特征。结果表明,当pH6.0时,红壤主要是通过基团交换反应吸附As(V),草酸根和胡敏酸可以通过竞争吸附位点抑制红壤中As(V)的吸附,其抑制作用随浓度增大而增强。XAFS光谱学数据表明,红壤中吸附的砷以+5价态存在,主要与铁铝矿物形成以约0.317 nm As-Al和0.328 nm As-Fe原子间距为特征的双齿双核结构的内层复合物,复合物结构类型不受砷浓度和草酸根、胡敏酸的影响。  相似文献   

6.

Purpose

Arsenite and arsenate leaching from iron (hydr)oxides is one major parameter affecting the mobility of arsenic in the natural environment. In the process of arsenic transfer to groundwater, the retention capacity of arsenic by different iron (hydr)oxides needs to be investigated. The aim of this study is to determine the retention capacity of arsenite or arsenate from the ferrihydrite, lepidocrocite, or magnetite-coated sand column in the leaching process as well as the influence factors on leaching.

Materials and methods

The leaching of arsenite and arsenate from columns loaded with ferrihydrite, magnetite, or lepidocrocite-coated quartz sand was examined, and the influence factors such as pH, phosphate, and humic acid (HA) contents on leaching and retention were also investigated.

Results and discussion

The retention performance of As(III) and As(V) depended on the type of iron (hydr)oxides: ferrihydrite?>?magnetite?>?lepidocrocite. The retention capacities of As(III) and As(V) by amorphous ferrihydrite versus magnetite and lepidocrocite are 3.25, 5.63 (As(III)) and 1.75, 3.65 (As(V)) times higher. The retention capacity of arsenic is largely affected by the pH of leaching solutions. The retention of As(III) by ferrihydrite is efficient in near-neutral or slightly acidic environments. The addition of phosphate or HA significantly affected the leaching and retention. The addition of phosphate severely inhibited the leaching and retention of As(III) and As(V) by ferrihydrite, and the inhibitory effect was more obvious along with the increase of phosphate concentration. The retention of As(III) and As(V) by ferrihydrite was significantly enhanced by the addition of low-dose HA but was inhibited by the addition of excessive HA.

Conclusions

Retention performance of As(III) and As(V) from a ferrihydrite-coated sand column is greater than a magnetite- or a lepidocrocite-coated sand column, and the influence factors such as pH, phosphate, and HA affect the leaching and retention of As(III) and As(V). The results theoretically underlie the application of iron (hydr)oxide in arsenic pollution control.
  相似文献   

7.
Studies on arsenate (As(V)) sorption and desorption have been mainly limited to soil minerals and sorption and desorption reactions in whole soils are poorly understood. In this study the sorption of As(V) by and phosphate-induced desorption from a Chinese red soil were studied in the presence of oxalate and humic acid (HA). Arsenate was strongly sorbed mainly through ligand exchange reactions on the soil. Arsenate sorption decreased in the presence of oxalate or HA. Oxalate and HA influenced As(V) sorption mainly by competing for sorption sites and reducing sorption sites, and oxalate could also decrease sorption through dissolving clay minerals. Oxalate and HA could also facilitate As(V) desorption from the soil. Both sorption and desorption kinetics were two stage processes. Sorption kinetics conducted from 0.2–840 h showed that As(V) sorption increased with increasing residence time. Sorption equilibrium was retarded and the maximum sorption decreased in the presence of oxalate or HA. Phosphate-induced desorption kinetics conducted on the soil with 24 h and 840 h of sorption equilibrium time showed a significant effect of equilibrium time on As(V) desorption. The presence of oxalate or HA during the sorption process resulted in more As(V) desorption. Due to the degradation of oxalate, soil treated with oxalate and with a sorption equilibrium time of 840 h showed no significant difference in desorption kinetics from untreated soil.  相似文献   

8.
R.K. Xu  G. Yu  L.M. Kozak 《Geoderma》2008,148(1):55-62
Although, much research has been done on arsenate adsorption by Al (oxy)hydroxides, relatively little is known about the kinetics of arsenate desorption from these (oxy)hydroxides, especially those formed in the presence of organic acids. The desorption kinetics of arsenate adsorbed on Al (oxy)hydroxides, formed under the influence of tannic acid, was investigated using 0.1 and 0.5 mM phosphate at pH 5.5 and an ionic strength of 0.01 M at 298 and 318 K. The kinetic data expressed as the mole fraction of the arsenate remaining adsorbed on the Al (oxy)hydroxides after different desorption periods indicated multiple rate characteristics; a fast reaction period from 0.083 to 3 h and a slow reaction period from 3 to 24 h. The second-order rate equation of the six kinetic models tested was chosen to compare the desorption rate of arsenate. The rate constants of arsenate desorption from the Al (oxy)hydroxides formed at different tannate/Al molar ratios (MRs) followed the order: tannate/Al MR of 0 > tannate/Al MR of 0.1 > tannate/Al MR of 0.01 > tannate/Al MR of 0.001 in the fast reaction period, and tannate/Al MR of 0.1 > tannate/Al MR of 0 > tannate/Al MR of 0.01 > tannate/Al MR of 0.001 in the slow reaction period both in 0.1 and 0.5 mM phosphate systems. The data indicate that the Al (oxy)hydroxides formed in the presence of small amounts of tannic acid (tannate/Al MR = 0.001 and 0.01) had a higher adsorption affinity for arsenate and resulted in slower desorption rates of the adsorbed arsenate compared with the Al (oxy)hydroxides formed in the absence of tannic acid. This is ascribed to the tannate-induced structural perturbation, development of microporosity, enhanced specific surface area, and reactivity of the Al precipitates. As the tannate/Al MR increased from 0.001 to 0.1, the rate constants of arsenate desorption steadily increased. This was attributed to the decrease in the point of zero salt effect (PZSE) of the Al precipitates with the increase of the tannate/Al MR and the resultant electrostatic repulsion from coprecipitated tannate which would weaken the binding of arsenate on the Al precipitates. The effect of temperature on the desorption rate of arsenate, which was governed by the activation energy and the pre-exponential factor (collision frequency), varied with the nature of the Al precipitates. The findings obtained in the present study indicate that the relative effects of tannate-induced structural perturbation, enhanced specific surface area, decreased PZSE, and development of micropore structure in the Al (oxy)hydroxides determine the overall impact of tannate on the kinetics of arsenate desorption from these Al (oxy)hydroxides.  相似文献   

9.
Low-molecular-weight-organic-anions (LMWOAs) are important exudates of plants and may influence the mobility and bioavailability of metals or metalloids. In the present study the effects of selected LMWOAs, citrate, malate and oxalate, on the release of arsenite (As(III)) and arsenate (As(V)) in a contaminated soil were investigated. The organic anions have significant influence upon the release of arsenic from the soil, and a linear relationship exits between the released arsenic and the concentration of LMWOAs in the extractants. pH effects on the arsenite and arsenate adsorption were not significant over the range from 3 to 7. The amounts of arsenite and arsenate released were significantly correlated with the release of Fe, Mn and Al, suggesting that arsenic was mainly released from Fe-, Mn- and Al-oxides or hydroxides in soil. The ratio of released arsenite to arsenate was not influenced by LMWOAs.  相似文献   

10.
Phytoextraction of heavy metals from polluted soils has often been found to be limited by the bioavailability of the pollutants. Inorganic or organic ligands are occasionally used as complexing agents to enhance the mobility of the heavy metals. However, the opposite effect is also possible. We studied the influence of the hydroxamate siderophore desferrioxamine B (DFOB) on the sorption of Cu, Zn and Cd to clay minerals, with the emphasis on the role of dissolved Fe(III) and Fe(III) minerals. Depending on the surface charge of the minerals and on pH, sorption of heavy metals can be either enhanced or diminished. We show here that this effect of DFOB disappears if dissolved Fe(III) is added to suspensions of clay minerals in excess to DFOB. We found that the solid Fe(III) phases ferrihydrite and goethite did not impede the effect of DFOB on the sorption of heavy metal, however. Between pH 4 and 10, DFOB completely prevented Cu sorption on ferrihydrite. A strong mobilizing effect was also observed for Zn, but not for Cd. In presence of goethite, concentrations of dissolved Cu, Zn and Cd were enhanced only above approximately pH 5, 7 and 8, respectively. Below these pH values the binding of these metals to goethite was even stronger with than without DFOB. In the absence of heavy metals, DFOB‐promoted dissolution of ferrihydrite was much faster than that of goethite due to the larger surface area of ferrihydrite. In the alkaline pH range, where sorption of DFOB on the surfaces of the iron oxides was greater, dissolution of both minerals was reduced.  相似文献   

11.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

12.
Dissimilatory iron-reducing bacteria play a fundamental role in catalysing the redox transformations that ultimately control the mobility of As in anoxic environments, a process also controlled by the presence of competing anions. In this study, we investigated the decoupling of As from loaded Al and Fe (hydr)oxides by competing anions in the presence of iron-reducing bacteria. Hematite, goethite, ferrihydrite, gibbsite and three aluminium-substituted goethites (AlGts) were synthesised and loaded with arsenate, followed by anaerobic incubation with different phosphate or carbonate-containing media in the presence of catalytic iron-reducing bacteria. Soluble Al, As, Fe and P contents were measured in aliquots by inductively coupled plasma optical emission spectrometry following periodical sampling. Shewanella putrefaciens cells were able to utilise both non-crystalline and crystalline Fe (hydr)oxides as electron acceptors, releasing Fe and As into solution. Phosphate and carbonate affected the Fe bioreduction, probably due to the precipitation of metastable mineral phases and also to phosphate-induced stabilisation on the hydroxide surfaces. Phosphate precipitation acted as a sink for As, thus limiting its mobilisation. The highest fraction of desorbed As by phosphate was observed for gibbsite, followed by AlGts. Similarly, gibbsite showed significant amounts of arsenate displaced by carbonate. In spite of its low crystallinity, ferrihydrite was the most efficient compound in retaining arsenate, possibly due to As co-precipitation. This study provides new insight into the management of As-contaminated soils and sediments containing Al-goethites and gibbsite, where the Fe activity may be too low to co-precipitate As-bearing vivianite. Thus, the dynamics of As(V) in flooded soils are significant in agriculture and environmental management.  相似文献   

13.
The effects of arsenate and arsenite on growth and transpiration were investigated in cucumber plants grown in nutrient solution containing 2, 10, and 100 μM phosphate, respectively. Root and shoot growth decreased by 48–64% compared to the control in all treatments and there was no significant difference between the effects of arsenic As(V) and As(III) except for the lowest phosphate concentration. At 2 μM phosphate As(III) had significantly higher growth inhibition than As(V). The inhibition of transpiration was between 46–68% in all treatments, and As(V) had stronger effect at 10 μM phosphate compared to 100 μM. Arsenic caused fast wilting 2 hours after the commencement of the treatment. However, the formation of adventitious roots prevented the loss of turgor. The hypothesis that aquaporins might be involved in the action of As(V) has been tested by comparison of the effect of As(V) and Hg, the inhibitor of aquaporins. Both treatments resulted in similar inhibition of growth and transpiration, increase in water saturation deficit and decrease in root exudation. Data imply that (i) phosphate reduces arsenate uptake, (ii) arsenate can be at least partially detoxified in cucumber at higher phosphate concentrations, (iii) arsenate may be reduced to arsenite and (iv) As(V) may interfere with the proper functioning of aquaporins.  相似文献   

14.
Migration of phosphate into aggregated particles of ferrihydrite   总被引:3,自引:0,他引:3  
The slow reaction of phosphate with aggregated particles of ferrihydrite, after initial rapid phosphate sorption, was investigated by measuring the changes, with time and temperature, in the amount of phosphate sorbed, and the extractability of the sorbed phosphate. The ferrihydrite was, subsequently, recovered and examined by infra–red spectrometry (IR) and electron probe micro–analysis.
Phosphate continued to react with ferrihydrite for at least 90 d at 25°C, but was completely recovered by extraction with 0.1 m NaOH. The IR spectra of sorbed phosphate was insensitive to the temperature and duration of the reaction. Electron probe micro–analysis of the aggregates showed that phosphate migrated to surface sorption sites within the aggregated particles of ferrihydrite.
There was no evidence for the formation of surface coatings of ferric phosphate, for changes in the type of bonding, or for penetration of phosphate into the crystal lattice. The slow reaction was attributed to the migration of phosphate to surface sorption sites of decreasing accessibility within aggregates.  相似文献   

15.
《Journal of plant nutrition》2013,36(10-11):1889-1908
Abstract

A number of iron oxides (hematite, goethite, lepidocrocite, maghemite, and magnetite) or short‐range ordered precipitates (ferrihydrite) may be found in soil environments, but in the rhizosphere the presence of organic ligands released by plants (exudates) or microorganisms promote the formation of ferrihydrite. Iron ions are liberated into soil solution by acidic weathering of minerals and then precipitated either locally or after translocation in soil environments. Humic and fulvic acids as well as organic substances produced by plants and microorganisms are involved in the weathering of primary minerals. Organic compounds play a very important role in the hydrolytic reactions of iron and on the formation, nature, surface properties, reactivity, and transformation of Fe oxides. Organic substances present in the rhizosphere interact with Fe promoting the formation of ferrihydrite and organo‐mineral complexes. The solubility of Fe precipitation products is usually low. However, the formation of soluble complexes of Fe(II) or Fe(III) with organic ligands, usually present in the rhizosphere increases the solubility of Fe‐oxides. Mobilization of Fe from Fe oxides by siderophores is of great importance in natural systems. They can form stable Fe(III) complexes (pK up to 32) and thus mobilize Fe from Fe(III) compounds. These higher Fe concentrations are important for the supply of Fe to plant roots which excrete organic acids at the soil–root interface. Iron oxides adsorb a wide variety of organic and inorganic anions and cations, which include natural organics, nutrients, and xenobiotics. There is competition between anions and cations for the surfaces of Fe‐oxides. Root exudates suppress phosphate or sulfate adsorption on Fe‐oxides. This is a mechanism by which plant roots mobilize adsorbed phosphate and improve their phosphate supply. Anions adsorption on iron oxides modify their dispersion/flocculation behavior and thus their mobility in the soil system. That can increase or decrease the possibility of contact between Fe‐oxides and organics or organisms able to dissolve them.  相似文献   

16.
Iron speciation in soils is still poorly understood. We have investigated inorganic and organic standard substances, diluted mixtures of common Fe minerals in soils (pyrite, ferrihydrite, goethite), soils in a forested watershed which constitute a toposequence with a hydrological gradient (Dystric Cambisol, Dystric Planosol, Rheic Histosol), and microsites of a dissected soil aggregate by X‐ray Absorption Near Edge Spectroscopy (XANES) at the iron K‐edge (7112 eV) to identify different Fe(II) and Fe(III) components. We calculated the pre‐edge peak centroid energy of all spectra and quantified the contribution of different organic and inorganic Fe‐bearing compounds by Linear Combination Fitting (LCF) conducted on the entire spectrum (E = 7085–7240 eV) and on the pre‐edge peak. Fe‐XANES conducted on organic and inorganic standards and on synthetic mixtures of pyrite, ferrihydrite and goethite showed that by calculating the pre‐edge peak centroid energy, the Fe(II)/Fe(III) ratio of different Fe‐bearing minerals (Fe sulphides, Fe oxyhydroxides) in mineral mixtures and soils can be quantified with reasonable accuracy. A more accurate quantification of the Fe(II)/Fe(III) ratio was possible with LCF conducted on the entire XANES spectrum. For the soil toposequence, an increased groundwater influence from the Cambisol to the Histosol was reflected in a larger contribution of Fe(II) compounds (Fe(II) silicate, Fe monosulphide, pyrite) and a smaller contribution of Fe(III) oxyhydroxides (ferrihydrite, goethite) to total iron both in the topsoil and the subsoil. In the organic topsoils, organically bonded Fe (33–45% of total Fe) was 100% Fe(III). For different microsites in the dissected aggregate, spatial resolution ofμ‐XANES revealed different proportions of Fe(II) and Fe(III) compounds. Fe K‐edge XANES andμ‐XANES allows an approximate quantification of Fe(II) and Fe(III) and different Fe compounds in soils and (sub)micron regions of soil sections, such as mottles, concretions, and rhizosphere regions, thus opening new perspectives in soil research.  相似文献   

17.
Possible mechanisms of the effects of silicon (Si) on arsenic (As) uptake were explored using a wild‐type rice and its low‐Si mutant (lsi1). Hydroponic experiments were carried out to investigate the effects of internal and external Si on the As accumulation and uptake by rice in excised roots (28 d–old seedlings) and xylem sap (61 d–old plants). The presence of Si significantly decreased the As concentrations in both shoots and roots of the wild type but not in the mutant with 13.3 μM–arsenite or 10/20 μM–arsenate treatments. The Si‐defective mutant rice (lsi1) also showed a significant reduction in arsenite or arsenate uptake. Moreover, As concentrations in xylem sap of the wild type were reduced by 51% with 1 mM Si– and 15 μM–arsenate treatments, while Si had no effect on As concentrations in the xylem sap of the mutant. Arsenic‐species analysis further indicated that the addition of 1 mM Si significantly decreased As(III) concentrations but had little effect on As(V) concentrations in the xylem sap of the wild type with 15 μM–arsenate treatments. These results indicated that external Si‐mediated reduction in arsenite uptake by rice is due to the direct competition between Si and arsenite during uptake. This is because both share the same influx transporter Lsi1. In addition, internal Si‐mediated reduction in arsenite uptake by rice is due to competition of the Si/arsenite efflux transporter Lsi2 during the As(III)‐transportation process. Silicon also inhibited arsenate uptake by rice. It is proposed that this could actually be due not to the inhibition of arsenate uptake per se but rather the inhibition of arsenite transformed from arsenate, either in the external solution or in rice roots.  相似文献   

18.
《Journal of plant nutrition》2013,36(10-11):1909-1926
Abstract

Phenolic substances in the soil–plant system can be oxidized by metal ions, inorganic components, molecular oxygen as well as by phenoloxidases, giving rise to the formation of products of low or high molecular weight. Interactions of these products with iron, in both reduced and oxidized form, can affect the iron mobility in soil and rhizosphere, and thus its availability to plants. Here we report the results of a study on the complexing and reducing activity of the oxidation products from caffeic acid (CAF), obtained via electrochemical means, towards Fe(III) and Fe(II) in aqueous solution in the 3.0–6.0 pH range. The HPLC analysis of the filtered solutions after the CAF oxidation showed the formation of two main groups of products: (i) CAF oligomers formed through radicalic reactions which do not involve the double bond of the CAF lateral chain and (ii) products where this bond is involved. These oxidation products (COP) were found to interact with both Fe(III) and Fe(II) with formation of soluble and insoluble Fe(III)‐, and Fe(II)‐COP complexes. The COP were found to be able to reduce Fe(III) to Fe(II) mainly at pH < 4.0. A low redox activity was observed at pH ≥ 4.5 due to Fe(III) hydrolysis reactions as well as to the decrease in the redox potential of the Fe(III)/Fe(II) couple. Formation of hydroxy Fe(III)‐COP polymers occurs at pH > 3.5.  相似文献   

19.
In acidic soils, phosphorus availability is affected by its strong affinity for mineral surfaces, especially Fe‐ and Al‐hydroxides. Plant roots have developed adaptive strategies to enhance the availability of phosphorus, including producing and exuding low molecular weight organic acids with a high affinity for phosphorus that competes with high molecular weight organic ligands formed during humification and mineralization. The aim of this study was to characterize the kinetics and mechanism of phosphorus desorption from Fe‐ and Al‐hydroxides of variable crystallinity, as well as binary Fe:Al‐hydroxide mixtures. Long‐term desorption experiments (56 days) were conducted with CaCl2, CaSO4, citric acid, and humic acid as competitive sorptives. CaCl2 and CaSO4 were selected as general inorganic sorptives and citric and humic acids were selected as organic ligands produced by organisms in the rhizosphere or following humification. The cumulative phosphorus desorption increased following the order CaCl2 < CaSO4 < humic acid < citric acid. Amorphous ferrihydrite and Fe‐rich Fe:Al‐hydroxides exhibited much less desorption when exposed to inorganic solutions than the crystalline and Al‐rich Fe:Al‐hydroxide mixtures. Models of the desorption data suggest phosphorus desorption with citric acid is diffusion‐controlled for ferrihydrite and Fe‐rich amorphous Fe:Al‐hydroxides. When humic acid was the sorptive, metal‐organic complexes accumulated in the solution. The results suggest organic compounds, especially citric acid, are more important for liberating phosphorus from Fe‐ and Al‐minerals than inorganic ions present in the soil solution.  相似文献   

20.
王涛  余贵芬  王芳  卞永荣  王聪颖  蒋新 《土壤》2010,42(2):280-287
采用批实验研究了菲在单宁酸干扰下形成的不同晶形铝氧化物上的吸附现象,并用不同的吸附等温线方程对吸附平衡数据进行了拟合,重点比较了线性和非线性回归方法估计吸附等温线参数的差异。结果表明:菲在各种晶形的铝氧化物上都有明显的吸附,但并不是完全随着单宁酸含量和结晶度的变化而规律性变化。吸附平衡数据以Langmuir、Redlich-Peterson和Dubinin-Radushkevich吸附等温方程,用不同的回归方法估计的等温线参数值均有显著性差异。线性回归得到的参数有不确定性,表明用线性回归来判断吸附等温线能否对吸附平衡数据进行最优拟合是不可靠的。相反,非线性回归能较好地确定菲在不同晶形铝氧化物上的最佳吸附等温线及相应参数。采用R2和χ2共同检验发现,菲在4种不同结晶度(单宁酸与铝的摩尔比(MR)=0,10-3,10-2,10-1)铝氧化物上的最佳吸附等温线方程并不尽相同,分别为Freundlich,Freundlich,Dubinin-Radushkevich和Freundlich,反映了各种晶形的铝氧化物的表面异质性。修正的Freundlich方程比较不同晶形铝氧化物对菲的相对吸附容量顺序为:MR=10-3MR=10-2MR=0MR=10-1。由此,认为菲在无定形铝氧化物上的吸附是熵驱动的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号