首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
通过构建基于SPOT\|5光谱参数的玉米成熟期地上生物量、 碳氮累积量的遥感估算模型,为耕地生产力估测、 农田生态保护和碳氮循环研究提供依据。利用皮尔逊相关分析法分析玉米成熟期地上生物量、 碳氮累积量与同期14个预选光谱参数之间的相关性,筛选出适宜的光谱参数;通过回归分析,比较得出最优遥感估算模型。在构建的14个光谱参数中,土壤校正植被指数(SAVI)与玉米成熟期地上生物量和碳累积量均呈显著的正相关,相关系数分别达到0.831和0.846,因此以SAVI为底数的幂函数模型估算生物量和碳累积量的拟合效果最好,决定系数(R2)分别达到0.698和 0.722,在0.01水平下的F检验均呈显著性;与氮累积量相关性最强的是由近红外波段和绿波段构建的比值指数(R3/R1),相关系数达到0.844;从而以R3/R1为自变量的线性模型对氮累积量拟合效果最佳,决定系数(R2)达到0.713,在0.01水平下的F检验呈显著性。因此,利用SPOT\|5的土壤校正植被指数(SAVI)、 近红外波段和绿波段的比值指数(R3/R1)构建的遥感模型来估算玉米成熟期生物量、 碳氮累积量是可行的。  相似文献   

2.
玉米全氮含量高光谱遥感估算模型研究   总被引:13,自引:5,他引:13  
该文对不同品种玉米测定了其室内光谱反射率及其对应的全氮含量,采用相关性分析以及单变量线性与非线性拟合分析技术,对全氮含量与原始光谱反射率、光谱反射率一阶微分、一些高光谱特征参数(如红边波长、红边位置以及红边面积等)以及由一阶微分光谱所构建的一些比值植被指数和归一化植被指数之间的关系进行了分析,结果表明:全氮含量与原始光谱在716 nm处具有最大相关系数(r=-0.847),呈极显著负相关,并且基于此波长所构建的对数关系估算模型明显优于线性模型;与光谱反射率一阶微分值在759 nm处具有最大相关系数(r=0.944),呈极显著正相关,并且基于此波长所构建的线性和非线性模型的拟合效果接近;对于所选取的3类高光谱特征变量,全氮含量除了与黄边位置(λy)以及由红边面积和黄边面积所构建的比值植被指数和归一化植被指数的相关性较弱之外,与其余变量均呈极显著相关关系,说明由这些变量对玉米全氮含量进行估算具有可行性;对所建立的各类方程进行精度检验,最终筛选确定由759 nm处的光谱反射率一阶微分值所构建的指数模型作为对玉米全N含量的预测模型最为理想。  相似文献   

3.
基于高光谱的冬小麦氮素营养指数估测   总被引:14,自引:7,他引:7  
为了准确定量诊断氮素状况,为施肥和产量、品质的估测提供参考,该文通过设置不同氮素水平和品种类型的冬小麦田间试验,分析孕穗至灌浆初期不同光谱参数在小麦氮素营养状况监测上的差异,筛选叶片氮素含量和冠层氮素密度反演效果较好的参数,建立其与氮营养指数(NNI,nitrogen nutrition index)的经验模型。研究表明,线性内插法红边位置(REPLI)、修正红边单比指数(mSR705)、比值指数(RI-1dB)、简单比值色素指数(SRPI)、红边指数(VOG)等光谱参数与氮素营养指标具有良好的相关性(r0.85),且不受生育期影响,可用来反演评价冠层氮素营养状况;研究对筛选的光谱参数与各氮素指标进行回归建模,并用独立试验数据对所建模型进行验证,结果显示,REPLI在氮营养指数估测方面表现较好(r=0.93),估测模型精度较高(决定系数R2=0.86,均方根误差RMSE=0.08)。NNI在氮素营养状况诊断方面有一定的优势,通过高光谱反演氮营养指数进行氮素营养状态的定性定量诊断有一定的可行性。  相似文献   

4.
不同施氮水平下温室番茄叶片反射光谱特征分析   总被引:1,自引:0,他引:1  
利用便携式光谱辐射仪测定了温室番茄叶片的光谱反射率,研究了不同施氮水平下特定光谱指数与叶片氮含量、光合速率及产量的关系。结果表明,温室番茄叶片的光谱反射率在可见光波段随供氮水平的升高而降低,在近红外波段随供氮水平的升高而增加。随施氮水平的提高,绿峰的蓝移和红边的红移现象明显,而红谷反射率与光合速率之间的关系可用二次方程拟合,相关系数达0.805。番茄叶片氮含量的敏感光谱波段为580~695 nm,740~900 nm,由695 nm、770 nm两个波段构建的高光谱指数(RVI、NDVI)与叶片氮含量的相关性显著。而基于原始光谱数据对番茄产量的估测也可在温室中得到很好的运用,其中光谱指数RV(I710,680)、VARI700和产量的拟合方程最优。  相似文献   

5.
基于红边位置的马铃薯植株氮浓度估测方法研究   总被引:3,自引:1,他引:2  
【目的】高光谱遥感技术可以用于植被生长状况的监测和研究光谱与植被理化性质间的关系。红边位置是与作物氮素营养关系较为密切的光谱参数,常用于作物叶绿素或氮素的含量监测,监测参数以及数据的计算都影响着该方法的准确性和实用性。为此,本研究优化了红边位置方法的参数,比较了六种方法对所得马铃薯氮浓度预测数据的翻译的准确性和精确度。【方法】于2014—2016年在内蒙古阴山北麓,进行了三个马铃薯品种、不同施氮量的田间试验。在马铃薯苗期、块茎形成期、块茎膨大期、淀粉积累期和收获期,使用红边位置获取了马铃薯冠层反射光谱,采用六种方法计算了该数据翻译的马铃薯地上部氮浓度,并分别与实测值进行了相关性分析。【结果】马铃薯生育后期一阶导数光谱中双峰现象较为明显。不同生育时期中苗期由于受到噪声光谱的影响氮浓度,与红边位置相关性较差,块茎形成期至淀粉积累期的氮浓度与红边位置相关性较高,其中块茎膨大期相关性最高。最大一阶导数法和拉格朗日内插法所得红边位置无连续性;线性外推法所得红边位置变幅与标准差最高,最大分别可达到44.6和9.3;多项式拟合法次之,变幅和标准差分别为15.1和2.6;倒高斯拟合法和线性四点内插法的变幅和标准差较小。在六种方法所得红边位置与马铃薯地上部氮浓度的预测模型中,线性外推法决定系数最高(R^2=0.55),预测值与观测值相关性最好(R^2=0.44,RMSE=3.96 g/kg,RE=11.46%);倒高斯拟合法与多项式拟合法模型决定系数相近,R^2均在0.40左右,倒高斯拟合法对氮浓度的预测能力更高一些(R^2=0.31,RMSE=4.33 g/kg, RE=12.03%)。【结论】红边位置能够对块茎形成期至淀粉积累期的植株氮浓度进行诊断,花期红边位置有轻微的饱和现象,但并不影响整体的预测,在花期和块茎膨大期采集光谱时需要注意传感器与植物冠层的距离,保证采集数据的准确性。线性外推法是最适合马铃薯冠层光谱的红边位置计算方法,所得红边位置变幅大,对马铃薯地上部氮浓度的变化较为敏感,回归模型决定系数和预测精度也最高,而且对于高氮浓度处的饱和现象有较好的缓解作用。  相似文献   

6.
不同氮营养冬小麦冠层光谱红边特征分析   总被引:11,自引:3,他引:8  
利用FieldSpec FR2500光谱仪测定了不同氮素处理冬小麦冠层光谱,分析其红边特征变化规律及与农学成分的相关关系。结果表明,波长550 nm、680 nm、980 nm、1100 nm与350~680 nm和750~1100 nm可作为氮素营养诊断的敏感特征点与波段范围。随着施氮量的提高,拔节期、抽穗期以及灌浆期的红边位置(REP)、红谷位置(Lo)与光谱反射率一阶微分极大值(FD_Max)均增大,红边宽度(Lwidth)则有减小的趋势。总体上看,施氮与无氮处理在整个生育期均存在较大差异,施氮处理之间差异较小。冠层反射光谱的红边位置、红谷位置、随生育期向长波方向移动,呈现红移现象;从抽穗期开始逐渐减小,呈现蓝移现象。冬小麦红边参数中红边位置与农学组分之间的相关性优于其他参数,除与地上部生物量正相关显著外,与叶面积指数、叶含水率、叶绿素含量、叶可溶性蛋白含量、叶鲜重、叶含氮量均呈正相关且达到极显著水平。红谷位置则与叶面积指数、叶含水率、叶绿素含量、叶鲜重以及SPAD值呈极显著正相关;与可溶性蛋白呈显著正相关。红边宽度与叶面积指数、叶含水率、叶氮含量、叶绿素含量以及叶鲜重均呈极显著正相关;与可溶性蛋白含量呈显著正相关。反射率一阶导数极大值与叶面积指数、叶含水率、叶鲜重呈极显著正相关,与叶含氮量极显著负相关。通过红边参数与农学组分稳定良好的数学关系,可以对农学组分进行预测估算。  相似文献   

7.
基于高光谱的叶片滞尘量估测模型   总被引:2,自引:1,他引:1  
为探索建立叶片滞尘量高光谱估测模型,利用光谱仪和电子分析天平采集了北京市区杨树叶片高光谱数据和滞尘量数据,研究了叶片光谱特征与滞尘量间的关系,并建立了基于光谱参数的叶片滞尘量估测模型。研究结果表明:近红外波段(730~1 000 nm)光谱反射率与叶片滞尘量呈现明显的线性相关性,各波段相关系数均高于0.7,绿光区波段反射率对叶片滞尘的影响不敏感;三边参数中仅红边幅值、红边面积与叶片滞尘量达到显著相关;基于多元线性回归、主成分回归、偏最小二乘回归建立的模型均具有较强的预测能力,其中以偏最小二乘回归为模型构建方法,以749、644、514 nm波段的光谱反射率值,红边幅值,红边面积,924、1 010 nm波段组成的归一化指数,713、725 nm波段组成的差值指数,749、644 nm波段组成的归一化植被指数为自变量建立的模型估测精度最好,其建模和预测的决定系数分别达到0.734和0.731,预测均方根误差为0.311。该研究为促进高光谱技术在大气降尘监测中的应用提供参考。  相似文献   

8.
基于高光谱图像的茶树LAI与氮含量反演   总被引:5,自引:4,他引:1  
为了对茶树进行实时、快速、无损的叶面积指数LAI和氮含量检测,该文以英红九号茶树为试验对象,利用便携式高光谱成像仪采集光谱数据、人工破坏性采摘叶片进行叶面积指数的计算以及传统化学方法测量叶片氮含量,比较不同高光谱特征变换形式与LAI和氮含量之间的相关性,并选择其中相关系数较高的高光谱特征变量作为自变量,分别采用线性、指数、对数和抛物线表达式建立LAI和氮含量的回归模型。结果显示:在多种高光谱数据变量建立的模型中,以绿峰反射率R_g为自变量的对数拟合模型最佳,其拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.9和0.087 6。以植被指数变量VI_4(红边面积/黄边面积)与氮含量建立的指数模型为最佳建模效果,拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.830 3和0.102 9,研究结果可为茶树叶面积指数LAI和营养成分的无损检测提供参考。  相似文献   

9.
基于无人机高光谱的冬小麦氮素营养监测   总被引:11,自引:10,他引:1  
为了实现小区域尺度上的作物氮素营养状况遥感监测,该研究利用无人机搭载Cubert UHD185成像光谱仪对2016 -2017年关中地区的冬小麦进行遥感监测,通过分析冠层光谱参数与植株氮含量、地上部生物量和氮素营养指数的相关性,筛选出对三者均敏感的光谱参数,结合多元线性逐步回归、偏最小二乘回归和随机森林回归建立抽穗期冬小麦氮素营养指数(Nitrogen Nutrition Index,NNI)估测模型,并与单个光谱参数建立的冬小麦氮素营养指数模型进行比较。结果表明,任意两波段光谱指数对氮素营养指数更为敏感,与氮素营养指数均达到了极显著性相关;基于差值光谱指数和红边归一化指数的单个光谱参数构建的模型具有粗略估算氮素营养指数的能力,相对预测偏差分别为1.53和1.56;基于随机森林回归构建的多变量冬小麦氮素营养指数估算模型具有极好的预测能力,模型决定系数为0.79,均方根误差为0.13,相对预测偏差为2.25,可以用来进行小区域范围内的冬小麦氮素营养指数遥感填图,为冬小麦氮素营养诊断、产量和品质监测及后期田间管理提供科学依据。  相似文献   

10.
利用红边特征参数监测小麦叶片氮素积累状况   总被引:10,自引:5,他引:5  
以不同类型小麦品种在氮素差异梯度下连续3 a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监测模型。结果表明,冠层微分光谱在红边区域内随氮素水平提高呈明显规律性变化,而原始光谱反射率的变化却较为复杂。与叶片氮积累量关系密切的常见红边参数间存在差异,其中,以GM2、SR705和FD742表现最突出,线性回归模型拟合精度(R2)分别为0.854、0.848和0.873,估计标准误差(SE)分别为1.136、1.160和1.059。基于红边双峰特征分析,构建新型红边双峰特征参数,其中,红边左偏峰面积LSDr_REPLE对叶片氮积累量方程拟合取得很好效果,决定系数和估计标准误差分别为0.869和1.080。经不同年际独立数据的检验表明,以GM2、SR705和FD742为变量,模型预测平均相对误差(RE)分别为17.6%、17.0%和14.9%,而红边左偏峰面积LSDr_REPLE模型预测误差控制得更好,平均相对误差RE为14.5%。以上表明,红边参数GM2、SR705和FD742可以对小麦叶片氮素状况进行有效监测,而红边左偏峰面积LSDr_REPLE模型预测更为准确可靠。  相似文献   

11.
基于氮素营养指数的冬小麦籽粒蛋白质含量遥感反演   总被引:4,自引:0,他引:4  
基于遥感实现小麦籽粒蛋白质含量提早估测对农业生产具有重要意义。为提高预测小麦籽粒蛋白质含量的准确度,该研究引入能更好反映作物氮素营养状况的农学参数-氮素营养指数,作为衔接遥感信息与产终籽粒蛋白质含量的桥梁。在田间试验的基础上,探讨氮素营养指数与其他农学参数在诊断籽粒蛋白质含量上的优劣,并基于“遥感参数-氮素营养指数-籽粒蛋白质含量”间关系,利用主成分回归算法构建估测籽粒蛋白质含量的遥感反演模型。结果表明,相比于其他参数,冬小麦旗叶期氮素营养指数能更好的反映产终籽粒蛋白质含量;以氮素营养指数为中间变量,所建遥感反演模型能准确预测小麦籽粒蛋白质含量,模型的预测决定系数为0.48,预测标准误差为0.38%,相对误差为2.32%。  相似文献   

12.
近年来高光谱技术由于无损和高效等优点成为了现代精准农业发展的必要手段方法。为实现冬油菜无损、快速的氮素盈亏诊断,该研究以连续两年(2022—2023年)不同覆盖及施氮处理下冬油菜蕾薹期采集的90份植物样品(地上部生物量和植株氮浓度)和高光谱实测数据为数据源,根据原始光谱和一阶微分(first-order differential,FD)光谱与氮营养指数(nitrogen nutrition index,NNI)的相关系数计算了8种(共16个)典型的光谱指数,随后利用相关矩阵法提取最佳光谱组合,并根据与NNI相关系数的计算结果筛选最优光谱指数,最后将最优光谱指数分为3组模型输入变量,分别采用支持向量机(support vector machine,SVM)、随机森林(random forest,RF)、极限学习机(extreme learning machine,ELM)和反向神经网络(back propagation neural network,BPNN)构建冬油菜蕾薹期NNI估算模型。结果表明一阶微分光谱指数与NNI的相关系数均大于原始光谱指数,3个组合选择的光谱指数与NNI的相关...  相似文献   

13.
基于叶面积指数构建滴灌玉米营养生长期临界氮稀释曲线   总被引:2,自引:0,他引:2  
明确宁夏引黄灌区基于叶面积指数(leaf area index,LAI)的滴灌玉米临界氮稀释曲线模型及其适用性,探讨以氮营养指数(nitrogen nutrition index,NNI)为监测指标对滴灌水肥一体化模式下玉米氮素营养状况诊断的可行性。该研究于2017-2018年开展了不同施氮量(0~450 kg/hm^2)下4个田块的试验,采用系统分析和统计建模的方法,分析了LAI和植株氮浓度(plant nitrogen concentration,PNC)的定量关系,构建和验证基于LAI的临界氮稀释曲线模型,并建立理论框架,将基于LAI的临界氮曲线与基于植株干物质(plant dry matter,PDM)的临界氮浓度曲线关联,比较基于LAI和PDM的临界氮曲线之间的差异。结果表明,玉米营养生长期临界氮和LAI符合幂函数关系,拟合模型的评价指标均方根误差(root mean square error,RMSE)和标准化均方根误差(normalized RMSE,n-RMSE)的结果分别为0.09和4.13%,模型具有较好的稳定性。在试验氮素水平范围内,不同生育时期NNI随施氮量的增加而增加,变化范围为0.53~1.34,NNI可以准确地反映滴灌玉米氮素营养状况。在非限氮处理下,玉米植株氮素吸收与LAI成正比,LAI与PDM的异速生长参数接近理论值2/3。构建的基于LAI的临界氮曲线可以有效地识别玉米拔节期至吐丝期植株所需的氮状态,为宁夏滴灌玉米氮肥精确管理提供了一种新的评价方法。  相似文献   

14.
基于叶片SPAD估算不同水氮处理下温室番茄氮营养指数   总被引:7,自引:3,他引:4  
为了探讨临界氮稀释曲线模型在西北地区温室番茄不同水分处理下的适用性以及采用SPAD仪快速准确诊断氮营养状况,该研究以"丽娜"番茄为材料,2013-2015年在陕西省杨凌区温室内进行水分和氮素处理试验,水分处理设置4个水平,分别为全生育期充分灌水处理、仅苗期亏水50%、苗期开花期连续亏水50%和全生育期亏水50%;氮素处理设置3个水平,施氮量分别为0、150和300 kg/hm2,通过2013-2015年试验数据对临界氮浓度稀释曲线模型进行率定和验证,并将该模型参数与番茄全生育期平均日耗水量建立相关关系,提高了临界氮浓度稀释模型在不同水分条件下的适用性。结果表明通过番茄全生育期平均日耗水量和临界氮浓度稀释曲线模型估算得到的临界氮浓度估算值和实际计算值有较好的一致性,其绝对误差为0.13~0.34 g/(100 g),标准误差为0.14~0.39 g/(100 g),决定系数为0.94~0.99,因此采用该方法可以对西北地区温室番茄不同水分处理下临界氮浓度稀释进行准确估算。通过2013-2015年试验数据分析番茄不同叶位叶片SPAD值和氮营养指数(nitrogen nutrition index,NNI)之间相关性,结果表明番茄中位叶片SPAD值与氮营养指数(NNI)有良好的线性相关性(决定系数为0.77~0.98),且该相关系数值与番茄日耗水量呈极显著相关关系,因此通过番茄日耗水量可以估算出NNI与中位叶片SPAD值之间的线性关系,估算出NNI=1时的中位叶片SPAD值,并以此SPAD值进行氮营养诊断。该研究可为西北地区温室番茄实时氮营养诊断和优化氮素管理提供了较好的理论参考。  相似文献   

15.
于2018和2019年在宁夏平吉堡农场进行滴灌水肥一体化氮肥梯度试验,以天赐19为试验材料,设6个氮素水平,即 0 (N0)、90(N1)、180(N2)、270(N3)、360(N4)和450(N5)kg·hm−2,在玉米拔节期(V6)、小喇叭口期(V10)、大喇叭口期(V12)、吐丝期(R1)和乳熟期(R3)利用无人机搭载数码相机获取玉米冠层图像,利用Matlab编写代码开发的数字图像识别系统提取玉米冠层图像红光值R、绿光值G、蓝光值B,研究基于此计算的10个冠层图像参数指标与氮素营养指标间的相关性,筛选出稳定性好且敏感度高的图像色彩参数,构建玉米氮素营养诊断指标与图像参数间关系模型并进行验证,以探究利用无人机图像进行宁夏引黄灌区滴灌玉米拔节-乳熟期氮素营养动态估测的可行性。结果表明:冠层图像参数指标绿光与红光比值(G/R)、绿光标准化值(NGI)、红绿蓝植被指数(RGBVI)与植株氮含量和叶片氮含量相关性高且变异系数小,可作为氮素营养诊断的潜在最佳色彩参数;将最佳色彩参数与植株氮含量和叶片氮含量分别进行回归模型构建,幂函数模型可以更好地预估玉米氮素营养状况;利用2019年相同氮素试验进行模型验证,发现NGI与植株氮浓度和叶片氮浓度实测值与估测值的R2分别为0.738和0.689,检验指标RMSE为2.594和3.014,nRMSE为13.125%和13.347%,预测精度和准确性高于G/R和RGBVI。故选择NGI作为滴灌玉米拔节−乳熟期氮素营养动态诊断的最优参数,参数NGI与植株氮浓度的关系模型(NP=4.967×106NGI14.26)R2为0.707,与叶片氮浓度的关系模型(NL=1.707×106NGI12.88)R2为0.654。说明应用无人机图像技术可以较好地对宁夏引黄灌区玉米拔节−乳熟期氮素营养状况进行动态估测,构建的氮素营养诊断模型可为宁夏引黄灌区滴灌玉米氮肥精准配施提供理论依据。  相似文献   

16.
In a three-year field experiment in Toulouse (in Southwest France), two indicators of plant nitrogen (N) status were compared on five durum wheat cultivars: the normalized SPAD index and the nitrogen nutrition index (NNI). SPAD value is a non-destructive measurement of chlorophyll content from the last expanded leaf. The normalized SPAD index is expressed relative to SPAD reading on a fully fertilized crop. The NNI is calculated from the crop biomass and total plant N content using a universal N-dilution curve for wheat. The normalized SPAD index and NNI were closely related irrespective of year, cultivar, and growth stage. When N was a limiting factor, the SPAD index measured at anthesis predicted grain yield and protein content accurately. Unlike NNI, SPAD index cannot be used to predict these variables when wheat is over-fertilized.  相似文献   

17.
Nitrogen (N) is one of the most important nutrients for barley, and at the same time excessive N fertilization can have a negative impact on the environment. A 2-year field study was conducted with the objective to determine the relationship of N Use Efficiency (NUE) and its components N utilization efficiency (NUtE), and N uptake efficiency (NUpE) with N diagnostic tools N nutrition index (NNI) and chlorophyll meter (CM) readings of barley. CM readings were negatively correlated with NUE and NUpE. NNI varied from 0.79 to 1.00 across years and cultivars. This study provides new information about the effect of N application on NUE and its components and its relationship with CM readings and NNI of barley which can be used for proper N management and protection of the environment.  相似文献   

18.
设施栽培黄瓜临界氮浓度和氮营养指数模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
以黄瓜津春5号为试验材料,采用随机区组设计,2016和2017年分别设置了5个氮浓度梯度,构建了黄瓜地上部生物量的临界氮浓度稀释模型,在此基础上建立了氮素吸收模型和氮营养指数模型。结果表明,黄瓜地上部临界氮浓度与地上部最大生物量之间符合幂指数关系,%Nc=4. 539 7x-0. 06,相关系数为R2=0. 749 6。基于临界氮浓度建立的设施栽培黄瓜氮素吸收(Nupt)模型、氮素营养指数(NNI)模型,可作为设施栽培黄瓜氮素营养状况的判别指标,本试验条件下295. 7~305. 5 kg/hm~2为黄瓜最佳施氮量。  相似文献   

19.
Determining a critical nitrogen dilution curve for sugarcane   总被引:1,自引:0,他引:1  
Adequate measurements of the nitrogen (N) concentration in the aboveground biomass of sugarcane throughout the growth cycle can be obtained using the critical N dilution curve (CNDC) concept, which provides an N‐nutrition index (NNI). The aim of this work was to determine the CNDC value for Brazilian sugarcane variety SP81‐3250, establish the critical concentration of N, and determine the NNI in the aboveground biomass throughout the cane plant and first ratoon crop cycles. The study was performed in three experimental areas located in São Paulo, Brazil, during the crop cycles of 2005/2006 (18‐month cane plant) and 2006/2007 (first ratoon). The plant cane crop was fertilized with treatments of 40, 80, or 120 kg N ha–1 and a control treatment without N. After the plant cane harvest, rates of 0, 50, 100, or 150 kg N ha–1 were applied to the control plot and the 120 kg N ha–1–treatment plot in a split‐plot experimental design with four repetitions. Throughout both sugarcane cycles, measurements of aboveground biomass were used to determine the dry‐mass (DM) production and N concentration for each treatment. CNDC varied between the growth cycles, with a higher N concentration observed in the initial stages of the first ratoon and a lower N dilution observed throughout the plant cane cycle. The NNI value indicated excessive N storage in the initial stages and limiting concentrations at the end of the growth cycle. CNDC and NNI allow for the identification of the N‐nutrition variation rate and the period in which the nutrient concentration limits the production of aboveground biomass. The equations for the critical N (Ncr) level obtained in this study for plant cane (Ncr = 19.0 DM–0.369) and ratoons (Ncr = 20.3 DM–0.469) can potentially be used as N‐nutritional diagnostic parameters for sugarcane N nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号