首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The biological activity of humic substances (HS) has been elucidated in the last 40 years. Growth enhancement from HS has been demonstrated in several plants in the laboratory and the field. Morphogenesis effects have also been investigated and include induction of lateral root formation and root hair initiation in intact plants and stimulation of root and shoot development in treated cell calluses. HS enhance nutrient use efficiency, aiding assimilation of both macro and microelements and promoting plant growth by the induction of carbon, nitrogen, and secondary metabolism. The review aims are to: (1) shed light on the mechanism by which plants “talk” with soil through humic substances, (2) elucidate the plant responses to the stimulatory effects of HS, the regulatory circuits that allow plants to cope with humus, and the feedback between plant community structures, and (3) show (in light of recent debate about the alkaline extraction of soil humic substances) the plant capability to acquire biologically active substances from soil. It will be shown that plants modify soils, creating and maintaining favorable habitats for growth and survival. Therefore, organic substances exuded by roots are not a wasteful loss of carbon and energy. They represent an evolved strategy by which plants “talk” to the soil. The mobilization of bioactive organic/humic substances from bulk soil or bulk humus is critical to plant and soil health.  相似文献   

2.
研究结果证明,有机物料的矿化速度在绵土中,牛粪>麦草>玉米秆>草术樨;在塿土中,牛粪>玉米秆>麦草。各类还田有机物的腐殖化系数,在绵土中玉米秆为0.25,麦草为0.25,草木樨为0.26,牛粪为0.21,在塿土中玉米秆为0.35,麦草为0.37,牛粪为0.31。施入物料后土壤有机质的累积与物料的矿化速度和施后时间呈负相关,与加入有机物量呈正相关。文中计算了本地区维持土壤耕层一定的有机质水平,每亩耕地每年需加入有机物料的数量。  相似文献   

3.
土壤大孔隙是土壤水分、空气、化学物质及污染物优先运移的主要通道,对其形成机制的研究至关重要。以往对大孔隙的量化局限于传统方法,大孔隙三维形态特征的量化分析及其影响因素是目前大孔隙的研究重点。利用CT扫描及图像处理分析技术量化大孔隙三维形态特征参数,同时测定土壤基本理化性质及根长密度,分析土壤大孔隙三维特征对土壤理化性质及根系的响应。结果表明:土壤密度及土壤砂粒含量与大孔隙特征参数不存在相关关系;土壤有机质含量、土壤根长密度与大孔隙体积密度、大孔隙表面积密度、大孔隙数量密度呈现显著正相关关系,与大孔隙平均迂曲度呈现显著负相关关系。林木根系与土壤有机质对土壤大孔隙三维特征产生积极影响,表现为根系及土壤有机质含量越多,则大孔隙含量也越多,并具有更差的弯曲度。在今后对山地森林抚育管理、土壤水分运动机理及地下水污染评估等研究过程中不能忽略根系及土壤有机质差异对土壤大孔隙的重要影响。  相似文献   

4.
一种新型根系分泌物收集装置与收集方法的介绍   总被引:2,自引:0,他引:2  
王占义  潘宁  罗茜  沈宏 《土壤学报》2010,47(4):747-752
根系分泌物在养分活化、改善环境胁迫方面具有重要作用,很多科技工作者对根系分泌物的研究表现出极大兴趣,取得了一系列进展。但土壤栽培条件下,根系分泌物收集是一个难点。本文介绍了一种新型根系分泌物的收集装置与收集方法。该装置由根系生长箱和分泌物收集箱组成,植物在生长箱土壤中生长,通过定向引导作用,根系从生长箱穿过琼脂层进入收集箱中生长,待收集箱内积累一定根系后,通过淋洗收集箱内的介质,实现根系分泌物收集。研究发现,利用该装置收集分泌物,植物总根尖数的90%分布在收集箱。外源有机酸加样回收率可达70%以上。土壤栽培条件下,随生长时期延长,大豆有机酸分泌量逐渐增加,苹果酸分泌量高于柠檬酸。而且土壤栽培条件下大豆柠檬酸和苹果酸分泌量是溶液栽培时的11.4倍和6.7倍。上述研究表明,该装置可以用于土壤栽培条件下根系有机酸的分泌研究。  相似文献   

5.
本文采用生态样块的方法,对白浆土区人参红皮病发生条件做了较深入的研究。结果表明,在床土处于田间持水量且通气状况良好情况下,活性还原有机物质仍可形成,并促进土壤铁,锰氧化物活化,使亚铁,二价锰积累。人参红皮病是亚铁在参根周皮氧化沉积的结构,也可能是参根对亚铁毒害作用的保护性反应,而二价锰对红皮病有抑制作用。  相似文献   

6.
Laboratory experiments on the desorption phenomena of iodine from rice paddy soil under waterlogged conditions, with a special reference to soil redox potential (Eh) and pH, have been conducted. Radioiodine tracer (1251), added to the soil, was readily sorbed on it. At the beginning of the waterlogging, the iodine desorption was low. However, iodine was desorbed into soil solution with time. The iodine desorption was enhanced markedly by the addition of organic substances such as straw pieces and glucose to the soil. Cultivation of rice plants in soil also affected the iodine desorption, suggesting root exudates and/or root autolysis might be participating in the desorption process. Eh dropped considerably after soil was waterlogged due to microbial metabolisms. Particularly low Eh values were observed in soils with plants and also with added organic substances. A negative correlation was seen between the desorption and soil Eh. High desorption was frequently observed when the Eh dropped to about -100 mV or below. Due to the reducing conditions (low Eh) by waterlogging, iodine in soil was leached into the soil solution; consequently total iodine concentration in paddy soil was considerably lower than forest and upland field soils. These iodine desorption phenomena under anaerobic conditions should be considered in assessing transfer of the long-lived radioiodine (129I) in the environment, especially in rice fields and marshland.  相似文献   

7.
土壤有机酸与磷素相互作用的研究   总被引:23,自引:1,他引:23  
胡红青  李妍  贺纪正 《土壤通报》2004,35(2):222-229
土壤有机酸包括低分子量有机酸和腐殖酸,它们构成土壤有机组分中性质较活跃的部分。特别是低分子量有机酸,在土壤形成、养分和污染物的转化过程中起着十分重要的作用,受到土壤、植物营养和环境科学工作者的高度重视。本文着重从它们与磷素相互作用的角度,阐述有关研究进展。主要内容包括:(1)磷营养与植物根系分泌有机酸的特征;(2)有机酸对土壤吸附磷的影响;(3)有机酸与磷的解吸、释放与转化。旨在促进研究工作的深入,并为合理利用磷素,保护生态环境提供科学依据。  相似文献   

8.
Perfluorooctane sulfonate (PFOS) is one of the most widespread toxic substances in water distribution systems, posing a significant risk to public health and the environment due to its toxic and non-biodegradable nature. In this study, the effect of oxalate on PFOS adsorption/desorption to/from soil and sediment samples was studied with batch experiments. Dissolved organic carbon content in soil strongly enhanced the retention of organic halogens. Oxalate increased PFOS desorption by 1.43- to 17.14-fold and significantly increased the release of dissolved organic carbon and inorganic ions in soils. The effects of root exudates were similar to those of oxalate. Addition of low molecular weight dissolved organic carbon caused partial dissolution of the soil structure (e.g., through formation of organo-mineral complexes), resulting in the release of organic carbon and metal ions and subsequently enhancing PFOS desorption. The effects of oxalate on organic halogen desorption were influenced by dissolved organic carbon content and formation of calcium oxalate.  相似文献   

9.
以番茄为试材,研究常用的几种基质:大田土,有机土,蛭石和草碳混合物接种丛枝菌根真菌(AMF)中的Glomus mosseae(G.m)对番茄生长及PAL、PP0酶活性的影响。结果表明:接种G.m对番茄株高和茎粗均有显著的促生效应,G.m在蛭石+草碳处理中对番茄的促生效果最好,总干物重比对照增加131%, 不同基质极显著地影响了G.m侵染和扩展,有机土中G.m的侵染率最高。接种35 d,50 d,65 d PAL,PPO酶活均呈现由高到低的趋势,但不同基质间PAL,PPO酶活随侵染率的不同呈现显著差异。  相似文献   

10.
以番茄为试材,研究常用的几种基质:大田土,有机土,蛭石和草碳混合物接种丛枝菌根真菌(AM F)中的G lom usm osseae(G.m)对番茄生长及PAL、PP 0酶活性的影响。结果表明:接种G.m对番茄株高和茎粗均有显著的促生效应,G.m在蛭石 草碳处理中对番茄的促生效果最好,总干物重比对照增加131%,不同基质极显著地影响了G.m侵染和扩展,有机土中G.m的侵染率最高。接种35 d,50 d,65 d PAL,PPO酶活均呈现由高到低的趋势,但不同基质间PAL,PPO酶活随侵染率的不同呈现显著差异。  相似文献   

11.
In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot‐water‐ and sodium‐pyrophosphate‐extractable organic matter was analysed by Fourier transform infrared (FT‐IR) spectroscopy. For the sandy forest soil, the FT‐IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740–1710 cm?1 and 1640–1600 cm?1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot‐water‐soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water‐soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors.  相似文献   

12.
The methods used for estimating below‐ground carbon (C) translocation by plants, and the results obtained for different plant species are reviewed. Three tracer techniques using C isotopes to quantify root‐derived C are discussed: pulse labeling, continuous labeling, and a method based on the difference in 13C natural abundance in C3 and C4 plants. It is shown, that only the tracer methods provided adequate results for the whole below‐ground C translocation. This included roots, exudates and other organic substances, quickly decomposable by soil microorganisms, and CO2 produced by root respiration. Advantages due to coupling of two different tracer techniques are shown. The differences in the below‐ground C translocation pattern between plant species (cereals, grasses, and trees) are discussed. Cereals (wheat and barley) transfer 20%—30% of total assimilated C into the soil. Half of this amount is subsequently found in the roots and about one‐third in CO2 evolved from the soil by root respiration and microbial utilization of rootborne organic substances. The remaining part of below‐ground translocated C is incorporated into the soil microorganisms and soil organic matter. The portion of assimilated C allocated below the ground by cereals decreases during growth and by increasing N fertilization. Pasture plants translocated about 30%—50% of assimilates below‐ground, and their translocation patterns were similar to those of crop plants. On average, the total C amounts translocated into the soil by cereals and pasture plants are approximately the same (1500 kg C ha—1), when the same growth period is considered. However, during one vegetation period the cereals and grasses allocated beneath the ground about 1500 and 2200 kg C ha—1, respectively. Finally, a simple approach is suggested for a rough calculation of C input into the soil and for root‐derived CO2 efflux from the soil.  相似文献   

13.
余贵芬  吴泓涛  蒋新  青长乐 《土壤》2006,38(4):435-440
野外采集广柑树及供其生长的土壤,研究多年生植物对土壤Hg的吸收及与土壤理化性质、腐殖酸结合汞(HS—Hg)的关系。结果表明,在酸性土壤环境中,酸性过强,果树吸收Hg量会更低;果实部分Hg含量与土壤的有机质或腐殖酸含量呈现负相关关系;HS—Hg特别是FA—Hg(富啡酸结合汞)组分是果树吸收、积累Hg的重要来源,其与根Hg的相关系数达到0.700^*-0.759^**,且以表层土壤更能提供有效的HS—Hg。  相似文献   

14.
The pH buffering and aluminium solubility characteristics of acid soil are important in determining the soil's response to changes in precipitation acidity. The chemistry of soil organic matter (humic substances) plays a key role in both processes, yet is complex and still poorly understood. Nevertheless, models of humic substance chemistry have been developed, one of which is WHAM–S, which contains a model (Model V) of proton and metal binding at discrete sites on humic substances and considers electrostatic effects on the binding strength. Here we have tested the ability of WHAM–S to model solution pH and Al using batch titration studies on organic and mineral soil horizons from forested sites in Norway, Germany and Spain, with ambient pH values from 3.73 to 5.73. We optimized the model predictions by adjusting the amounts of soil aluminium and humic substances within defined limits, taking the contents of copper chloride‐extractable Al and the base‐extractable organic matter as starting values. The model simulated both pH and dissolved Al well with optimized amounts of aluminium and humic substances within the defined limits (root mean squared error for pH from 0.01 to 0.22, for p[Al]aq (total dissolved Al) from 0.03 to 0.49, five data points). Control of dissolved Al by dissolved organic matter was important particularly at above‐ambient pH. In two mineral horizons we improved the fits by assuming that Al could precipitate as Al(OH)3. The optimized model also gave reasonable predictions of pH and dissolved Al in supernatants obtained by repeated leaching of the soil horizons. The results show that humic substances dominate the control of pH and dissolved Al in most of the horizons studied. Control by Al(OH)3 occurs but is the exception.  相似文献   

15.
A laboratory incubation experiment was conducted to investigate the fates of plant-derived C during the simulated fallow period in a rice soil. The 13C labelled soil and plant materials were used to follow the residue decomposition and its effect on soil organic C (SOC) dynamics under the conditions of either incorporation into soil or intact root systems. The soils were incubated at 15 °C for 240 d and destructive sampling was conducted at 60, 150 and 240 d. To observe the temperature effect, one batch of incubation was shifted from 15 to 25 °C during the last 45 d (between 195 and 240 d). The results showed that the decomposition of the incorporated residues could be divided into two phases: an initial rapid phase followed by a slower phase of decomposition. The decomposition of straw residues was faster than root residues: with 73% of the straw residue being decomposed, compared with 56% of the root residue over 240-d incubation at 15 °C. The water-soluble organic C and microbial biomass C significantly increased after residue incorporation. The total SOC contents, however, slightly decreased, although significant amounts of straw C (14.2%) and root C (8.7%) were found in SOC at the end of incubation, suggesting that the degradation of native SOC occurred concomitantly. Similar to decomposition of the incorporated residues, the organic substances derived from rhizodeposition of the previous season were mineralized rapidly at first and then slowly. The decomposition of the intact root system, however, was extremely slow. This result suggested that the intact root system conserved more organic C in soils compared with the incorporation of fresh residues. Increase of temperature from 15 to 25 °C during the last 45-days of incubation significantly promoted the residue decomposition.  相似文献   

16.
Examples of the effect of mineral nutrition of plants (N, P, K, Mg, Fe) on microbial activity in the rhizosphere are presented with emphasis on our own studies related to root exudation, bacterial numbers, oxygen consumption and denitrification. Direct effects concern changes of pH, e.g. by liming. As the microbial community in the rhizosphere depends on decomposable organic substances released from roots, plant nutrition also indirectly affects microbial activity via its influence on plant metabolism and growth. Important factors affecting denitrification in the rhizosphere are, besides stimulation of denitrifiers by root exudation, air-filled porosity and readily decomposable organic matter content of the soil.  相似文献   

17.
有机无机肥配施对潜育化水稻土的改良效应   总被引:1,自引:0,他引:1  
为探索潜育化水稻土改良培肥措施,采用田间试验研究了工程排水条件下有机无机肥配施对潜育化低产水稻土的改良效应。结果显示:有机无机肥配施增加了早、晚稻的有效分蘖数。在早稻齐穗期,与CK和NPK处理相比,有机无机肥配施的叶绿素(SPAD值)均显著增加。有机无机肥配施显著增加了晚稻的产量,与NPK处理相比,产量增加了10.0%~23.7%;其中早稻配施紫云英、晚稻配施猪粪处理产量最高。在工程排水基础上,配施有机肥处理在早、晚稻收获时耕层土壤还原物质总量分别比单施化肥处理减少了15.0%~25.3%和32.5%~37.5%。这表明,在工程排水条件下,配施一定的有机肥可以明显提高潜育化稻田水稻产量,降低表层土壤还原物质总量,对改良潜育化水稻土有明显作用。  相似文献   

18.
采用土壤培养及盆栽试验研究5种调理剂(生石灰、油菜秸秆、有机肥、钾硅肥、土壤改良剂,用量均为1.8 g/kg)对酸性土壤(pH值3.9)酸度指标和大麦幼苗生长的影响。土壤培养试验结果表明,施用生石灰、有机肥和钾硅肥均能明显提高土壤pH值,降低土壤交换性酸总量、交换性H+和交换性铝含量。其中以生石灰降酸效果最好,到培养第90 d,相比于对照处理提高了0.66个单位,土壤交换性铝含量减少了2.01 cmol/kg;其次是有机肥和钾硅肥处理,pH值较对照处理分别提高了0.14和0.15,土壤交换性铝含量分别降低了0.23和0.19cmol/kg;油菜秸秆和土壤改良剂处理从酸度指标来看,与对照并没有显著差异。大麦幼苗盆栽试验结果表明,与对照相比,生石灰、油菜秸秆、有机肥、钾硅肥和土壤改良剂处理的大麦幼苗地上部生物量分别增加71.5%、24.1%、27.6%、28.2%、24.7%,大麦株高、根长、根系总表面积和根系活力均显著高于对照处理,根系平均直径减少,有利于养分和水分的吸收。综合结果表明,不同类型的调理剂对酸性土壤的降酸效果不尽相同,其中以生石灰效果最好,秸秆处理尽管没有有效降低土壤酸度但仍可明显促进作物生长,因此也可用作酸性土壤的改良物质,在实际生产中应因地制宜应用各种调节物质来促进作物生长。  相似文献   

19.
Abstract

The changes in quality and quantity of phenolic substances in the decaying process of rice straw in a soil were compared under moist and flooded conditions for 200 days. The amounts of phenolic substances divided into fractions of humic acid and fulvic acid, ether- and butanol-extractable and organic solvent-unextractable fractions, then the amounts of individual phenolic acids were determined. The following results were obtained.

1) Alkali-extractable total phenolics as well as individual phenolic acids decreased more rapidly under moist, than under flooded, conditions as rice straw decayed in the soil. The phenolics present were mainly attributable to the straw, not to the soil.

2) The decrease in the level of total phenolics in the early stage of the decaying process was mainly due to the decrease in ether-extractable phenolic compounds in the fulvic acid fraction, and in the later stage, was mainly due to the decrease in butanol-extractable phenolics in the humic acid fraction.

3) The amounts of butanol-extractable phenolics and organic solvent-unextractable phenolics were larger in humic acid than in fulvic acid. On the other hand, a larger amount of organic solvent-extractable phenolics, especially ether-extractable phenolics, was present in fulvic acid.

4) The degradation patterns and pathways of individual phenolic acids in the decaying process of rice straw in soil were found to be the lame as those of decaying straw without soil which were reported previously.

5) The level of phenolic substances in the humic acid was not greatly changed during the decaying process, but the phenolic substances in fulvic acid rapidly increased for 30 days and then rapidly decreased to a constant level.  相似文献   

20.
有机肥对小麦根系生长及根系衰老进程的影响   总被引:31,自引:3,他引:31  
采用土柱栽培与室内分析相结合的方法,研究了有机肥对小麦根系生长及根系衰老进程的影响。结果表明,有机肥可促进小麦根系的生长和根系在深层土壤中的分布,使小麦根系的总鲜重和深层土壤根系鲜重明显增加;提高不同土层、特别是深层土壤中根系的活力,使小麦生长后期保持较高的根系吸收养分的能力。有机肥可促进根系对氮、磷、钾的吸收和向子粒中的转移,使氮、磷、钾在子粒中的分配量增加;而且能抑制根系的膜脂过氧化作用,使不同土层小麦根系SOD活性提高、MDA含量降低,从而延缓了根系的衰老。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号