首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abundance and standard error estimates in surveys of fishery resources typically employ classical design-based approaches, ignoring the influences of non-design factors such as varying catchability. We developed a Bayesian approach for estimating abundance and associated errors in a fishery survey by incorporating sampling and non-sampling variabilities. First, a zero-inflated spatial model was used to quantify variance components due to non-sampling factors; second, the model was used to calibrate the estimated abundance index and its variance using pseudo empirical likelihood. The approach was applied to a winter dredge survey conducted to estimate the abundance of blue crabs (Callinectes sapidus) in the Chesapeake Bay. We explored the properties of the calibration estimators through a limited simulation study. The variance estimator calibrated on posterior sample performed well, and the mean estimator had comparable performance to design-based approach with slightly higher bias and lower (about 15% reduction) mean squared error. The results suggest that application of this approach can improve estimation of abundance indices using data from design-based fishery surveys.  相似文献   

2.
Design-based and model-based methods of estimating temporal change of soil properties over a finite area have been compared. Two large fields of auto- and cross-correlated data were simulated, each representing the spatial distribution of a variable at one time. The fields were then sampled repeatedly. The means of stratified and systematic random samples and geostatistical global estimates were used to infer the mean difference between the fields. All estimators were unbiased, but their variances differed. Pairing the positions on the two occasions increased the precision of the design–based estimates. Systematic sampling was slightly more precise than stratified sampling. Kriging was less precise than both because some of the sample information must be used to estimate the variograms at short lags. Neither balanced differences nor the normal formula for simple random sampling predicted the estimation variances of small (n< 50) systematic samples accurately. For larger samples the method of balanced differences performed well. If the spatial variation is unknown in advance and only small samples can be taken then stratified random sampling with two observations per stratum is the preferred design. It resulted in the best combination of precision and accuracy in predicting the sampling error.  相似文献   

3.
This paper develops a Bayesian approach for spatial inference on animal density from line transect survey data. We model the spatial distribution of animals within a geographical area of interest by an inhomogeneous Poisson process whose intensity function incorporates both covariate effects and spatial smoothing of residual variation. Independently thinning the animal locations according to their estimated detection probabilities results into another spatial Poisson process for the sightings (the observations). Prior distributions are elicited for all unknown model parameters. Due to the sparsity of data in the application we consider, eliciting sensible prior distributions is important in order to get meaningful estimation results. A reversible jump Markov Chain Monte Carlo (MCMC) algorithm for simulation of the posterior distribution is developed. We present results for simulated data and a real data set of minke whale pods from Antarctic waters. The main advantages of our method compared to design-based analyses are that it can use data arising from sources other than specifically designed surveys and its ability to link covariate effects to variation of animal density. The Bayesian paradigm provides a coherent framework for quantifying uncertainty in estimation results.  相似文献   

4.
This article studies the dependence of spatial linear models using a slash distribution with a finite second moment. The parameters of the model are estimated with maximum likelihood by using the EM algorithm. To avoid identifiability problems, the cross-validation, the Trace and the maximum log-likelihood value are used to choose the parameter for adjusting the kurtosis of the slash distribution and the selection of the model to explain the spatial dependence. We present diagnostic techniques of global and local influences for exploring the sensibility of estimators and the presence of possible influential observations. A simulation study is developed to determine the performance of the methodology. The results showed the effectiveness of the choice criteria of the parameter for adjusting the kurtosis and for the selection of the spatial dependence model. It has also showed that the slash distribution provides an increased robustness to the presence of influential observations. As an illustration, the proposed model and its diagnostics are used to analyze an aquifer data. The spatial prediction with and without the influential observations were compared. The results show that the contours of the interpolation maps and prediction standard error maps showed low changes when we removed the influential observations. Thus, this model is a robust alternative in the spatial linear modeling for dependent random variables. Supplementary materials accompanying this paper appear online.  相似文献   

5.
Conventional distance sampling adopts a mixed approach, using model-based methods for the detection process, and design-based methods to estimate animal abundance in the study region, given estimated probabilities of detection. In recent years, there has been increasing interest in fully model-based methods. Model-based methods are less robust for estimating animal abundance than conventional methods, but offer several advantages: they allow the analyst to explore how animal density varies by habitat or topography; abundance can be estimated for any sub-region of interest; they provide tools for analysing data from designed distance sampling experiments, to assess treatment effects. We develop a common framework for model-based distance sampling, and show how the various model-based methods that have been proposed fit within this framework.  相似文献   

6.
A model-based clustering method for cross-sectional time series data is proposed and applied to crop insurance programs. To design an effective grouprisk plan, an important step is to group together the farms that resemble each other and decide the number of clusters, both of which can be achieved via the model-based clustering. The mixture maximum likelihood is employed for inferences. However, with the presence of correlation and missing values, the exact maximum likelihood estimators (MLEs) are difficult to obtain. An approach for obtaining approximate MLEs is proposed and evaluated through simulation studies. A bootstrapping method is used to choose the number of components in the mixture model.  相似文献   

7.
This article investigates the problem of estimating the sampling error when the population mean (total) is estimated from a single two-dimensional systematic sample. In particular, two-dimensional extensions of known approximate variance estimators used in linear systematic sampling are introduced. These almost new variance estimators have the advantage of taking into account the spatial ordering of sample units and, consequently, the spatial autocorrelation among them. An investigation of their properties is carried out through a series of simulations and an empirical study.  相似文献   

8.
This paper uses Generalized Additive Models to evaluate model-based designs for wildlife abundance surveys where substantial pre-existing data are available. This is often the case in fisheries with historical catch and effort data. Compared to conventional stratified design or design-based designs, our model-based designs can be both efficient and flexible, for example in allowing uneven sampling due to survey logistics, and providing a general framework to answer specific design questions. As an example, we describe the design and preliminary implementation of a trawl survey for eleven fish species along the continental slope off South-East Australia.  相似文献   

9.
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents.  相似文献   

10.
中国煤炭产量占世界煤炭总产量的46.9%,年塌陷的耕地面积约为200 km~2,对农田土壤有机碳库扰动十分剧烈。由于农田的土壤有机碳库是减少陆地生态系统碳排放的最大潜在因素,中国以及世界上的其他煤炭开采大国必须更好地对煤炭开采区的土壤有机碳库进行科学管理,这也是煤炭低碳开采的重要途径。而预测精度好的煤炭开采沉陷区土壤有机碳含量空间预测方法是科学管理煤炭开采沉陷区土壤有机碳库的前提。该文以徐州九里煤炭开采沉陷区作为研究区,通过普通Kriging插值法和以结合沉陷积水情况为辅助变量的分区Kriging插值法这2种方法来对研究区的土壤有机碳含量进行了空间预测,并通过比较验证样点的预测值与实测值来对比2种方法的预测精度,确定每种方法的可行性。研究发现,结合区域内部积水情况来进行的分区Kriging插值法求得到的预测值与实测值的相关系数为0.7564,远高于直接进行Kriging插值得到的预测值与实测值的相关系数0.5086,并且两者的均方根误差分别为0.35和0.55,说明前者的预测精度更高。因此结合沉陷积水情况的分区Kriging插值模式是更适宜煤炭开采沉陷区土壤有机碳含量的空间预测模型。  相似文献   

11.
Co-clustering has been broadly applied to many domains such as bioinformatics and text mining. However, model-based spatial co-clustering has not been studied. In this paper, we develop a co-clustering method using a generalized linear mixed model for spatial data. To avoid the high computational demands associated with global optimization, we propose a heuristic optimization algorithm to search for a near optimal co-clustering. For an application pertinent to Integrated Pest Management, we combine the spatial co-clustering technique with a statistical inference method to make assessment of pest densities more accurate. We demonstrate the utility and power of our proposed pest assessment procedure through simulation studies and apply the procedure to studies of the persea mite (Oligonychus perseae), a pest of avocado trees, and the citricola scale (Coccus pseudomagnoliarum), a pest of citrus trees.  相似文献   

12.
Broad-scale monitoring in Alaska has become of increasing interest due to uncertainty about the potential impacts of changing climate on high-latitude ecosystems. The Forest Inventory and Analysis (FIA) program is a national monitoring program for all public and private forestlands in the US, but the program is not currently implemented in the boreal region of Alaska. We provide an overview of the strengths and weaknesses of the FIA system for monitoring the potential impact of climate change on Alaska’s species, communities, and ecosystems. The primary strength of the system is a scientifically rigorous design-based statistical estimation method that produces estimates of forest attributes with known sampling error and quantifiable measurement error. The weaknesses of the system include low power for small area estimates, lack of spatial context and contiguity, and difficulty in inferring causality of factors when changes in monitored attributes are detected.Climate change is expected to impact many components of boreal ecosystems, but for most indicators the direction and magnitude of change are difficult to predict because of complex interactions among system components. Status and trend information provided by FIA monitoring that could be helpful to conservation decisions includes abundance and rarity of vascular plants, invasive species, biomass and carbon content of vegetation, shifting vegetation species distribution, disturbance frequency, type, and impact, and wildlife habitat characteristics. Because of unique factors such as the low level of infrastructure, modifications to the FIA monitoring system used in the conterminous US have been proposed for Alaska. Remote sensing data would play a greater role in meeting monitoring objectives, and sampling intensity of field plots would be reduced. Coordination with other national, regional, and local monitoring efforts provides potential for increased understanding of change in boreal ecosystems at multiple scales.  相似文献   

13.
《CATENA》2001,44(1):1-11
Distributed process-based hydrologic models have been used to describe and predict the movement of sediment on small watersheds. However, to parameterize these models requires an understanding of the spatial variability of erosion processes and the particle sizes of the sediment being moved. In this study, a high resolution digital elevation model (DEM) and detailed sediment particle sampling allowed a comparison of hillslope characteristics and particle sizes of surficial armoring in a semiarid watershed. Individual particle size classes on hillslopes are correlated with the underlying sediment type, local slope, aspect, and area draining through a grid element. The strongest correlations are between the underlying sediment and overlying sediment. However, the distribution of the particle size classes is consistent with a hydrodynamic explanation for sorting. In particular, increased area draining through a grid node and increased slope are correlated with higher concentrations of the 16–64-mm particle size class. Both the coarsest and finest particle size classes are significantly correlated with the aspect of flow from a grid cell, with increased coarse particles and decreased fines on east-facing slopes. These spatial differences with aspect are attributed to dry season prevailing winds. These observations about process and spatial distribution are useful in predicting the spatial distribution of particles on the watershed for applications such as distributed hydrologic models.  相似文献   

14.
Spatially nested sampling and the associated nested analysis of variance by spatial scale is a well-established methodology for the exploratory investigation of soil variation over multiple, disparate scales. The variance components that can be estimated this way can be accumulated to approximate the variogram. This allows us to identify the important scales of variation, and the general form of the spatial dependence, in order to plan more detailed sampling by design-based or model-based methods. Implicit in the standard analyses of nested sample data is the assumption of homogeneity in the variance, i.e. that all variations from sub-station means at some scale represent a random variable of uniform variance. If this assumption fails then the comparable assumption of stationarity in the variance, which is an important assumption in geostatistics, will also be implausible. However, data from nested sampling may be analysed with a linear mixed model in which the variance components are parameters which can be estimated by residual maximum likelihood (REML). Within this framework it is possible to propose an alternative variance parameterization in which the variance depends on some auxiliary variable, and so is not generally homogeneous. In this paper we demonstrate this approach, using data from nested sampling of chemical and biogeochemical soil properties across a region in central England, and use land use as our auxiliary variable to model non-homogeneous variance components. We show how the REML analysis allows us to make inferences about the need for a non-homogeneous model. Variances of soil pH and cation exchange capacity at different scales differ between these land uses, but a homogeneous variance model is preferable to such non-homogeneous models for the variance of soil urease activity at standard concentrations of urea.  相似文献   

15.
以安徽省安庆市为研究区,选取环境变量因子(空间位置变量因子、地形变量因子、土壤变量因子、气候变量因子)作为变量因素,通过构建随机森林(Random Forest,RF)模型对研究区耕地土壤速效钾含量进行预测,并与普通克里金(Ordinary Kriging,OK)和反距离权重(Inverse Distance Weighting,IDW)这两种传统空间预测方法作对比。结果表明:研究区内速效钾空间分布的3种方法的预测精度高低顺序为RF>OK>IDW,其中RF模型的平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)分别为30.93 mg·kg-1、41.31 mg·kg-1和0.58,相较于OK和IDW分别高出了3.36%、5.95%,6.71%、11.86%和18.37%、23.40%;3种空间分布预测方法整体趋势一致,呈东南高西北低分布。综合而言,RF模型能较好地预测安庆市耕地土壤速效钾含量,且纬度、年平均温度、成土母质、高程、经度、年平均降水量是影响RF模型精度的主要因素。  相似文献   

16.
The pseudo cross‐variogram can be used for cokriging two or more soil properties when few or none of the sampling locations have values recorded for all of them. The usual estimator of the pseudo cross‐variogram is susceptible to the effects of extreme data (outliers). This will lead to overestimation of the error variance of predictions obtained by cokriging. A solution to this problem is to use robust estimators of the pseudo cross‐variogram, and three such estimators are proposed in this paper. The robust estimators were demonstrated on simulated data in the presence of different numbers of outlying data drawn from different contaminating distributions. The robust estimators were less sensitive to the outliers than the non‐robust one, but they had larger variances. Outliers tend to obscure the spatial structure of the cross‐correlation of the simulated variables as described by the non‐robust estimator. The several estimators of the pseudo cross‐variogram were applied to a multitemporal data set on soil water content. Since these were obtained non‐destructively, direct measurements of temporal change can be made. A prediction subset of the data was subsampled as if obtained by destructive analysis and the remainder used for validation. Estimators of the auto‐variogram and pseudo cross‐variogram were applied to the prediction data, then used to predict the change in water content at the validation sites by cokriging. The estimation variances of these predictions were best calculated with a robustly estimated model of coregionalization, although the validation set was too small to conclude that the non‐robust estimators were unsuitable in this instance.  相似文献   

17.
应用线性混合模型遥感监测冬小麦种植面积   总被引:12,自引:3,他引:9  
中分辨率成像光谱仪(MODIS)具有多光谱、多时相以及免费接收使用的优势。该文利用冬小麦返青期间的MODIS多光谱数据,采用传统的监督分类和阈值方法研究冬小麦种植区域的分布情况,同时针对遥感像元多为混合像元的特点,重点将线性混合像元分解技术应用于冬小麦种植面积的分解计算研究。比较不同分类方法对冬小麦种植面积估算的精度分析表明,采用线性混合分解模型,绝大部分(98.45%)的均方根误差都小于0.01,对比实际冬小麦种植面积数据,相对误差约3%,明显优于传统遥感分类方法的精度。  相似文献   

18.
环渤海沿海区域耕地格局及影响因子分析   总被引:8,自引:6,他引:2  
为分析环渤海省市沿海区域耕地格局与影响因子的关系,以耕地在5 km×5 km网格单元所占比例为因变量,选用地形、距离、气候及人口等10个影响因子为自变量,分别建立普通最小二乘法线性回归模型、空间滞后模型、空间误差模型、地理加权回归模型。结果表明:耕地格局及各影响因子均呈现较强的空间正相关,并随距离增大而减少;针对该研究,空间滞后模型、空间误差模型和地理加权回归模型模拟效果均优于普通最小二乘法线性回归模型,空间误差模型优于空间滞后模型;从全局上来讲,高程、坡度、到最近公路距离与耕地格局呈负相关影响,距最近海岸线、铁路、居民点距离、多年平均气温和多年平均降水与耕地格局呈正相关。从局部上来讲,除了多年平均降水对各网格单元内耕地面积均呈正向影响外,其余影响因子随网格单元变化正负向影响均存在。多年平均气温和多年平均降水是主要的、最敏感的正向影响因子,高程、坡度和距最近水系距离为主要的、最敏感的负向影响因子。  相似文献   

19.
This article describes the combination of small area estimator and a simultaneously autoregressive (SAR) model applied to the erosion data collected at the Rathbun Lake Watershed in Iowa (USA). The proposed methodology considers and EBLUP estimator with spatially correlated random area effects taking into account the information provided by neighboring areas. The article discusses the gain obtained from modeling the spatial correlation among small area random effects useful in representing the unexplained variation of the small area target quantities. Moreover the estimator of mean squared error of the proposed estimator is presented.  相似文献   

20.
Estimating temporal change in soil monitoring: I. Statistical theory   总被引:1,自引:0,他引:1  
Detecting small temporal change of spatially varying soil properties demands precise estimation. Design– and model–based methods are compared for estimating temporal change of soil properties over finite areas. Analytical expressions for the estimators and their variances arc derived for the two approaches, and formulae for the expectations of the variances under the random–process model are developed. Among the randomized designs simple, stratified, and systematic random sampling using the arithmetic mean as estimator have been studied. Pairing the sampling positions on the different occasions increases the precision of design–based estimation if the observations are positively cross–correlated. The relative precisions of the means of stratified and systematic samples depends on the spatial correlation. Neither is more precise than the other in all circumstances. The stratified design provides an unbiased estimator for the sampling error, which is not available from systematic samples. Theoretically, the geostatistical global estimator is more precise than the estimates derived from any of the classical designs when many realizations arc repeatedly sampled at random. In practice, with only a single realization of the process, this is no longer relevant. Moreover, errors in estimating the variograms add to the total error of the method. It seems that only by sampling from large auto–correlated random fields can the precisions of the methods be compared in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号