首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于盐(碱)生植被盖度的土壤碱化分级   总被引:6,自引:0,他引:6  
以土壤大面积碱化的新疆奇台绿洲为研究区,探讨了盐(碱)生植被盖度与土壤碱化指标pH、碱化度(ESP)、钠吸附比(SAR)、残余碳酸钠(RSC)、总碱度(TA)的关系。研究表明:研究区土壤存在大量的可代换性钠,碱化强烈。植被盖度与各土壤碱化指标均呈极显著的负相关关系,其与pH的相关系数最高,达0.810,其次为ESP,植被盖度主要受土壤碱化程度的影响。以盐(碱)生植被盖度为主要依据并结合多种土壤碱化指标对研究区碱化土壤进行分级:植被盖度50%左右,pH<8.0,ESP<3%,SAR<3,为非碱化土;植被盖度10%~40%,pH 8.0~9.5,ESP 3%~35%,SAR 3~40,为碱化土;植被盖度<10%,pH>9.5,ESP>35%,SAR>40,为碱土。以植被盖度对碱化土壤的响应为依据建立的土壤碱化分级标准既拓宽了碱化土壤分级的研究视角,也符合研究区的实际情况。  相似文献   

2.
滨海盐碱地不同造林树种林地土壤盐碱化特征   总被引:16,自引:0,他引:16  
采用野外取样与室内分析测试相结合的方法,对不同林地土壤的全盐量、阴阳离子组成、总碱度、p H、电导率、碱化度等指标进行了系统研究。结果表明:对照空地与各林地土壤中均无CO32-存在,造林可明显改变土壤中Na+、Cl-、SO42-、HCO3-等可溶性盐离子的含量,降低土壤全盐含量,造林地土壤阴离子由SO42-+Cl-为主演变为SO42-+HCO3-为主。土壤p H、碱化度和总碱度的变化趋势一致,不同造林地土壤碱化程度以紫穗槐林地最大,柽柳林地次之。土壤全盐含量(y)和电导率(x)间呈极显著线性正相关,故可用电导率计算含盐量进行研究区域的盐渍化程度分级。研究结果可为阐明滨海盐碱地的盐碱化过程、指导土壤改良提供参考。  相似文献   

3.
河套盐碱地不同利用方式土壤盐碱化特征差异分析   总被引:3,自引:0,他引:3  
为研究河套平原盐碱地在不同利用方式对土壤盐碱化特征分布的影响,通过野外调查取样和室内分析相结合的方法,对5种土地利用方式下(林地、农用地、牧草地、改良地、盐荒地)不同深度土壤剖面形态特征、可溶盐含量、盐分离子组成、总碱度、pH、碱化度等指标的变化规律进行了系统研究。结果表明:不同利用方式土壤剖面土体结构、颜色、根系分布、石灰性反应及碱化层分布均有明显差异;土壤剖面的可溶性盐、阴阳离子分布因土地利用方式不同而存在差异,牧草地和林地土壤剖面可溶性盐呈"橄榄"型、盐荒地和改良地呈"表聚"型、农用地呈"底聚"型;土壤pH、碱化度和总碱度在剖面中的分布特征基本一致,呈"S"型;经不同利用方式土壤的盐化程度和碱化程度均有所下降,与盐荒地相比,农用地盐碱化指标下降的最为显著(P0.05),其中0—20 cm土壤全盐量降至0.88 g/kg,pH降至7.83,总碱度、ESP降至0.17 cmol/kg和12.54%,表明苏打盐碱地经农用后更有利于土壤脱盐化过程和脱碱化过程;土壤全盐量、Ca~(2+)、Mg~(2+)、SO_4~(2-)、总碱度、pH可作为控制区域盐碱化的主要因子。研究结果为阐明河套平原盐碱地的盐碱化过程及盐碱化土壤利用模式提供技术参考。  相似文献   

4.
大庆地区不同利用方式土壤盐碱化特征分析及评价   总被引:4,自引:0,他引:4  
采用野外调查与试验分析相结合的方法,对大庆市五区四县不同利用方式土壤全盐量、阴离子组成、pH值、总碱度、交换性Na+和碱化度等指标进行了研究,并运用主成分分析对不同利用方式土壤的盐碱化进行综合评价。结果表明:全盐量和阴离子在不同土地利用方式中排序基本一致为,未利用地>草地>工业用地>水田>旱田,且阴离子含量随全盐量的增加而增加。土壤碱化度含量差异较大,且与交换性Na+呈显著正相关。土壤pH值和总碱度的变化趋势一致,即土壤总碱度愈大,pH值愈大,但不呈现比例关系。pH值与交换性Na+、CO23-和HCO3-呈显著正相关。不同利用方式盐碱化程度评价结果为:工业用地、未利用地和草地盐碱化程度均显著大于旱田和水田。  相似文献   

5.
元炳成  胡江  岳东霞  黄伟 《土壤通报》2011,(5):1105-1111
土壤剖面中Mg2+的大量存在是土壤发生碱化的原因之一。测定了疏勒河昌马冲积扇缘镁碱化盐渍土土样的Mg2+碱度、Mg2+/Ca2+、pH值、HCO3-+CO32-等化学性质指标,分析了这些化学性质指标对土壤微生物生物量碳(氮)及其潜在可矿化氮的影响。结果表明:微生物生物量碳、微生物熵、微生物生物量氮随Mg2+/Ca2+、Mg2+碱度的升高而线性下降,而潜在可矿化氮随Mg2+/Ca2+、Mg2+碱度的升高而指数下降;另外,微生物生物量C/N与Mg2+/Ca2+和Mg2+碱度的反向变化关系说明,Mg2+碱化盐渍土环境中细菌在微生物群落中占优势。总之,高Mg2+碱度对土壤微生物而言是一种严重的胁迫环境,它使得微生物生物量变小、活性显著降低。  相似文献   

6.
新疆博格达山北坡土壤形成特征及其垂直分布   总被引:3,自引:0,他引:3  
刘立诚 《土壤学报》1987,24(1):77-85
博格达山北坡土壤形成过程主要有腐殖质化过程、粘化过程、钙他过程、残余盐化-碱化过程、高山融冻过程.土壤风化程度低,粘土矿物以伊利石为主,粘粒SiO2/R2O3为2.84-3.54,各土类差别不大,R2O3,沿剖面无明显移动.本区山体高大,土壤垂直分布完整,在天山北坡有代表性,并具温带荒漠土壤的垂直分布特点.土壤垂直分布东、西差异明显,西部完整,东部无荒漠土壤和高山草甸土.  相似文献   

7.
镁碱化盐土微生物生物量和土壤基础呼吸   总被引:5,自引:0,他引:5  
元炳成  刘权  黄伟  李凤成 《土壤》2011,43(1):67-71
通过测定甘肃河西走廊疏勒河中游昌马冲积扇缘不同镁碱度条件下10个采样点30个土样的化学性质和生物化学性质指标,研究了电导率和镁碱度对土壤微生物生物量及其基础呼吸的影响。结果表明:微生物生物量碳(氮)和土壤基础呼吸与电导率、镁碱度和Mg2+/Ca2+之间显著负相关,表明盐度和镁碱度对土壤微生物群落有显著的抑制作用,而且盐度的抑制作用比镁碱度更大;微生物代谢熵(qCO2)和电导率、镁碱度、Mg2+/Ca2+之间为正相关关系,也说明镁碱化盐土对土壤微生物而言是一种严重的胁迫环境。  相似文献   

8.
土壤总盐、pH及总碱度空间变异特征研究   总被引:14,自引:6,他引:14  
盛建东  杨玉玲  陈冰  武红旗 《土壤》2005,37(1):69-73
在新垦土地以 15m×15m 的网格分 3 层采集土壤样品,对不同层次土壤总盐、pH 及总碱度的空间变异性进行研究。结果表明:研究区土壤总盐含量普遍较低,土壤表层积盐作用不明显;土壤 pH 及总碱度较高,普遍达到碱化指标;不同层次土壤总盐与总碱度为中等程度变异水平,pH 为弱变异水平;不同层次土壤总盐、pH 及总碱度的空间变异特征具有一定的差异,但结构性因素对三者的空间变异起主导作用。利用 Kriging 插值法绘制土壤盐分、pH 及总碱度的等值线图,可以作为土壤盐碱改良的依据。  相似文献   

9.
西藏羌塘高原碱土的形成特点及类型   总被引:1,自引:0,他引:1       下载免费PDF全文
邹德生  张连弟  郑莲芬 《土壤》1993,25(1):7-10,14
本文证实了羌塘高原西南——中南部河谷、湖盆区有碱土的存在。碱化层的钠碱化度多在35——90cmol(Na)/kg之间;残余碳酸钠大于1.1cmol/kg;总碱度大于1.5cmol/kg;pH大于9.5;水解碱度在2.6-5cmol/kg之间。羌塘高原碱土拟分潮碱土一个亚类,盐化潮碱土一个土属。  相似文献   

10.
吉林省大安市苏打碱土碱化参数之间的关系   总被引:2,自引:0,他引:2  
选择典型苏打碱化土壤,对土壤碱化度(ESP)、钠吸附比(SAR)、残余碳酸钠(RSC)、总碱度和pH等进行了测定计算,分析了各碱化参数之间的关系,得出了各参数之间的相关方程。结果表明,除pH外,苏打碱土各碱化参数之间均具有极显著的相关性,各参数之间关系密切。土壤pH与ESP和SAR之间的关系变异性较大,利用pH推算该区苏打碱土碱化状况将会产生很大的不确定性。  相似文献   

11.
Diagnostics, methods of evaluation, and geography of saline-alkali (soda) soils are discussed. The saline-alkali soils include soils of different genetic types with the following chemical properties: the pH of the water suspensions equal to or higher than 8.5; the total alkalinity exceeding 1.4 meq/100 g of soil and the sum of water-soluble calcium and magnesium; and the presence of soluble “alkaline” salts in the soil profiles, the hydrolysis of which results in the alkaline reaction of the soils. The chemical properties of the saline-alkali soils are largely related to the presence of soda (Na2CO3, NaHCO3) in the soils. According to their morphological properties, saline-alkali soils are divided into two groups: alkaline soils with an undiferentiated profile and without a morphologically pronounced solonetzic (natric) horizon, and alkaline soils with a pronounced natric horizon (solonetzes). Solonetzes, in turn, are divided into (a) alkaline solonetzes (with soda or with soda and neutral salts), (b) solonetzes salinized with neutral salts (saline soils) with increased alkalinity in the solonetzic and lower lying horizons, (c) saline solonetzes throughout the profile, and (d) leached solonetzes containing no soluble salts in the profile and almost no exchangeable sodium in the soil exchange complex (SEC) (“dead” solonetzes). The latter two groups of solonetzes cannot be ranked among the alkaline soils. The alkalinity of the saline-alkali soils under study is due to carbonate and bicarbonate ions (carbonate alkalinity), organic acid anions (organic alkalinity), and borate ions (borate alkalinity). The carbonate alkalinity is due to both soda (Na2CO3, NaHCO3) and CaCO3.  相似文献   

12.
华南红壤的交换性碱和交换性酸   总被引:2,自引:2,他引:2  
本文提出了一个同时测定土壤的交换性酸和交换性碱的简易方法。将土壤的交换性酸和交换性碱区分为:Na-交换性酸、Ba-交换性酸和SO4-交换性碱、F-交换性碱。用推荐的方法,在野外对华南地区由不同母质发育的砖红壤、赤红壤、红壤等10个剖面进行了测定。结果表明,红壤类土壤含有相当量的交换性碱,但其数量比交换性酸少。酸性母质发育的土壤的交换性酸和交换性碱量大于由基性岩发育的土壤者。红壤的交换性酸和碱的量随电性盐浓度的增高而增大,浓度大于0.1N后,数量基本不变。  相似文献   

13.
The alkalinity of virgin solonetzes of the Ergeni Upland, Ergeni Plain, and Sarpinsk Lowland has been studied. These soils are characterized by the neutral salinization and the high alkalinity of the solonetzic and subsolonetzic horizons. The analysis of the soil water extracts demonstrated that the highest alkalinity is typical of the subsolonetzic horizons containing calcium carbonates (the B2 and BCca horizons). In the solonetzic horizons without CaCO3, the alkalinity is lower despite the high exchangeable sodium percentage (up to 42%). The alkalinity of the solonetzic and subsolonetzic horizons may be conditioned by two processes: (a) the hydrolysis of the exchange complex (EC) containing sodium (EC-Na + H2O ↔ EC-H + Na+ + OH) and (b) the reaction of the ion exchange with the substitution of calcium for sodium in the exchange complex (EC-2Na + CaCO3 ↔ EC-Ca + 2Na+ + CO32−). Calculations performed on the basis of the thermodynamic equations of the physicochemical equilibria according to the LIBRA program indicate that soda is absent in the solonetzic horizons, whose alkalinity is related to the carbonatecalcium equilibria. The high alkalinity of the calcareous subsolonetzic horizons is related to the presence of soda in combination with CaCO3. The formation of soda in these horizons is due to the reaction of ion exchange described by Gedroits.  相似文献   

14.
Abstract

Large areas of agricultural land, containing alkalinity and salinity problems, are potentially suitable for crop production with little alteration of their chemical properties. This study was conducted to determine and compare the effectiveness of urea phosphate (UP) in reducing soil salinity and alkalinity with sulfur foam (SF), phosphoric solution (PHP), and a mixture of SF and UP (Mix) on leaching soil sodium (Na) and salinity on two saline sodic soils (Pima L and Crot CL) in columns. Each of these amendments was applied at rates of one and two equivalent amounts of the exchangeable sodium (Naex).

Urea phosphate was as effective as PHP or Mix treatments in reducing soil salinity and alkalinity in Pima and Crot soils. No difference was found between rates of application (1 and 2 equivalent amount of Naex) except for soil pH. The decrease in soil salinity was similar to the decrease in pH levels; both decreases followed this order: PHP, UP, Mix, SF, and control treatments. No significant difference was found between SF and control treatments for all parameters. No significant difference was found between treatments for exchangeable Ca (Caex), as both soils contained free CaCO3. Generally, UP is a potential fertilizer for supplying nitrogen (N) and phosphorus (P) as plant nutrients, and can be used as a soil amendment to control soil salinity and alkalinity.  相似文献   

15.
Zhou  Meng  Liu  Xiaobing  Meng  Qingfeng  Zeng  Xiannan  Zhang  Jizhou  Li  Dawei  Wang  Jie  Du  Weiling  Ma  Xianfa 《Journal of Soils and Sediments》2019,19(10):3521-3533
Purpose

Serious soil salinization, including excessive exchangeable sodium and high pH, significantly decreases land productivity. Reducing salinity and preventing alkalization in saline-sodic soils by comprehensive improvement practices are urgently required. The combinations of aluminum sulfate with different types of fertilizer at different rates were applied on rice paddy with saline-sodic soils of the Songnen Plain in Northeast China to improve soil quality and its future utilization.

Materials and methods

Experiments were carried out in a completely randomized block design. Twelve treatments with aluminum sulfate at the rates of 0, 250, 500, and 750 kg hm?2 with inorganic, bio-organic, and organic-inorganic compound fertilizers were performed. Soil pH, electronic conductivity (EC), cation exchangeable capacity (CEC), exchangeable sodium percentage (ESP), total alkalinity, sodium adsorption ratio (SAR), soil organic carbon (SOC), available nutrients, soluble ions, rice growth, and yield in the saline-sodic soils were measured across all treatments. The relationships among the measured soil attributes were determined using one-way analysis of variance, correlation analysis, and systematic cluster analysis.

Results and discussion

The pH, EC, ESP, total alkalinity, SAR, Na+, CO32?, and HCO3? in saline-sodic soil were significantly decreased, while CEC, SOC, available nitrogen (AN), available phosphorus (AP), available potassium (AK), K+, and SO42? were significantly increased due to the combined application of aluminum sulfate with fertilizer compared with the fertilizer alone. The most effective treatment in reducing salinity and preventing alkalization was aluminum sulfate at a rate of 500 kg hm?2 with organic-inorganic compound fertilizer. This treatment significantly decreased the soil pH, EC, ESP, total alkalinity, SAR, Na+, and HCO3? by 5.3%, 28.9%, 41.1%, 39.3%, 22.4%, 23.5%, and 35.9%, but increased CEC, SOC, AN, AP, AK, K+, SO42?, rice height, seed setting rate, 1000-grain weight, and yield by 77.5%, 115.5%, 106.3%, 47.1%, 43.3%, 200%, 40%, 6.2%, 43.9%, 20.3%, and 42.2%, respectively, compared with CK treatment in the leaching layer.

Conclusions

The combined application by aluminum sulfate at a rate of 500 kg hm?2 with organic-inorganic compound fertilizer is an effective amendment of saline-sodic soils in Songnen Plain, Northeast China. These results are likely related to the leaching of Na+ from the soil leaching layer to the salt accumulation layer and desalination in the surface soil, and the increase of SOC improved the colloidal properties and increased fertilizer retention in soil. In addition, the environmental impact of aluminum sulfate applied to soil needs to be further studied.

  相似文献   

16.
Heats of adsorption and adsorption isotherms of ammonia gas were measured at 300 K (27 °C) on outgassed soil saturated with Na+, K+, NH4+, Ca2+, or Mg2+ ions. The Ca and Mg soils adsorbed apparently one more NH2 molecule per exchangeable ion than the Na and K soils, mostly in the relative pressure range o to 0.005, but not much more than the NH4 soil. The initial heat of adsorption was c. 75 kJ mol-1 on the Ca and Mg soils and c. 60 kJ mol-1 on the other soils. The results suggest that most NH, is sorbed on these soils through reactions not involving exchangeable cations.  相似文献   

17.
胡纪常  祝寿泉 《土壤学报》1981,18(3):281-289
滨海盐渍土是否有碱化问题,特别是在开垦利用以后,土壤是否会向碱化方向演化,这是很多生产单位所关心的问题。对此,过去已做了不少工作。有人认为滨海盐渍土由于长期受海水浸渍,土壤胶体表面吸附着大量的钠离子,因此有比较高的碱化度,盐渍程度愈重则碱化度愈高,随着土壤脱盐同时脱碱,当不致进一步碱化[3]。也有人认为滨海盐债土耕垦后不会发生碱化,其碱化度随改良利用年限而降低[1]。还有人在滨海盐溃土耕垦种稻后,观测到在土壤脱盐过程中,土壤pH值和总碱度有所增高,认为土壤发生了碱化[2,5]1)。我们就这一间题曾先后对浙江上虞、乐清,江苏东台、大丰、滨海、灌云以及辽宁兴城、锦县、大洼等县的滨海地区进行了调查研究和室内试验。  相似文献   

18.
The alkalinity of virgin solonetzes and its changes under the impact of 50-year-long afforestation and agricultural loads were investigated. It was found that the maximum alkalinity in both virgin and anthropogenically modified solonetzes is typical of the gypsum-free carbonate horizons containing exchangeable sodium. In these horizons of the virgin (B2, BCca) and anthropogenically modified (BMK, BCca) solonetzes, sodium carbonates (Na2CO3 and NaHCO3) are present because of the in situ ion exchange reaction between sodium in the exchange complex and calcium of calcium carbonates in the solution (the Gedroits reaction). The boundaries of the occurrence of soda in the soil profile are controlled by calcium compounds: the upper boundary of soda formation is specified by the presence of calcium carbonates, whereas the lower boundary is specified by the appearance of calcium sulfates (gypsum). In other horizons, including the solonetzic (B1) horizon, in which calcium carbonates are absent, soda is not formed, and the soil pH and carbonate alkalinity are controlled by the carbonate-calcium equilibria.  相似文献   

19.
Abstract

In semiarid and arid regions, plant growth is limited by high pH, salinity, and poor physical properties of salt‐affected soils. A field experiment was conducted in the semiarid region of Kangping in northeast China (42°70′ N, 123°50′ E) to evaluate a soil‐management system that utilized a by‐product of flue‐gas desulfurization (FGD). Soil was treated with 23,100 kg ha?1 of the by‐product. Results of corn growth were grouped into three grades (GD) according to stages of corn growth: GD1, seeds did not germinate; GD2, seeds germinated but corn was not harvested; and GD3, plants grew well and corn was harvested. The pH, electrical conductivity (EC), bicarbonate (HCO3 ?), carbonate (CO3 2?), exchangeable and soluble calcium (Ca2+), chloride (Cl), and sulfate (SO4 2?) in surface soils of the three grades (>20 cm) was measured to assess the correlation between corn growth and soil properties. Vertical differences in subsoil properties (0‐100 cm) between GD1 and GD3 were compared to known benchmark soil profiles. The FGD by‐product significantly increased EC, exchangeable and soluble Ca2+, and SO4 2? and decreased CO3 2?, exchangeable sodium (Na+), and soluble Na+. pH, EC, HCO3 ?, CO3 2?, and Cl? were higher in surface soils of GD1 than GD3. Soil hardness, soil moisture content, Cl?, and calcium carbonate (CaCO3) were higher in GD1 than in GD3, whereas the amount of available P was lower in GD1. Interestingly, the concentration of Cl?, a toxic element for plant growth, was 2.5 and 1.5 times higher in GD1 than in GD3 and control soil, respectively. In the comparison study of subsoils, GD1 and GD3 were classified as having typical characteristics of saline‐alkali soil (pH>8.5; exchangeable‐sodium‐percentage [ESP]>15; EC>4.0) and alkali soil (pH>8.5; ESP>15; EC<4.0), respectively.  相似文献   

20.
Summary

A simple, single‐step extraction with LiEDTA for the estimation of CEC and exchangeable bases in soils has been developed. Multivalent cations are stripped from the soil adsorption sites by the strongly chelating agent EDTA, and are replaced by Li. In soils without CaCO3 or water soluble salts, exchangeable divalent cations (Ca, Mg) are chelated by EDTA and exchangeable monovalent cations (Na, K) are replaced in a single extraction step using 0.25–2.5 g of soil and 10.0 ml of extractant.

In calcareous soils the CEC can be determined in the same way, but for the extraction of exchangeable Ca and Mg, another separate extraction is needed because dissolution of calcite by EDTA is unavoidable. This extraction is done with as much NaEDTA as needed to extract only exchangeable Ca and Mg in a 1:2 (m/V) soil/alkaline‐50% (V/V) aethanolic solution to minimize dissolution of calcite.

In gypsiferous soils gypsum is transformed into insoluble BaSO4 and soluble CaEDTA by LiBaEDTA thus avoiding interference of Ca from dissolution of gypsum, which renders the traditional methods for determining CEC unsuitable for such soils. To determine exchangeable Ca and Mg, Na4EDTA is used as for calcareous soils.

In saline/sodic soils replacement of Na by Li is incomplete but the Na/Li‐ratio at the complex after extraction is proportional to the molar Na/Li‐ratio in the extracts, so that the CEC and original exchangeable sodium (ESP) content can be calculated. Additional analysis of Cl and, if necessary, SO4 in the extracts of saline soils can be used to correct for the effect of dissolution of the salts on the sum of exchangeable cations.

This new method is as convenient as the recently developed AgTU (silverthiourea), but is better suitable for calcareous and gypsiferous soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号