首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
NaCl盐度对A2/O工艺去除废水污染物和系统微生物的影响   总被引:2,自引:2,他引:0  
为了提高含盐废水的有机物去除率和脱氮效率,考察NaCl盐度对A~2/O工艺污染物去除和微生物群落的影响,采用高通量测序技术分析了厌氧区、缺氧区和好氧区的微生物群落结构,结合有机物去除和脱氮效率的变化探讨不同盐度下A~2/O工艺优势种群的演替规律,以期揭示含盐废水生物脱氮机理。结果表明:1)随着NaCl盐度的增大,A~2/O工艺污染物去除率下降,当盐度由0增大至40 g/L时,A~2/O反应器厌氧、缺氧和好氧区域COD去除率分别由52%、80%和56%下降至30%、50%和40%;厌氧区和好氧区NH4+-N去除率分别由33%和61%下降至11%和39%;缺氧区NO3--N去除率由63%下降至47%。2)与无NaCl废水相比,加入NaCl后,微生物的多样性降低;高盐度(40 g/L)与低盐度(0、10 g/L)处理的微生物群落结构差异较大;缺氧区陶氏菌属和副球菌属、好氧区梭菌属和硝化螺旋菌相对丰度的降低是导致A~2/O工艺脱氮效率下降的主要原因;厚壁菌门中的部分菌属(如Lactobacillus、Streptococcus、Tepidibacterium、Veillonella、Lachnoclostridium、Zoogloea)相对丰度增大,具有较强的耐盐性;随着盐度的增大,与脱氮相关的微生物(如变形菌门、拟杆菌门、厚壁菌门等)一直是A~2/O工艺厌氧区、缺氧区和好氧区的优势菌门,保证了不同盐度下A~2/O工艺始终具有一定的脱氮效能。  相似文献   

2.
设施菜田土壤氧化亚氮(N2O)脉冲式排放期间通常伴随着亚硝酸盐(NO2-)的大量积累,为揭示NO2-对设施菜田土壤N2O排放的影响机制,以两种典型蔬菜种植区土壤(碱性土壤/酸性土壤)为研究对象,通过室内培养试验,对比厌氧和好氧培养条件下添加NO2-后两种土壤无机氮转化与N2O、氮气(N2)和二氧化碳(CO2)等气体排放,以及氨氧化单加氧酶α亚基调控基因(amoA)、亚硝酸盐还原酶调控基因(nirK和 nirS,统称nir)和N2O还原酶调控基因(nosZ)的丰度和转录情况。结果显示:受pH等环境因素影响,土壤中NO2-含量并不一定与N2O排放之间存在相关性,但添加NO2-的处理显著增加了两种土壤的N2O排放量和N2O/(N2O+N2)指数(IN2O)(P<0.05)。碱性土壤中,60 mg?kg-1外源NO2-对土壤CO2排放无明显抑制作用,厌氧培养条件下nirK基因、好氧培养条件下amoA和nirS基因均出现了添加NO2-后转录拷贝数显著高于空白处理的现象,而nosZ基因无此现象。酸性土壤中,amoA转录活性整体较低,好氧空白处理时nirS基因转录拷贝数随培养时间的延长而增加(P<0.05);60 mg?kg-1外源NO2-明显降低了酸性土壤的CO2排放量、相关基因的丰度及转录拷贝数。上述结果显示,土壤中积累的NO2-会通过诱导nir基因转录与N2O还原酶竞争电子和抑制N2O还原酶活性等途径,增加土壤的IN2O,影响有氧条件下N2O的排放途径,研究结果将为探索设施菜田土壤氮素高效利用和N2O减排提供科学依据。  相似文献   

3.
利用厌氧-缺氧-好氧序批式生物反应器(Anaerobic/Anoxic/Oxic-Sequencing Batch Reactor, An/A/O-SBR),以乙酸钠为电子供体,NO3-/NO2-为电子受体,控制反硝化电子受体电子需求为90 mmol/L,经长时间驯化,考察了不同电子受体驯化SBR反硝化除磷及N2O释放特性,并利用化学计量法确定了聚磷菌(Phosphorus Accumulating Organisms, PAOs)和聚糖菌(Glycogen Accumulating Organisms, GAOs)间竞争关系。结果表明,NO3-还原过程中,SBR系统总氮(Total Nitrogen, TN)和总磷(Total Phosphorus, TP)去除率均达95%以上,平均N2O产率为2.4%,PAOs转化碳源(CODin)和反硝化脱氮比例分别为62.0%和76.2%。NO2-增加,厌氧段糖原(Gly)酵解性能增强,Gly消耗与碳源转化比例(ΔGly/CODin)由0.67增至0.80,PAOs活性受抑制,聚磷(Poly-P)合成减少,GAOs竞争优势增强。NO2--N为30 mg/L,SBR内TP去除率降至50.5%,平均N2O产率达9.9%,PAOs转化碳源和脱氮比例分别降至36.0%和50.6%。PAOs-GAOs共生体系内,GAOs反硝化脱氮过程,削弱了高NO2-对PAOs反硝化除磷的抑制,缺氧阶段NO2-/HNO2积累耦合GAOs反硝化脱氮比例增加,导致高NO2-下TP去除率下降和N2O产率增加。  相似文献   

4.
以一株脱氮副球菌(Paracoccus denitrificans)为试验菌株,研究了其在好氧环境下的最适生长条件以及在不同溶氧条件下对NO2--N、NO3--N的转化去除情况。结果表明,脱氮副球菌好氧下的最适生长温度为30℃,最适生长pH值为7.0。在溶解氧比较充足的情况下(6.6~7.3mg.L-1),脱氮副球菌对NO2--N、NO3--N的去除以同化吸收为主,少部分是经由反硝化作用去除,最大去除率可达100%和97.58%。随着溶氧的降低,脱氮副球菌的反硝化能力增强,NO2--N、NO3--N通过反硝化作用去除的比例增加。将活菌数≥109个.mL-1的脱氮副球菌按1.0、2.5mg.L-1的浓度加入养殖水体,在10d内可使养殖水体中的NH4+-N下降41.89%~49.23%,NO2--N下降33.33%~42.86%,NO3--N下降48.28%~67.74%,对养殖水体中的氮素污染具有较好的控制效果。研究显示,脱氮副球菌的好氧反硝化作用可以为养殖水体有氧条件下的脱氮提供一条新的思路。  相似文献   

5.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3,N 300 mg kg-1)和亚硝酸盐(NaNO2,N 1 mg kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响.结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进.所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01),在60% WHC条件下,这种情况维持时间较短(21 h),但如果含水量高(90% WHC)这种情况会持续很长时间(2周以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用.本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21 h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上.Spearman秩相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高.灭菌土壤添加NO2-能较未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O.  相似文献   

6.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3, 300mgN kg-1)和亚硝酸盐(NaNO2, 1mgN kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响。结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进。所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01)。在60% WHC条件下,这种情况维持时间较短(21h),但如果含水量高(90% WHC)这种情况会持续很长时间(2wk以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用。本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上。Spearman等级相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高。灭菌土壤添加NO2-能比未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O。  相似文献   

7.
追氮方式对夏玉米土壤N2O和NH3排放的影响   总被引:7,自引:2,他引:5  
【目的】研究氮肥与硝化抑制剂撒施及条施覆土三种追施氮肥方式下土壤N2O和NH3排放规律、 O2浓度及土壤NH4+-N、 NO2--N和NO3--N的时空动态,揭示追氮方式对两种重要环境气体排放的影响及机制。【方法】试验设置3个处理: 1)农民习惯追氮方式撒施(BC); 2)撒施添加10%的硝化抑制剂(BC+DCD); 3) 条施后覆土(Band)。 3个处理均在施肥后均匀灌水20 mm。在夏玉米十叶期追施氮肥后的15天(2014年7月23日至8月8日)进行田间原位连续动态观测,并在玉米成熟期测定产量及吸氮量。采用静态箱-气相色谱法测定土壤N2O排放量,土壤气体平衡管-气相色谱法测定土壤N2O浓度,PVC管-通气法测定土壤NH3挥发,土壤气体平衡管-泵吸式O2浓度测定仪测定土壤O2浓度。【结果】农民习惯追氮方式N2O排放量为N 395 g/hm2,NH3挥发损失为N 22.9 kg/hm2,同时还导致土壤在一定程度上积累了NO2--N。与习惯追氮方式相比,添加硝化抑制剂显著减少N2O排放89.4%,使NH3挥发略有增加,未造成土壤NO2--N的累积。条施覆土使土壤N2O排放量显著增加将近1倍,但使NH3挥发显著减少69.4%,同时造成施肥后土壤局部高NO2--N累积。条施覆土的施肥条带上土壤NO2--N含量与N2O排放通量呈显著正相关。土壤气体的O2和N2O浓度受土壤含水量控制,当土壤WFPS大于60%时,020 cm土层中的O2浓度明显降低,而N2O浓度增加,土壤N2O浓度和土壤O2浓度间呈极显著负相关。各处理地上部产量及总吸氮量差异不显著。【结论】土壤NO2--N的累积与铵态氮肥施肥方式密切相关,NO2--N的累积能够促进土壤N2O的排放,且在条施覆土时达到显著水平(P0.05)。追氮方式对N2O和NH3两种气体的排放存在某种程度的此消彼长,添加硝化抑制剂在减少N2O排放的同时会增加NH3挥发,条施覆土在显著减少NH3挥发的同时会显著增加土壤N2O排放。在条施覆土基础上添加硝化抑制剂,有可能同时降低N2O排放和NH3挥发损失,此推论值得进一步研究。  相似文献   

8.
土壤中无机氮的微生物同化和非生物固定作用研究进展   总被引:8,自引:0,他引:8  
程谊  张金波  蔡祖聪 《土壤学报》2012,49(5):1030-1036
土壤中无机氮的迅速固持有利于土壤氮的持留,从而减少NO3-淋溶、NH3挥发以及N2O和NO排放损失。本文综述了土壤中无机氮的微生物同化和非生物固定作用,指出了无机氮微生物同化和非生物固定在氮循环中的重要意义,初步讨论了生物过程和非生物过程固定无机氮的机制和影响因素。但是对于非生物固定NO3--N,其机理目前还不清楚。从现有的文献报道来看,能够解释非生物固定NO3--N机制的仅有铁环假说。然而,铁环假说尚未得到完全证实,有待于深入的研究。  相似文献   

9.
Na+和K+共存对A2/O工艺脱氮除磷效果及污泥性质的影响   总被引:1,自引:1,他引:0  
为了揭示多种金属离子共存的含盐废水生物处理系统污染物的去除机制和污泥特性,考察Na~+、K~+共存对A~2/O工艺污染物去除率、污泥性质和微生物群落的影响,采用高通量测序技术分析了厌氧区、缺氧区和好氧区的微生物群落结构,结合脱氮除磷效果和污泥性质的变化,探讨不同Na~+/K~+摩尔比下A~2/O工艺优势种群的演替规律,以期从微生物角度明确Na~+、K~+共存对含盐废水污染物去除率的影响。结果表明:当进水Na~+/K~+摩尔比分别为2、1和0.5时,A~2/O工艺的COD去除率分别为80%、84%和86%,TN去除率分别为73%、77%和80%,K~+浓度的提高缓解了Na~+对COD和TN去除率的抑制作用;厌氧区释磷率分别为70%、73%和74%,缺氧区吸磷率分别为53%、55%和58%,好氧区吸磷率分别为70%、72%和75%。随着进水Na~+/K~+摩尔比的降低,厌氧区、缺氧区和好氧区微生物群落的丰富度和多样性降低,微生物群落差异显著,变形菌门的相对丰度均升高约30%,拟杆菌门和绿弯菌门相对丰度逐渐降低。陶氏菌属和固氮弧菌属作为优势菌属,其相对丰度逐渐增大,有利于氮磷污染物的去除。通过增加K~+的浓度有利于提高氮、磷去除率,增强污泥的生物絮凝性和反硝化聚磷菌的活性。  相似文献   

10.
农田土壤N2O和NO排放的影响因素及其作用机制   总被引:5,自引:2,他引:3  
蔡延江  丁维新  项剑 《土壤》2012,44(6):881-887
农田土壤作为N2O和NO的重要排放源而备受关注。硝化和反硝化是土壤N2O和NO产生的两个主要微生物过程,环境因子和农田管理措施等因素强烈影响着这两个过程以及N2O和NO的排放。本文重点论述了土壤水热状况、土壤质地、pH、肥料施用、耕作措施变更等关键性影响因素对农田土壤N2O和NO排放的影响及其影响机制。  相似文献   

11.
Agricultural soils emit significant amounts of N2O to the atmosphere, and annual emissions are in some proportion to the input of reactive nitrogen to the system. Hence the ongoing intensification of cropping systems in South Asia will result in increased emissions of N2O. The prospects are potentially worse than those predicted by the increasing doses of N-fertilizers, however. The reason for this is that intensive cropping systems may acidify the soils, which could increase the N2O/(N2 + N2O) product ratio of denitrification due to interference with the expression of the different enzymatic steps in this process (Liu et al., 2010 FEMS Microbiol Ecol 72 407–417). We investigated this phenomenon for agricultural soils in the central mid-hills of Nepal. We sampled soils from fields that had been under intensified cultivation for ≥20 years, and adjacent fields with more traditional cultivation, in areas with permanently drained soils as well as areas with frequent flooding. The characteristic kinetics of NO, N2O and N2 production by denitrification in these soils was measured by anoxic incubations after flooding and drainage of the soils with 2 mM NO3, to secure similar NO3-concentrations for all soils. The results demonstrate that intensification invariably lowered the soil pH and increased the N2O/(N2 + N2O) product ratios of denitrification. This effect of intensification was observed both for incubations with and without C-substrates (glutamic acid) added. The transient accumulation of NO varied grossly between sites, but was not affected by intensification. The results demonstrate convincingly that the intensification has resulted in higher intrinsic propensity of the soils to emit N2O to the atmosphere, and the correlation with pH suggests that acidification is responsible. This causal relationship is underpinned by emerging evidence that low pH interferes with the assembly of the enzyme N2O-reductase. We conclude that the ongoing intensification of agriculture in South Asia may result in severely increasing N2O emissions unless acidification of the soil is counteracted.  相似文献   

12.
蔡祖聪 《土壤学报》2003,40(3):414-419
采用15N技术标记尿素和KNO3,研究了淹水条件下黄泥土和红壤性水稻土生成N2 O的主要过程。结果表明 ,黄泥土反硝化过程产物以N2 为主 ,N2 O的生成量可以略而不计。加入KNO3促进NO- 3异化还原成铵过程 ,从而增加N2 O生成速率。红壤性水稻土主要通过反硝化或好气反硝化过程生成N2 O ,随着土壤pH的提高或NO- 3 浓度升高 ,N2 O生成速率增大。无论是黄泥土还是红壤性水稻土 ,有相当一部分样本的N2 O的15N丰度在NO- 2 、NO- 3 、NH 4的15N丰度范围外 ,由此推论 ,氮转化生成N2 O的过程应在微生物细胞内进行。  相似文献   

13.
《Soil biology & biochemistry》2001,33(12-13):1723-1732
Nitrifier denitrification is the pathway of nitrification in which ammonia (NH3) is oxidized to nitrite (NO2) followed by the reduction of NO2 to nitric oxide (NO), nitrous oxide (N2O) and molecular nitrogen (N2). The transformations are carried out by autotrophic nitrifiers. Thus, nitrifier denitrification differs from coupled nitrification–denitrification, where denitrifiers reduce NO2 or nitrate (NO3) that was produced by nitrifiers. Nitrifier denitrification contributes to the development of the greenhouse gas N2O and also causes losses of fertilizer nitrogen in agricultural soils. In this review article, present knowledge about nitrifier denitrification is summarized in order to give an exact definition, to spread awareness of its pathway and controlling factors and to identify areas of research needed to improve global N2O budgets. Due to experimental difficulties and a lack of awareness of nitrifier denitrification, not much is known about this mechanism of N2O production. The few measurements carried out so far attribute up to 30% of the total N2O production to nitrifier denitrification. Low oxygen conditions coupled with low organic carbon contents of soils favour this pathway as might low pH. As nitrifier denitrification can lead to substantial N2O emissions, there is a need to quantify this pathway in different soils under different conditions. New insights attained through quantification experiments should be used in the improvement of computer models to define sets of conditions that show where and when nitrifier denitrification is a significant source of N2O. This may subsequently render the development of guidelines for low-emission farming practices necessary.  相似文献   

14.
一种直接测定硝化—反硝化气体的15N示踪—质谱法   总被引:3,自引:0,他引:3  
本文对15N示踪—质谱法的可靠性进行了检验。结果表明,在不同的15N丰度气体样品的测定中,用两种方法(反硝化作用源的15N丰度法和气样的15N丰度法)计得的反硝化损失量基本一致,故建立起来的15N示踪—质谱法是可靠的。该方法的测定偏差随气样15N丰度的降低而增大。此外,回收率结果表明,(N2+N2O+NOx)-15N累积释放量占加入NO3-15N量的94.1%。因此,这一方法可用于直接测定氮肥的硝化—反硝化损失的研究中。  相似文献   

15.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

16.
氢醌、双氰胺组合影响稻田甲烷和氧化亚氮排放研究进展   总被引:12,自引:0,他引:12  
李香兰  徐华  蔡祖聪 《土壤学报》2009,46(5):917-924
稻田是大气中CH4和N2O的重要来源。大量氮肥的施入不仅影响稻田CH4和N2O排放,且易造成NH3挥发、NO2-和NO3-淋溶及N2O、N2等形式的氮损失。脲酶抑制剂和硝化抑制剂通过缓解尿素水解及抑制硝化反硝化反应减少稻田N2O排放量,但对稻田CH4产生排放的影响报道不一。脲酶抑制剂氢醌(HQ)和硝化抑制剂双氰胺(DCD)是近年来研究较多的组合。本文试图在前人研究的基础上,综述HQ和DCD的基本性质及作用机理,总结HQ/DCD组合在稻田生态系统的应用状况、使用效果及存在问题,并特别讨论了HQ/DCD施用对稻田CH4排放的影响机理,旨在为合理使用脲酶/硝化抑制剂、有效减缓稻田温室气体排放和提高氮肥利用率等方面提供理论依据。  相似文献   

17.
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2+NO3). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3 reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2)) as a function of NO2 concentrations. Additions of NO2 to aerobic soil slurries (with 15N labelled NO3 added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2. We further found convincing evidence for NO2-induction of aerobic denitrification in acid soils. The study underlines the role of NO2, both for regulating denitrification and for the apparent nitrifier-derived N2O emission.  相似文献   

18.
With the organic carbon of acetate (SBR-A) and propionate (SBR-P), the effect of organic carbon sources on nitrogen removal and nitrous oxide (N2O) emission in the multiple anoxic and aerobic process was investigated. The nitrogen removal percentages in SBR-A and SBR-P reactor were both 72%, and the phosphate removal percentages were 97 and 85.4%, respectively. During nitrification, both the NH4 +-N oxidation rate in the SBR-A and SBR-P had a small change without the influence of the addition of nitrite nitrogen (NO2 ?-N). With the addition of 10 mg/L NO2 ?-N, the nitrate nitrogen (NO3 ?-N) production rate, N2O accumulation rate and emission factor had increased. At the same time, the N2O emission factor of SBR-A and SBR-P reactors increased from 2.13 and 0.87% to 4.66 and 2.08%, respectively. During exogenous denitrification, when nitrite was used as electron acceptor, the N2O emission factors were 34.1 and 8.6 times more than those of NO3 ?-N as electron acceptor in SBR-A and SBR-P. During endogenous denitrification with NO2 ?-N as electron acceptor, the accumulation rate and emission factor of N2O were higher than those of NO3 ?-N as electron acceptor. High-throughput sequencing test showed that the dominant bacteria were Proteobacteria and Bacteroidetes in both reactors at the phylum level, while the main denitrification functional bacteria were Thauera sp., Zoogloea sp. and Dechloromonas sp. at the genus level.  相似文献   

19.
An incubation experiment was conducted to examine the effects of phosphorus (P) addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil taken under Acacia mangium plantation and incubated at 100 % water-filled pore space (WFPS). Additions of NO 3 ? stimulated the N2O and NO emissions while NH 4 + did not, showing that denitrification was the main process of N2O and NO production in the study condition. When NO 3 ? was added with P significantly (P?<?0.05) increased N2O emissions regardless of the ratio of the added nitrogen and carbon, suggesting that P addition stimulated denitrification activity. The activation of denitrification by P addition is possibly attributed to two mechanisms: (1) the added-P stimulated denitrification by relieving P shortage for denitrifying bacteria and (2) the added-P stimulated activity of heterotrophic soil microflora with increased O2 consumption promoting the development of anaerobic conditions with stimulation of denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号