首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在总结农田氮肥淋失的一般性规律基础上,建立了农田氮肥淋失的理论模型,具体建立了以下4类模型并进行了实证:施肥量与地下水硝态氮含量关系模型(直接评价模型)、施肥量与土壤硝态氮淋失量关系模型(间接评价模型)、施肥量与土壤硝态氮淋失浓度关系模型(间接模型)、施肥量与土壤硝态氮残留量关系理论模型(间接评价模型)。研究表明:上述4个理论模型和实际模型的比较说明,虽然氮的淋失总体上与施氮量正相关,但是不同气候区和土壤条件,其开始淋失或积累的施肥量不同,并且随施肥量增加的趋势(快慢)也不同,因此,必须建立适合于不同区域的模型参数才能实现更准确的淋失预测。但是,从宏观上,也可以通过参数的平均而大体地预测氮的淋失等级或趋势。  相似文献   

2.
华北平原高产粮区不同水氮管理下农田氮素的淋失特征   总被引:9,自引:2,他引:7  
为了降低集约化种植制度下华北平原农田硝酸盐的淋失,该研究选择华北平原高产粮区,开展了为期2 a (2006-2008年)的田间试验,试验设计了2个灌溉处理(常规灌溉处理和基于土壤水分实时监控的优化灌溉处理)和2个施氮处理(传统施氮处理和优化施氮处理),利用张力计结合土壤溶液提取器对土体2 m处的水分和硝酸盐通量进行了监测和计算。研究结果显示,在相同施氮条件下,优化灌溉能够有效降低农田水分的渗漏量,渗漏量仅为传统灌溉渗漏量的50%左右。优化施氮能够有效降低2.1 m土体硝态氮含量,在相同灌溉条件下2.1 m土体硝态氮的残留量都在传统施氮的60%以下,而灌溉方式对硝态氮累积的影响不大。优化水氮管理相比传统水氮管理氮素的淋失量下降了60%,淋失率也下降了50%左右,粮食产量略有提高。  相似文献   

3.
盐渍化灌区玉米施氮量阈值DNDC模型模拟   总被引:1,自引:0,他引:1  
为了寻求保障农业生产和环境友好的适宜施氮量,利用内蒙古河套灌区2 a田间试验数据对脱氮-分解作用模型(Denitrification-Decomposition Model,DNDC)进行了率定与验证,模拟并研究了影响硝态氮淋失量和植株吸氮量的关键因素,以及玉米施氮量阈值。结果表明:1)DNDC模型可以较好地模拟玉米产量及氮素吸收利用情况,率定和验证过程中玉米产量、叶面积指数和收获时土壤0~20 cm土层土壤硝态氮累积量纳什效率系数与R2均不小于0.75,标准均方根误差为9.26%~21.48%。2)施氮量和追肥次数对硝态氮淋失量和植株吸氮量的影响较大,而耕作深度和灌水量对硝态氮淋失量和植株吸氮量的影响较小。且过多施用氮肥不会促进植株吸氮量和产量的增加,反而会增加硝态氮淋失量造成环境污染。3)植株吸氮量和玉米产量均随施氮量增加呈先增长后逐渐趋于稳定的趋势。此外,当追肥次数为3次时,生育期植株吸氮量较追肥1次和2次时的植株吸氮量平均高167.18%和31.27%。4)当追肥次数相同时,硝态氮淋失量随施氮量增加而增加;当施氮量相同时,随追肥次数增加,硝态氮淋失量逐渐降低。当追肥次数为2次和3次时,生长季硝态氮淋失量较追肥1次时平均减少41.96%、59.75%。综合考虑玉米产量、硝态氮淋失量和植株吸氮量,当施氮量为165.50~200 kg/hm2,且分别在拔节期、抽雄期和灌浆期进行追肥为较优的施肥方案。研究成果可为减少河套灌区地下水环境污染及资源浪费提供技术支撑。  相似文献   

4.
酸雨对紫色土氮磷淋失的影响   总被引:4,自引:1,他引:4  
利用土柱淋洗模拟试验,研究了酸雨影响下,不同施肥处理紫色土氮、磷淋失的动态变化特征。结果表明,在酸雨作用下,紫色土中硝态氮的淋失量远远大于磷元素;不同施肥处理下二者淋失量的大小不同,淋失量大小排序均为有机无机混合施用〉化肥〉有机肥〉对照处理;淋失量受施肥量和降雨量的影响明显,土壤中硝态氮、磷元素淋失量随施肥量的增加而增加,淋失过程主要集中在雨季。同一施肥处理下,土壤硝态氮淋失量随降雨pH值的升高而增加;pH值5.5是土壤磷元素淋失量的临界点,此时土壤有效磷含量最高,淋失量达到峰值。  相似文献   

5.
片麻岩新成土中氮素淋溶迁移的模拟研究   总被引:3,自引:1,他引:2  
采用室内土柱模拟的方法,研究片麻岩新成土中不同肥料、不同施氮量对氮素垂直运移的影响。结果表明,随着施氮量增加,硝态氮和铵态氮淋溶浓度增大,氮素淋失量增多。中等施氮量下施用有机无机混合肥可以减少氮素淋失。尿素、有机无机混合肥、氮磷复合肥中硝态氮淋失总量比值为671∶583∶629。尿素硝态氮淋失率平均为29.0%,氮磷复合肥硝态氮淋失率平均为27.8%,有机无机混合肥硝态氮淋失率平均为23.7%。随着土层深度的增加,60cm处和90cm处硝态氮淋失量差异不显著,两处硝态氮淋失量比值为1∶1.03,铵态氮的淋失量增加显著,两处铵态氮淋失量比值为1∶2.4。在片麻岩新成土壤地区,土壤培肥应本着少量多次原则。  相似文献   

6.
虽然氮是集约耕作农业系统的重要营养物,但是充分发挥其效率并减少损失非常困难,原因之一是影响土壤残留硝态氮和硝态氮淋失潜力的空间和时间变异性。1999~2001年美国土壤学家Delgado使用氮素淋洗经济分析(NLEAP)模型评价精细管理地区的氮管理效益。氮淋失随管理地区变化,低生产力地区淋失量最大。研究发现生产力是决定硝态氮淋失的重要空间变量,低生产力地区硝态氮淋失量随施肥量增加而增加。除了氮,可以限制产量以减少硝态氮的生长季淋失和土壤残留硝态氮非生长季的有效淋失。基于生产力地区的空间变量施肥比统一施肥的硝态氮淋失量少,且维持最高产量,使用精细管理后第一年可减少硝态氮的淋失率为25%。  相似文献   

7.
亚热带主要耕作土壤硝态氮淋失特征试验研究   总被引:6,自引:0,他引:6  
本文选取红壤、水稻土、潮土、黄棕壤和紫色土等我国亚热带地区的主要耕作土壤为研究对象,采用土柱模拟试验,研究了在这些土壤中,氮素累积与硝态氮迁移的动态特征,并对氮素的淋失风险进行了定量评价和预测。结果表明,硝态氮在土壤中的淋失过程可分为两个明显的阶段:高浓度快速降低阶段和低浓度缓慢降低阶段。硝态氮淋失过程存在明显的拐点,该点对应的累积入渗量(拐点入渗量)变化范围为38.1 - 219.7 mm,且随土壤硝态氮含量的增加呈幂函数关系增加,表明随硝态氮含量的增高,其淋失风险呈加速增大的趋势。硝态氮淋失强度随土壤硝态氮含量的增加呈显著的线性变化趋势。初步估测,我国亚热带地区年降水入渗量700 mm和土壤硝态氮累积水平为N 20 mg /kg条件下,表层土壤(0-20cm)的硝态氮年平均淋失量为N 484.9 kg /hm2,土壤间的变异系数(CV)分别为26.5%。土壤硝态氮含量是影响硝态氮淋失强度的决定性因素,其它土壤性质的影响均相对较小,因此,控制土壤氮素累积和化肥施用水平是降低其淋失风险的关键环节。  相似文献   

8.
重庆市主要土壤类型硝态氮淋失及其影响因素   总被引:5,自引:1,他引:5  
采用SRC(Soil-Resin-Core)装置,研究了重庆市主要土壤类型硝态氮淋失的差异以及硝态氮淋失与硝态氮含量、有效氮含量、降雨和气温等4个方面的关系。结果表明:酸性紫色土的硝态氮淋失量最大,而黄壤与碱性紫色土的硝态氮淋失量较小。酸性紫色土硝态氮含量、有效氮含量与硝态氮淋失量之间显著相关,而黄壤和碱性紫色土的硝态氮含量、有效氮含量与硝态氮淋失量之间没有显著的相关性。降雨量、气温也是引起硝态氮淋失的原因。农田施肥对地下水的污染受施肥量、施肥次数、降雨量和气温等综合作用的影响,可采取控制氮肥用量,减少施用人粪尿,避免在降雨量大的时期追肥的措施。  相似文献   

9.
长期施肥条件下华北平原农田硝态氮淋失风险的研究   总被引:41,自引:9,他引:41  
利用河北辛集潮土(21年)和北京昌平褐潮土(9年)两个长期定位施肥试验研究了华北平原冬小麦夏玉米轮作体系下农田氮素平衡和硝态氮淋失风险。结果表明,单施氮肥的增产效果有限,昌平试验点甚至出现减产现象;而适量有机肥与氮磷或氮磷钾配施可显著提高作物产量,降低氮素盈余。单施氮肥时,辛集和昌平土壤硝态氮峰值分别达20.7和30.0.mg/kg,出现在160200.cm和90120.cm土层;硝态氮累积量高且大部分集中在根区外土壤,硝态氮淋失风险大。氮磷或氮磷钾肥配施时,硝态氮峰值出现深度上移3040cm,根区和根区外土壤硝态氮累积量均大幅降低,淋失风险明显减弱;在氮磷或氮磷钾肥基础上适量施用有机肥时,硝态氮峰值出现深度进一步上移至根区土壤,深层土壤硝态氮累积量显著下降,淋失风险低。过量施用有机肥或过量施用氮肥时,深层土壤硝态氮累积量大幅增加,甚至超过单施氮肥处理,淋失风险大大增强。研究结果表明,氮磷钾肥与有机肥配合施用是提高作物产量、控制农田硝态氮淋失的重要途径。  相似文献   

10.
采用室内模拟试验的方法,研究了运动场砂基坪床上两种氮肥类型与不同氮素水平下的氮素淋洗迁移规律.研究结果表明:同种类型肥料之间,氮素淋失量随施氮量的增加而增加.等氮条件下,控释氮肥处理较普通尿素处理显著地降低了养分淋失.从淋失氮素的形态看,不同施肥处理淋失的氮素均以非硝态氮(主要为尿素态氮)为主,其次为硝态氮,铵态氮最少,控释氮肥处理的模拟土柱中残余有效氮、硝态氮总量少.因此,在砂基坪床运动场草坪中使用控释氮肥,不仅有利于草坪长期的氮素营养需求;而且可以避免硝态氮的大量淋失,从而大大降低了施用氮肥对地下水污染的威胁.  相似文献   

11.
Abstract. The catchment simulated comprises 57 hectares of heavy clay soil managed as six arable fields. Mole and pipe drains carry surplus water into two ditches, one feeding into the other. Their combined flow was passed through a flume with an automatic water sampler, samples from which were analysed for nitrate. Measurements of nitrate concentration made during periods of water flow from 1990 to 1993 were simulated using a model comprising sub-models for leaching, mineralization, nitrogen uptake by crops and subsoil denitrification. The simulations were plotted against the measurements. For statistical evaluation, the correlation coefficient was used to assess the degree of association between the measurements and the simulations and the mean difference to assess the agreement. The correlation between the simulations and the measurements was significant in two of the three seasons, but the mean difference was significant in all three. However, taking all three seasons together gave a very highly significant correlation and a non-significant mean difference.  相似文献   

12.
Abstract. Pig slurry was applied by open-slot injection to experimental plots on a sandy loam site at ADAS Gleadthorpe, Nottinghamshire. Volume and distribution of over-winter drainage were adjusted through the use of rainfall exclusion covers or irrigation. The resultant slurry N leaching over the range of drainage values tested (up to 300 mm) could be satisfactorily described by curve-fitting, using a quadratic or exponential function. Initial simulations of slurry N leaching using the manure nitrogen decision support system manner (v. 3.0) compared poorly with the experimental data, predicting both earlier and greater amounts of nitrate leaching. However, the lack of fit could be explained by consideration of the likely ammonia emissions following slurry injection, the actual volumetric soil moisture capacity at the experimental site and the likely time delay for the nitrification of slurry N following application. Good agreement between modelled and observed data was achieved when these factors were taken into account. The manner model was used to simulate nitrate leaching beyond the range of drainage treatments tested in the experiments and the anticipated sigmoidal relationship between nitrate leaching and drainage was observed. The model was then used to study the effects of manure application timing and the likely impact on nitrate leaching, across the range of rainfall conditions found in Great Britain. Simulations for a range of manure types were undertaken, with manures applied at rates up to the limit of permitted N loading on freely draining sandy loams. Rainfall inputs for these simulations were based on long-term average climatic data. Results are presented for two contrasting manure types, cattle slurry and poultry manure, both of which are subject to controls in Nitrate Vulnerable Zones (NVZs) in Great Britain.  相似文献   

13.
Abstract. Flow and nitrate concentrations were measured weekly for four years at twelve stream-water monitoring sites in a catchment in the English Midlands designated as a Nitrate Advisory Area. Farm surveys and satellite images have provided soil and land use information. Measurements show the nitrate load to be dominated by discharge, with large variability due to differing weather conditions from year to year. Within-year variability in nitrate concentrations is also related to weather conditions, with high concentrations when field capacity is reached if this occurs late in the year. There is also clear evidence of dilution of nitrate during intense storms. The effect of changing weather conditions makes it impossible to identify catchment-scale changes in leaching due to changes in agricultural practice over a period as short as four years. Measurements from a major spring in the catchment show an increasing trend in nitrate concentrations through the period. There is some evidence that the greatest N leaching to streams in the catchment is associated with intensive grassland on soils which are naturally poorly drained.  相似文献   

14.
为控制稻田土壤硝态氮流失,对宁夏黄灌区稻田设置不同量秸秆还田处理常规施肥不还田(CK)、常规施肥条件下稻秆分别半量(T1)与全量(T2)还田,采用树脂芯法测定了稻秆还田10、20、30cm土层硝态氮淋失量。结果表明,稻秆还田可以有效减少30cm处硝态氮淋失量,减少比例在5.5左右。从生育期内来看,前期流失量大于后期,但在后期120cm土层渗滤液中硝态氮含量在10mg.L-1以下,对地下水污染没有威胁。稻秆还田条件下,前期土壤硝态氮含量较低,减少了硝态氮淋失的可能性,后期N素得到释放而促进了水稻的生殖生长,产量得到增加。因此,稻秆还田可以作为源头控制稻田硝态氮流失的较好措施加以推广。  相似文献   

15.
Nitrate leaching from urban soils in a rural community in northwestern Germany The extent of nitrate leaching from urban soils in rural communities so far has hardly been studied. Therefore the nitrate leaching in the community of Schwaförden near Nienburg in Lower Saxony was estimated during one winter period. The small town of Schwaförden covers about 7.5% of the 950 ha large catchment area of a waterwork with serious nitrate problems. To estimate soil nitrate leaching, both soil use and degree of surface sealing in Schwaförden were determined and classified. In each class a number of representative sites were sampled seven times for mineral soil nitrogen in the course of one winter period. The leaching of soil nitrate for each site was estimated with the use of a mixing-cell solute transport model. Nitrogen mineralization as well as atmospheric nitrogen deposition were taken into consideration. It was found that home gardens, although covering only 3.5 % of the total Schwaförden area, combined for 27% of the total amount of leached nitrate within the community. Heavy fertilization and large compost applications appear to be responsible for the high amounts of nitrate leached from such gardens. Hence, to protect groundwater against too much urban nitrate leaching, it may be necessary to evaluate the total home garden area in catchment areas of waterworks and eventually to restrict it.  相似文献   

16.
DMPP对菜地土壤氮素淋失的影响研究   总被引:10,自引:1,他引:10  
采用小粉土和青紫泥原状土柱种植青菜,研究了尿素添加DMPP(3.4-二甲基吡啶磷酸盐)硝化抑制剂对土壤氮素淋失的影响。结果表明.在60天内,与常规尿素相比,小粉土和青紫泥DMPP处理硝态氮的累积淋失量分别降低66.8%和69.4%,氨氮淋失量提高9.7%和6.7%,无机氮降低59.1%和63.0%;蔬菜收获后,土壤0~15cm层无机氮增高34.1%和28.2%,土壤中氮素纵向迁移降低。可见,DMPP抑制剂施入土壤具有显著的氨氧化抑制作用,延缓蔬菜地土壤氨氮向硝态氮的转化,减轻氮素向水体迁移的风险。使用硝化抑制剂DMPP,由于土壤对氨氮的强吸附特性.迁移总量低,不会对地下水造成污染的风险。  相似文献   

17.
Some agricultural areas lose considerably more than the average amounts of nutrients to waterways (high risk areas, HRAs) and others considerably less than the average (low risk areas, LRAs). These areas are of great interest when river catchment managers seek to both reduce nutrient loads to lakes and marine areas and to allow intensive agriculture. If HRAs were farmed with decreased inputs of fertilizers the environmental benefit would be larger here than from any other areas, and if LRAs were farmed with increased fertilizer use it could be done here causing less environmental damage than at any other areas. If both these changes were applied within the same catchment they might counter balance each other and give the possibility of intensified farming without causing environmental deterioration. We used the semi-distributed SWAT model to identify both HRAs and LRAs in an intensely farmed lowland catchment in Denmark. These areas are classified as the 10% of the agricultural area leaching, respectively, the most and the least nitrogen. Two scenarios were run for HRAs (reduced fertilizer input by 20%) and LRAs (increased fertilizer input by 20%) separately and two were run where both HRAs and LRAs were included. The scenario results showed that the HRA scenario yielded a decrease (3.3%) in nitrate river load at the catchment scale and that the LRA scenario yielded only a small increase (0.9%). The combined scenarios showed an overall decrease in river nitrate load (2.2%).  相似文献   

18.
Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.  相似文献   

19.
节水灌溉控制排水条件下稻田水氮平衡试验与模拟   总被引:3,自引:2,他引:1  
为了揭示我国南方灌区节水灌溉控制排水条件下稻田水平衡机制及其氮素迁移转化规律,以指导稻田水肥管理,该文以2007-2008年试验区域水稻生长期田间水氮监测数据为依据,基于一阶氮素动力反应方程,耦合田间水平衡及氮素渗漏和作物吸收过程,构建了田间水氮平衡模型,模拟计算了试验区稻田日渗漏水量与各氮素迁移转化过程中的日铵态氮和硝态氮量。结果表明,试验区田间水经渗漏和排水流失占降水和灌溉水总和的54.7%,气态氮素损失(挥发和反硝化)和渗漏是稻田氮素损失的主要途径,挥发和硝化损失量分别占铵态氮和硝态氮的30.6%和36.1%。渗漏流失中硝态氮明显高于铵态氮,排水中铵态氮高于硝态氮。通过渗漏流失的总氮素量亦较大,渗漏硝态氮和铵态氮分别占其相应氮素形态的9.8%和29.5%。因此,减少氮素气态损失有利于提高节水灌溉控制排水稻田氮肥利用率  相似文献   

20.
Abstract. In response to the European Community Nitrate Directive (91/676) a catchment scale Geographical Information System (GIS) model of nitrate leaching has been developed to map nitrate vulnerability and predict average weekly fluxes of nitrate from agricultural land units to surface water. This paper presents a pilot study which investigated the spatial variability of soil nitrates in order to: (1) define an appropriate pixel size for modelling N leaching; (2) quantify the within-unit variability of soil nitrate concentrations for pasture and arable fields; and (3) assist in the design of an efficient sampling strategy for estimating mean nitrate concentrations. Soil samples, taken from two 800 m transects in early September 1994, were analysed for water soluble nitrate. The arable soils had a mean nitrate-nitrogen concentration of 0.693 μg/g (S.E. 0.054 μg/g) and the pasture soils had a higher mean nitrate-nitrogen concentration of 0.86 μg/g (S.E. 0.085 μg/g). Spatial variability was investigated using variograms. The pasture data had a weak spatial relationship, whereas the arable data exhibited a strong spatial relationship which fitted a spherical variogram model (r2 0.87), with a range of 40 m. A pixel size of 40 m is suggested for nitrate modelling within the GIS based on the arable variogram and an improved sampling strategy for model validation is suggested, involving bulking sub-samples over a 40 m grid for estimating mean nitrate concentrations in combined land use and soil units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号