首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 291 毫秒
1.
了解土壤湿度的时空变化特征与规律,对充分利用土壤水分资源及应对气候变化有重要意义。基于三江平原23个农业气象站1982—2017年土壤湿度、同期气温、降水等数据,采用统计分析、M-K突变检验等方法,分析了0—50 cm土壤湿度的趋势变化特征及其与气温、降水气候因子的关系。结果表明:(1)近37年来三江平原地中0—30 cm,40—50 cm土壤相对湿度呈显著降低趋势,并呈阶段性变化,突变年在1997年;30—40 cm土壤相对湿度无显著变化;各层土壤相对湿度垂直方向呈现中间层(30—40 cm)土壤相对湿度最大,上下层递减的趋势。土壤相对湿度的空间分布存在差异,土壤相对湿度由北到南、由东到西递减趋势。(2)三江平原气温、降水量对各层土壤相对湿度影响程度不同。0—20 cm土壤相对湿度主要受4—9月生长季气温、降水量的协同作用影响,20—30 cm和40—50 cm土壤相对湿度分别受4—9月生长季的气温和降水作用的影响;而30—40 cm土壤相对湿度受气温和降水作用的影响不大。总之近37年来三江平原土壤相对湿度的变化存有差异,1982—1996年、1997—2013年、2014年后各层土壤相对湿度分别处于相对较高(偏湿)、较低(正常)、较高(偏湿)阶段。4—9月生长季的气温和降水是影响三江平原土壤相对湿度变化的主要气象因子。  相似文献   

2.
基于支持向量机的土壤湿度模拟及预测研究   总被引:5,自引:0,他引:5  
基于中山大学珠海校区气象观测站日平均风速、日平均气温、日平均空气湿度、日平均水汽压、日平均总辐射量、日平均地表温度、日平均降雨量、日平均蒸发量以及日平均10 cm、20 cm、30 cm土层土壤的含水量,利用支持向量机方法建立气象因子与土壤湿度统计关系,并以此为基础建立土壤湿度模拟与预测模型.结果表明,土壤湿度对气象因子有一定滞后相关性,不同土层土壤湿度对气象因子的滞后相关性不同.研究发现考虑滞后相关性的预测模型在精度上要高于不考虑滞后相关性的预测模型.此外,利用气象因子对地下10 cm的土壤湿度模拟与预测精度较高,而对地下20 cm、30 cm的土壤湿度模拟精度较低.利用地下10 cm与20 cm、20 cm与30 cm的土壤湿度相关性大的特点,可以考虑利用支持向量机方法以10 cm土壤湿度模拟与预测20 cm的土壤湿度,以20 cm的土壤湿度模拟与预测30 cm的土壤湿度,分析结果表明模拟精度较高.  相似文献   

3.
山西省代表站不同土层逐旬土壤相对湿度预报模型   总被引:3,自引:0,他引:3  
以改进本地农业气象服务为目的,使用山西省3个代表站的土壤湿度资料和旬气象资料,根据土壤水分平衡方程,从影响土壤湿度变化的因素出发,分析和筛选了预报因子;应用SPSS统计分析软件,用线性回归方法得到代表站不同土层旬相对湿度的预报模型,经对历史资料回代和2007年各土层进行预报检验,除10cm土层外,相对误差都在30%以下;此方法简单易行,对半干旱半湿润气候区雨养田土壤相对湿度的预报具有一定的参考价值。  相似文献   

4.
为了探讨现代土壤墒情监测手段在业务监测实践中的应用方法,利用中国气象科学研究院固城生态与农业气象试验基地的业务和试验资料,对灌溉农田土壤湿度的时间变化特征和空间关系进行了分析。结果表明,灌溉农田的土壤湿度呈一年的周期性变化;浅层(0-50cm)土壤湿度时空波动显著,且各层的变化存在不一致性,60cm以下土层湿度时空变化很小,0-50cm土层的平均土壤湿度能较好地反映0-200cm土层的土壤水分状况,对土壤湿度的监测应集中在浅层50cm内,并需要逐层测量;浅层土壤湿度变异明显,大田中两点各层土壤湿度的相关性一般随两点距离增加而减小,单个测点的土壤湿度测值的代表性差,因此在自动土壤水分仪器布点时,要获得地段的平均土壤湿度信息,必须设置多个观测重复;表层5cm的土壤湿度变化剧烈而迅速,不能正确反映作物根系主要分布层的土壤水分状况,而表层10cm的土壤湿度与作物根系主要分布层的土壤湿度具有很好的联动性,可以较好地反映作物生长的环境土壤水分状况,因此,在应用微波遥感监测土壤墒情时,其对地表的探测深度需要达到10cm以上才能获得关于作物根系主要分布层的土壤水分状况信息,相应地,在土壤墒情微波遥感监测中,需要采用5GHz以下的频率。  相似文献   

5.
基于支持向量机方法建立土壤湿度预测模型的探讨   总被引:5,自引:0,他引:5  
支持向量机(Support Vector Machine简称SVM)方法,是通过核函数实现到高维空间的非线性映射,适宜于解决非线性问题,具有算法简单、计算量小、易于实现等优点。本文运用支持向量机方法建立了不同土层土壤湿度预测模型,0~10cm土层土壤湿度预测模型有较好的推广能力,10~50cm处的各层预测模型预报能力相对较弱。分析土壤湿度历史监测资料,发现同一时刻0~10cm土层与其它各土层土壤湿度具有较高的相关关系,基于此建立了预报精度较高的各土层土壤湿度的预测模型,实现了运用前期环境气象因子对各土层土壤湿度的预测。  相似文献   

6.
南通市夏季旱情预报服务   总被引:3,自引:0,他引:3  
通过对南通市各气象台,站,哨土壤墒情分析,得出当地各农业区夏季土壤湿度预测模式,根据预测结果判别农田水分状况,并计算出在干旱情况下的灌溉量。  相似文献   

7.
分析森林土壤湿度时空变异规律,研究植被蒸腾、林地蒸散和气象因子对土壤湿度的影响,对干旱地区的植被恢复、林水协调管理和植被生态水文功能提升都有重要意义。在宁夏六盘山北侧半干旱的叠叠沟小流域,建立了华北落叶松人工林标准样地,利用气象站、热扩散探针、微型蒸渗仪、时域反射仪等设备,同步监测了2013年7—10月的气象条件、林木蒸腾、林地蒸散、土壤湿度的动态变化,并分层(0—20,20—40,40—60,60—80cm)探讨了土壤湿度的主要影响因子。结果表明:(1)受随机降雨事件影响,土壤湿度呈现相应的脉冲性变化;整体而言,表层(0—20cm)土壤湿度(32.69%)较低,以下各层较高(40.00%左右);土壤湿度的变异程度随土层加深和降雨增大而逐渐减弱。(2)影响土壤湿度的主要气象因子为温度、饱和水汽压差和气压;林木蒸腾和林地蒸散与整个研究期间主根系层(0—60cm)土壤湿度的相关性显著。(3)土壤湿度与各因子的相关系数随土层加深而变小,在主根系层明显,在以下土层(60—80cm)不明显。综上可知,森林土壤湿度同时受降水输入和蒸散输出影响,各土层湿度的时间变化规律相似;但表层土壤的湿度低、变幅大,土壤湿度对影响因子的响应敏感性和变幅随土层加深而逐步缩小。  相似文献   

8.
气候变暖导致高纬度多年冻土退化,引起多年冻土区冻融过程和土壤水热过程发生变化,土壤湿度变化对气候和生态系统产生重要影响。运用ERA-Interim再分析的土壤湿度数据,结合气象数据,采用数理统计方法,分析了1979—2017年东北多年冻土区土壤湿度的年际、季节和空间变化,土壤湿度变化的影响因子及土壤湿度变化所带来的影响。研究表明:年际变化上1979—2017年,东北多年冻土区7 cm和28 cm深度年均土壤湿度呈下降趋势,并且年平均土壤湿度在2008年达到最低;在季节变化上,不同深度土壤湿度在夏秋季节会达到一年中的最大值,7 cm和28 cm深度处土壤湿度呈现两个峰值(4月份、8月份),土壤湿度最大值出现在8月份;在空间变化上,东北多年冻土区中部土壤湿度在1979—2017年变化最大,且为土壤湿度下降明显区。在气候变暖和降水持续减少的背景下,土壤水分可能成为影响东北多年冻土区植被生长的主要因子,使东北多年冻土区植被生态系统发生变化,分析东北多年冻土区土壤湿度的时空变化对进一步理解该区生态系统变化和多年冻土碳反馈效应具有重要意义。  相似文献   

9.
鲁西南地区土壤墒情变化规律分析   总被引:1,自引:0,他引:1  
从土壤墒情角度探讨鲁西南土壤干旱发生演变规律,应用枚举法和Markov模型对1961—2003年滤除了人为干扰因素后的准自然条件下土壤墒情序列进行计算,得到鲁西南地区春、夏、秋、冬各季干旱持续时间的概率密度以及各季连年发生季节性干旱和不干旱的概率密度;统计得出各旬土壤在未来一句无有效降水条件下不同土壤墒情的失墒速度,从而展示墒情变化与季节的关系,并对逐旬墒情变化与前期气象要素进行相关分析,得出一批影响旬墒情变化的气象因子;利用近几年的定点实测资料统计得到不同降水使土壤干旱状态改善效应。研究结果对利用土壤墒情研究干旱规律、区域性旱情客观评估和预测具有较好的实用和参考价值。  相似文献   

10.
从气象服务需求出发,基于前期研究建立的辽西、辽东地区4、5月土壤相对湿度预测模型,通过降尺度分析,定量化预测辽宁省18个站点4月、5月土壤相对湿度。以2014年为例,通过模型应用与预测结果验证发现,4月预测模型各站点平均相对误差为18%,5月预测模型各站点平均相对误差为13%,总体预测结论基本符合实际情况,模型精度较高。  相似文献   

11.
利用河北省16个农气观测站1981-2010年逐日气象资料、土壤水分观测资料、冬小麦生育期观测资料、灌溉记录和8个冬小麦主产市产量资料,根据土壤水分平衡原理和模糊数据理论,建立了综合反映冬小麦生长期气象条件和土壤水分状况的气温-日照-土壤水分适宜度评价模型,并以旬为时间步长,建立了基于气温-日照-土壤水分适宜度指数的冬小麦产量动态预报模型.结果表明,气温-日照-土壤水分适宜度指数克服了气温-日照-降水适宜度指数仅考虑水分状况中降水条件的不足,能够客观反映冬小麦生长期的气象条件和土壤水分状况,与冬小麦产量变化量呈极显著相关(P<0.01),相关性高于气温-日照-降水适宜度指数;动态产量预报模型对1981-2008年历史拟合检验和2009-2010年预报试验的平均相对误差分别为6.1%和1.2%,误差较小,表明建立的冬小麦产量动态预报模型能够满足业务需求,具有较高应用价值.  相似文献   

12.
基于秋季降水量的春播关键期土壤墒情预测   总被引:2,自引:1,他引:1  
为准确预测春播关键期土壤墒情,给政府部门指导春耕生产提供超前、科学、准确的决策气象信息,本文利用阜新1981-2003年的农业气候资料,深入研究阜新春播关键期土壤墒情和秋季降水的关系,得出:阜新地区春播关键期土壤墒情主要取决于前一年的秋季降水量,并建立了预测模型。此模型在2003-2006年的关键期土壤墒情预测中得到验证,并取得了明显的服务效果。  相似文献   

13.
利用山东省1981-2011年历年冬小麦生育期及产量资料、14个气象站点的逐日气象资料、1992-2011年冬小麦生长季逐旬20cm土壤墒情资料,分别构建考虑和不考虑土壤墒情的冬小麦不同生长阶段的气候适宜度指数计算模型,通过与气象产量进行相关和回归分析,建立了基于两种气候适宜度指数的3-5月逐旬产量动态预报模型,并进行历史回代检验和动态外推预报。结果表明:考虑土壤墒情的气候适宜度指数能够更客观地反映山东省冬小麦生长期间气象条件和土壤水分对其产量形成的影响,构建的气候适宜度指数与冬小麦气象产量的相关系数均通过0.01水平的显著性检验,相关性高于不考虑土壤墒情的气候适宜度指数。产量动态预报模型对1992-2009年历史回代检验的平均准确率均在95.0%以上,标准化均方根误差RMSE均小于6%。对2010-2011年外推预报准确率最高达99.4%,最低为95.4%,说明预报准确率较高,建立的产量动态预报模型可以在业务上推广应用。  相似文献   

14.
农田土壤墒情监测与预报系统研发   总被引:2,自引:1,他引:2  
为了定量预报农田未来7d 土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语言设计,以改进的CERES-MAIZE模型中的土壤水分子模型为基础,通过程序设计及各接口功能的实现,自动调用辽宁省自动土壤水分观测站的监测当日土壤含水量数据和中央气象台预报指导产品,实现数据的网络化获取和业务模型的实时运行,提升土壤墒情模拟的准确性、时效性和便利性。结果表明,预报准确率随预报日期增加而呈现降低的趋势,越临近实际监测日期土壤墒情预报情况与实际情况拟合越好;等级干旱预报准确率最低值为70.1%,最高值为81.9%,系统对于辽宁省农田土壤干旱级别的预报具有较高准确率。  相似文献   

15.
根据2002-2005年3a的田间试验资料和1990-2005年16a的大田土壤水分观测资料,分析确定了安徽淮北地区冬小麦、夏玉米干旱等级指标和适宜土壤水分指标。基于常规气象资料建立了36个逐旬中期降水预报模型,基于温度、降水等气象要素建立了24个土壤墒情逐月回归模型,基于土壤水分平衡方程建立了农业干旱逐旬预报数学模型,对各模型进行综合集成,建立了淮北地区农业干旱综合预警模型。根据干旱预报和降水预报结果,以及作物-土壤适宜水分指标、作物需水量关键期、临界期和土壤水分临界值等,开发了淮北地区冬小麦、夏玉米的干旱预警和灌溉决策计算机服务系统,使用简便快捷,业务化程度高,在近2a的业务应用中,服务效果显著。  相似文献   

16.
呼伦贝尔市土壤水分与气候变化的关系   总被引:3,自引:0,他引:3  
采用统计回归方法,利用基本代表呼伦贝尔市土壤类型的3个农牧业气象观测站1988-2007年的气象和土壤水分观测资料进行分析,结果表明:呼伦贝尔市年降水量变化呈显著或极显著下降趋势,年变化率为8.275~10.347 mm/a,年平均气温上升趋势不明显;0-50 cm土壤水分含量以3.816 2~0.723 6 mm/a速度逐年剧减,农区、林区达极显著水平,土壤干旱化程度加重;土壤水分含量与4-10月平均气温呈极显著负相关关系,与年降水量呈极显著正相关关系;气候变化对土壤水分的影响效应主要集中体现在夏秋季节,达到极显著水平。  相似文献   

17.
土壤水分预报模型的研究   总被引:17,自引:2,他引:17  
卢玉邦 《土壤学报》1989,26(1):51-56
本文提出的模拟方法是根据本地区作物生长阶段所要求的适宜土壤含水量而提出的。可以比较客观地反映土壤水分的变化。用模拟方法对本区土壤含水量进行预报仅是初步尝试,模型的结构和有关参数根据资料尚需进一步完善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号