首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
生物质炭对土壤结构改良、土壤肥力提升和农田温室气体排放具有重要意义。本研究以吉林省梨树县典型黑土为研究对象,通过培育实验,研究不同土壤水分含量(40%WHC和100%WHC)下,生物质炭种类(玉米秸秆生物质炭和稻壳生物质炭)和施加量(0%、1%和4%(w/w))对黑土N2O排放及硝化反硝化功能基因丰度的影响。结果表明,随着秸秆生物质炭施加量的增加,土壤N2O排放呈下降趋势,4%高量秸秆生物质炭添加下,土壤N2O排放量仅为1%低量秸秆生物质炭添加下的33.9%。同时土壤NO- 3-N也表现出一致性规律,4%高量生物质炭添加下土壤NO- 3-N含量显著低于1%低量生物质炭。在100%WHC土壤水分状况下,玉米秸秆生物质炭显著增加了土壤N2O排放,而稻壳生物质炭则显著降低了土壤N2O排放。高土壤水分显著促进了土壤N2O排放,进一步为实时荧光定量PCR结果所证实,高土壤水分通过增加nirS基因丰度进而促进了土壤反硝化作用过程,而4%高量稻壳生物质炭添加下nosZ基因丰度显著高于玉米秸秆生物质炭添加,表现出更强的N2O还原潜力。尽管amoA-AOA基因丰度在不同生物质炭添加量下并未发生显著变化,但amoA-AOB基因丰度在高量玉米秸秆生物质炭添加下显著下降。结果说明,土壤水分和生物质炭通过影响土壤硝化反硝化微生物的营养底物和代谢过程,进而影响土壤N2O排放特征。  相似文献   

2.
施肥对板栗林土壤活性碳库和温室气体排放的影响   总被引:1,自引:0,他引:1  
在浙江省临安市典型板栗林试验地,利用静态箱-气相色谱法测定了不同施肥条件下板栗林土壤CO2和N2O排放速率,同时测定了土壤水溶性有机碳(WSOC)和微生物量碳(MBC)含量。初步探讨了施肥对板栗林土壤活性碳库与温室气体排放速率的影响,以及土壤温室气体排放速率与活性碳库之间的关系。本试验设置不施肥(CK)、 无机肥(IF)、 有机肥 (OF)和有机无机混合肥(OIF,1/2无机肥和1/2有机肥)4个施肥处理。结果表明, 施肥1个月后,与不施肥(CK)处理相比,无机肥(IF)、 有机肥(OF)和有机无机混合肥(OIF)处理下土壤CO2排放速率分别增加了87%、 38%和61%, N2O排放速率分别增加了101%、 67%和95%; 而施肥6个月后,与CK处理相比,IF、 OF和OIF处理下土壤CO2 排放速率分别增加了51%、 43%和64%,N2O排放速率分别增加了21%、 29%和47%。同时,施肥显著增加板栗林土壤WSOC和MBC含量(P<0.05)。此外,土壤CO2和N2O排放速率与WSOC含量均呈显著正相关(P0.05),而与MBC含量没有显著的相关性。因此,施肥引起板栗林地土壤WSOC含量增加可能是导致板栗林地土壤温室气体排放增加的重要原因之一。  相似文献   

3.
中亚热带地区春季降雨频繁,茶园施肥量大,该季节茶园土壤氧化亚氮(N2O)排放量较高,研究春季茶园土壤N2O排放及其影响因子有一定意义。以中亚热带丘陵区土壤为对象,采用静态箱-气相色谱法,研究了两种植茶年限茶园和林地土壤春季N2O排放特征及其影响因子。结果表明:茶园N2O排放量明显高于林地,50年茶园N2O排放量明显高于20年茶园,林地N2O的排放量最少;50年茶园、20年茶园和林地土壤春季N2O累积排放量分别为2.07、1.39、0.22 kg·hm-2。两种植茶年限茶园土壤N2O排放通量均与土壤NO-3-N含量呈显著正相关(P<0.05),林地土壤N2O排放通量则与土壤NH+4-N含量呈极显著正相关关系(P<0.01);茶园和林地土壤N2O排放通量均与5 d累积降雨量之间存在显著的相关性。多元逐步回归分析显示,茶园土壤N2O排放通量受土壤温度和NO-3-N含量影响,共同解释其48%~49%的变化;林地土壤N2O排放通量受土壤温度和NH+4-N含量影响,共同解释其55%的变化。这项研究显示施肥对春季茶园N2O排放的促进作用与降雨有关。  相似文献   

4.
为了探明无机肥和有机肥施用对板栗林地土壤 CH4 吸收通量动态的影响,探讨板栗林地土壤 CH4 通量与环境因子之间的关系,在浙江省临安市典型板栗林样地布置施肥试验。于2011年6月~2012年6月期间,采用静态箱-气相色谱法测定了不施肥(CK)、 无机肥(IF)、 有机肥(OF)和有机无机混合肥(OIF)处理下土壤CH4 吸收通量的全年动态变化,并测定了土壤温度、 土壤水分、 水溶性有机碳(WSOC)和微生物量碳(MBC)含量。结果表明,板栗林土壤CH4 吸收通量呈现明显的季节性变化,最大值出现在9月,最小值出现在2~3月;施肥处理均显著抑制了土壤 CH4 的吸收,具体表现为 IF、 OF和OIF处理下土壤CH4年吸收量与CK处理[CH4 3.09 kg/(hm2a)]相比分别减少了7.0%、 1.6% 和 4.4%。此外,施肥显著增加了土壤WSOC和MBC含量(P 0.05),且施肥使土壤碱解氮、 铵态氮、 硝态氮、 全氮和有机质含量均有不同程度的增加。相关性分析表明,土壤CH4 吸收通量与土壤表层5 cm处温度之间呈显著正相关(P 0.05),但与土壤水分、 MBC含量之间没有显著相关性;土壤CH4 吸收与土壤WSOC含量之间(除CK处理外)均具有显著相关性(P 0.05)。因此,施肥引起土壤理化性质[如 NH+4-N、 NO-3-N、 全氮(TN)、 有机碳(SOC)等]和 WSOC 含量的改变可能是施肥显著抑制了板栗林土壤CH4排放的主要原因。  相似文献   

5.
【目的】我国温室种植蔬菜迅速发展,温室种植中肥料利用率低及蔬菜硝酸盐积累等问题日益突出。同时,我国城市化快速发展,城市园林废弃物日益增多,这些木质废弃物的处理也成为城市可持续发展的挑战。本文采用城市园林废弃物制成的生物质炭用于温室栽培生产,分析其对温室蔬菜产量和品质以及养分保持的影响,从而探索一种为绿色环保的现代城市农业服务的技术。【方法】本研究采用温室盆栽试验方法,以小白菜为研究对象,设置5个生物质炭添加水平。 C0 (0 g/kg, CK)、 C1(20 g/kg)、 C2(40 g/kg)、 C3(60 g/kg)和C4(80 g/kg)。研究生物质炭对小白菜产量、 植株硝酸盐含量、 土壤氮素含量与形态以及氮素保持效应的影响。【结果】与对照相比,添加不同比例的生物质炭均显著提高小白菜产量,其中,C3和C4处理下增产幅度达到75%,生物质炭添加量与产量呈显著正相关关系;生物质炭对小白菜植株地上部和地下部的影响并不一致,其中收获指数显著增加,提高幅度在2.5%~9.5%之间,有随着生物质炭用量增加而增加的趋势;对照处理小白菜地上部硝酸盐含量达504 mg/kg,各处理植株硝酸盐含量介于161~256 mg/kg之间,显著降低50%以上,特别是C1处理降低硝酸盐含量的幅度达到68%,而不同生物质炭添加量之间植株硝酸盐含量差异不显著;生物质炭的添加增加了土壤中总氮素的含量,氮素损失率由不施炭处理的5.6%降低到了3.3%以下,显著降低了42%,同时土壤氮素生产率较对照提高幅度大于35%;与C0相比较,生物质炭添加显著降低了土壤NO-3-N的积累,降低幅度在60%以上,生物质炭用量在4%左右时降低作用最大,达到80%,同时土壤NH+4-N在生物质炭添加下降低了77%,生物质炭对降低土壤中铵态氮和硝态氮的累积作用并不与其用量呈正相关,铵硝比随着生物质炭添加量而呈下降的趋势;同时从研究结果看,产量与土壤NH+4-N和NO-3-N含量呈负相关关系,与土壤全氮呈正相关关系,而蔬菜植株硝酸盐含量与土壤NH+4-N和NO-3-N含量具有相关性,但与土壤全氮含量相关性不显著。【结论】温室大棚栽培小白菜的土壤中, 加入不同量的生物质炭能显著提高小白菜产量,同时降低小白菜植株的硝酸盐含量,添加量在2%时效果最好;土壤硝态氮和铵态氮积累随生物质炭施入而降低;生物质炭显著降低氮素损失率而提高氮素生产率。本研究得出生物质炭通过降低损失、 吸持更多氮素而提高了氮素的持续供应,在增产的同时降低了蔬菜硝酸盐积累,提高了品质。因此,在温室大棚蔬菜生产的土壤中添加一定量生物质炭(本试验下添加2%~4%)可以达到高产和优质。  相似文献   

6.
【目的】农业土壤是N2O的主要排放源,国内以往研究多集中在外源养分对作物生长季N2O排放的影响,而对冬季N2O排放特征和影响因素缺少系统研究。为明确添加外源铵态氮对典型耕作土壤冻结过程中N2O排放特征的影响,本文应用冰柜模拟冬季土壤冻结过程,研究室温—冻结过程不同铵态氮浓度对3种典型地带性耕作土壤N2O排放的影响,以期为调控农田氮肥管理控制土壤N2O排放提供理论依据。【方法】试验设12个处理,包括3种土壤类型(黑土、潮土、黄土),4个外源NH+4-N浓度梯度(0、80、200、500 mg/kg土,分别以N0、N80、N200、N500表示)。具体方法是将3种土壤的风干土样150 g分别装入广口瓶中,加入NH+4-N溶液,使土壤湿度达到田间持水量,置于25℃恒温环境中培养,24 h后分别于0、10、20、30 min时采集气体,再放到-10℃的冰柜中,分别在冷冻0.5 h、2.5 h、6.5 h、13.5 h、23.5 h、43.5 h时采集气体,用气相色谱检测样品的N2O气体浓度。【结果】室温条件下在一定范围内增加外源铵态氮施用量能够促进黑土和潮土N2O的排放,添加80 mg/kg铵态氮的黑土和潮土的N2O排放通量分别比各自对照增加2854.7%和192.1%,均达5%显著水平,但铵态氮浓度过高会抑制黑土和潮土的N2O排放;黄土在室温培养条件下N2O排放通量接近零。随冻结时间的延长,黑土和潮土的N2O排放通量逐渐降低,其降低速度均呈现N80N200、N500N0的趋势,且两种土壤的N80处理分别与各自其他处理的差异达5%显著性水平;冻结0.5 h的黑土添加外源NH+4-N处理的N2O排放通量比对应初始值(冻结0 h)降低了64.95%72.46%,冻结2.5 h后比初始值降低79.1%89.29%,在冻结6.5 h时接近零排放,黑土的N0处理在冻结过程中N2O排放通量基本无变化,数值始终较小;潮土各处理在冻结0 6.5 h内N2O排放通量逐渐降低,且处理间差异减少,冻结0.5 h时潮土4个处理的N2O排放通量比对应初始值(0 h)降低了47.25%58.34%,冻结2.5 h降低了84.35%94.99%,其中N0处理的N2O排放通量在冻结2.5 h后达到稳定的零排放状态,而3个添加外源NH+4-N的处理在冻结6.5 h后达到稳定的零排放状态;黄土各处理在室温和冻结过程中N2O排放通量始终处于较低的水平,且变化范围较小,处理间无显著差异。室温—冻结全过程黑土和潮土的N2O累计排放量均呈N80N200、N500N0,且黑土的N80处理与N0处理间均达到5%显著水平;潮土不同铵态氮浓度处理间无显著性差异;黄土N2O累计排放量处于较低水平或呈负排放状态,其中N500处理N2O的累计负排放量最大。方差分析结果表明,外源铵态氮对3种土壤N2O累计排放量均有显著影响。【结论】室温条件下,适量的外源铵态氮可促进黑土和潮土的N2O排放,但外源铵态氮浓度过高则可抑制N2O的排放;冻结过程中添加外源铵态氮黑土和潮土的N2O排放通量逐渐降低,且降低速度逐渐变缓最终接近零排放;室温—冻结过程添加外源铵态氮黄土的N2O排放通量始终处于极低水平,甚至出现负排放现象;添加外源铵态氮对室温—冻结过程不同土壤类型N2O累计排放量有显著影响。建议在潮土和黑土上降低冻前土壤的铵态氮含量从而减少N2O的排放。  相似文献   

7.
【目的】 生物质炭显著影响土壤氧化亚氮 (N2O) 排放,但关于其相关微生物机理的研究相对匮乏,尤其是生物质炭对酸性菜地土壤N2O排放的微生物作用机理。本文通过研究氮肥配施生物质炭对酸性菜地土壤N2O排放以及硝化和反硝化过程相关功能基因丰度的影响,探讨酸性菜地土壤N2O排放与功能基因丰度的关系,阐释生物质炭对酸性菜地土壤试验N2O排放的微生物作用机理。 【方法】 在田间一次性施入生物质炭 40 t/hm2,试验连续进行了3年,共9茬蔬菜。设置4个处理:对照 (CK)、氮肥 (N)、生物质炭 (Bc) 和氮肥 + 生物质炭 (N + Bc)。在施用后第三年,采集土壤样品进行室内培养,应用荧光定量PCR技术检测硝化过程氨氧化古菌 (AOA)、氨氧化细菌 (AOB) 功能基因amoA和反硝化过程亚硝酸还原酶基因 (nirK、nirS) 以及N2O还原酶基因 (nosZ) 等相关功能基因丰度,同时监测土壤pH值、无机氮 (铵态氮、硝态氮) 含量及N2O排放。 【结果】 与CK相比,生物质炭 (Bc) 处理的土壤有机碳 (SOC) 提高了27.1%,总氮 (TN) 提高了8.2%,amoA-AOB基因丰度显著降低了11.0%,nosZ基因丰度增加了21.2% (P < 0.05),N 2O排放没有显著变化 (P > 0.05)。与CK相比,施用氮肥 (N) 显著降低土壤pH ( P < 0.05),显著增加土壤无机氮含量、 nirK、nirS和nosZ功能基因丰度以及土壤N2O累积排放量 (P < 0.05)。与N处理相比,生物质炭与氮肥联合施用 (N + Bc) 处理显著增加 amoA-AOA、amoA-AOB、nirK、nirS和nosZ基因丰度,增幅分别为68.1%、39.3%、21.1%、19.8%、48.4% (P < 0.05),但 ( nirK + nirS)/nosZ的比值降低,同时N2O累积排放量显著降低33.3% (P < 0.05)。室内培养期间N 2O排放峰出现在1~5 d,N和N+Bc处理排放速率分别为 N 1.70 × 103和1.76 × 103 ng/(kg·h)。相关分析结果显示,N2O排放速率与氧化亚氮还原酶的标记基因nosZ基因拷贝数 (P < 0.05)、NH 4+-N含量 (P < 0.01) 呈显著正相关,与pH呈显著负相关 ( P < 0.01)。 【结论】 在菜地生态系统中氮肥和生物质炭联合施用可以有效缓解菜地土壤酸化,减少菜地土壤N2O排放,主要归因于反硝化作用nosZ基因丰度增加,(nirK + nirS)/nosZ比值降低。   相似文献   

8.
王重阳  郑靖  顾江新  史奕  陈欣 《土壤》2007,39(6):863-869
采用静态箱(暗箱)气相色谱法对下辽河平原潮棕壤撂荒地和人工林N2O、CH4排放进行了为期1年的原位测量,同时测量了土壤温湿度、气温,土壤NO3-N、NH4 -N含量等相关因子.结果表明,在观测期间内人工林地土壤的N2O排放通量明显高于撂荒地.撂荒地是大气CH4的源,而人工林则是CH4的汇.对人工林的观测结果表明,N2哦O排放与CH4排放之间存在负相关关系(R2=-0.351,p<0.05,n=36);而撂荒地两种气体排放之间无明显相关关系.N2O排放通量和温度变化有很好的相关性.当土壤含水量在200 g/kg以上时,土壤含水量与CH4气体排放具有较好的正相关关系.  相似文献   

9.
生物质炭输入减少稻田痕量温室气体排放   总被引:6,自引:2,他引:4  
为揭示不同水平生物质炭输入对稻田土壤理化性质、水稻产量及温室气体排放的影响,采用自制竹炭在4种不同施用水平下(0、10、20、40 t/hm2)输入稻田土壤,开展了水稻一个生长周期的田间试验。结果表明,生物质炭输入可显著提高土壤p H值和有机碳含量(P0.05),且有机碳含量增幅与生物质炭施用水平呈正比(相关系数为0.78,P0.01)。生物质炭施用可显著降低土壤容重(P0.05),最大降幅为0.25 g/cm3,土壤容重随着生物质炭施用量的增加而降低。不同处理水稻产量无显著性差异(P0.05)。CH4累积排放量与生物质炭施用量呈负相关性(相关系数为-0.24,P0.01),投加生物质炭可显著降低稻田CH4排放通量和累积排放量(P0.05),但过量施用生物质炭(超过20 t/hm2)并不能显著降低CH4累积排放量(P0.05)。相比对照处理(不输入生物质炭),生物质炭输入后一周内可显著性降低N2O排放通量(P0.05),并在排水烤田时升高,最终稳定于9.80 mg/(m2·h)。生物质炭输入可显著性降低N2O累积排放量(P0.05),但不同水平生物质炭输入处理之间差异不显著(P0.05)。该试验条件下,生物质炭施用量为20 t/hm2时可实现稻田稳产和固碳减排目标,该研究可为太湖地区苕溪流域稻田增汇和温室气体减排提供参考。  相似文献   

10.
追氮方式对夏玉米土壤N2O和NH3排放的影响   总被引:7,自引:2,他引:5  
【目的】研究氮肥与硝化抑制剂撒施及条施覆土三种追施氮肥方式下土壤N2O和NH3排放规律、 O2浓度及土壤NH4+-N、 NO2--N和NO3--N的时空动态,揭示追氮方式对两种重要环境气体排放的影响及机制。【方法】试验设置3个处理: 1)农民习惯追氮方式撒施(BC); 2)撒施添加10%的硝化抑制剂(BC+DCD); 3) 条施后覆土(Band)。 3个处理均在施肥后均匀灌水20 mm。在夏玉米十叶期追施氮肥后的15天(2014年7月23日至8月8日)进行田间原位连续动态观测,并在玉米成熟期测定产量及吸氮量。采用静态箱-气相色谱法测定土壤N2O排放量,土壤气体平衡管-气相色谱法测定土壤N2O浓度,PVC管-通气法测定土壤NH3挥发,土壤气体平衡管-泵吸式O2浓度测定仪测定土壤O2浓度。【结果】农民习惯追氮方式N2O排放量为N 395 g/hm2,NH3挥发损失为N 22.9 kg/hm2,同时还导致土壤在一定程度上积累了NO2--N。与习惯追氮方式相比,添加硝化抑制剂显著减少N2O排放89.4%,使NH3挥发略有增加,未造成土壤NO2--N的累积。条施覆土使土壤N2O排放量显著增加将近1倍,但使NH3挥发显著减少69.4%,同时造成施肥后土壤局部高NO2--N累积。条施覆土的施肥条带上土壤NO2--N含量与N2O排放通量呈显著正相关。土壤气体的O2和N2O浓度受土壤含水量控制,当土壤WFPS大于60%时,020 cm土层中的O2浓度明显降低,而N2O浓度增加,土壤N2O浓度和土壤O2浓度间呈极显著负相关。各处理地上部产量及总吸氮量差异不显著。【结论】土壤NO2--N的累积与铵态氮肥施肥方式密切相关,NO2--N的累积能够促进土壤N2O的排放,且在条施覆土时达到显著水平(P0.05)。追氮方式对N2O和NH3两种气体的排放存在某种程度的此消彼长,添加硝化抑制剂在减少N2O排放的同时会增加NH3挥发,条施覆土在显著减少NH3挥发的同时会显著增加土壤N2O排放。在条施覆土基础上添加硝化抑制剂,有可能同时降低N2O排放和NH3挥发损失,此推论值得进一步研究。  相似文献   

11.
不同生物炭添加量下植烟土壤养分的淋失   总被引:4,自引:0,他引:4  
【目的】我国南方植烟土壤养分淋失严重尤其是氮、钾,不仅造成资源浪费和潜在环境威胁,还严重制约了烟叶的可持续生产。生物炭比表面积大、孔隙多、稳定性强,施入土壤后可增加对养分的吸附,延长肥效和减少养分损失。本文研究了添加不同水平生物炭对植烟土壤硝态氮、磷、钾养分淋失的影响,为充分发挥生物炭提高养分利用率的作用提供依据。【方法】采用土柱淋洗模拟方法,试验共设5个处理,包括不施肥对照(CK)、氮磷钾肥(NPK)、氮磷钾肥+10%生物炭(10%B)、氮磷钾肥+20%生物炭(20%B)、氮磷钾肥+40%生物炭(40%B),每个处理重复4次,随机排列。【结果】不同生物炭添加量下,土壤硝态氮、磷、钾的淋失量在培养期间呈先增加后减少的趋势。与NPK处理相比,添加生物炭处理在培养21天之后减少了硝态氮淋失量,在整个培养期间延缓和减少了磷的淋失量;与NPK处理相比,10%B、20%B和40%B处理硝态氮淋失总量分别显著降低13%、18%和25%,磷素淋失总量分别显著降低46%、61%和73%,10%B和20%B处理的钾素淋洗量略高,但差异未达显著水平,而40%B处理的钾素淋洗量则显著高于前3个处理,比NPK处理高47%。培养结束后,由于生物炭本身偏碱性,随着生物炭添加量的增加,土壤p H显著升高。表明添加生物炭条件下,土壤硝态氮淋失量的减少主要是生物炭的吸附作用所致;磷素淋失量的减少除了与生物炭的吸附作用有关外,也可能与土壤p H的升高有关;钾素淋失量的增加可能与生物炭本身携带的钾素有关。施用生物炭对土壤硝态氮、磷、钾养分淋失影响的机制还需进一步验证。【结论】施用生物炭能够有效减少植烟土壤硝态氮和磷素的淋溶损失,进而节约氮、磷肥料和提高养分利用效率,降低地下水污染风险,促进烟叶可持续优质生产,在一定范围内其施用量越高效果越好。生物炭的适宜添加量还需综合考虑氮磷钾3个元素的淋失而继续试验。  相似文献   

12.
The effects and associated mechanisms of the application of organic residues or their derived biochar on the dynamics of soil organic C and soil CO2 efflux in planted soils are poorly understood. This paper investigated the impact of bamboo leaf and the derived biochar applications on soil CO2 efflux and labile organic C in an intensively managed Chinese chestnut plantation in a 12-month field study. The treatments studied included Control, application of bamboo leaf (Leaf), and application of biochar (Biochar). The Leaf treatment increased (P?2 efflux and concentrations of water-soluble organic C (WSOC) and microbial biomass C (MBC). The Biochar treatment increased soil CO2 efflux and WSOC and MBC only in the first month after application, but such effects diminished thereafter. The annual cumulative soil CO2 emission was increased by 16 % by the Leaf treatment as compared to the Control, but there was no difference between the Biochar and Control treatments. The soil organic C (SOC) storage was increased by biochar addition but not by bamboo leaf addition. An exponential relationship between soil temperature and soil CO2 efflux was observed regardless of the treatment. Soil CO2 efflux was correlated to soil WSOC (P?Q 10) of soil CO2 efflux was ranked as Leaf?>?Biochar?>?Control. In comparison with the application of fresh bamboo leaf, pyrolyzed bamboo leaf (biochar) application decreased CO2 effluxes and increased C sequestration in the soil.  相似文献   

13.
【目的】黄淮海平原高产麦田水肥资源的大量投入带来了水肥利用率低、氮素损失量大等一系列问题,本文研究了滴灌施肥对黄淮海平原冬小麦大田氮素利用和损失的影响,以期为小麦高产高效施肥提供新的技术手段。【方法】以尿素、NH4H2PO4和KCl混合的水溶性肥料为材料,在山东桓台进行冬小麦主要生育期测墒补灌并随水施肥的田间试验,设置4个施氮量处理,即N0(不施肥)、N1(94.5 kg/hm2)、N2(189 kg/hm2)和N3(270 kg/hm2),分析了大田土壤NO-3-N空间分布、剖面累积及氮素的平衡。【结果】1)滴灌施肥24 h后,随施氮量的增加,在滴头周围水平方向上土壤NO-3-N从在湿润土体边缘聚集逐渐变化为在滴头下方聚集,当施氮量为189 kg/hm2时,滴灌施肥后滴头下方和湿润土体边缘的NO-3-N含量差异不显著,在滴头周围水平方向上均匀性最好;NO-3-N在滴头下方土壤内随水运移深度主要在60 cm以上,滴灌施肥后滴头下方垂直方向上NO-3-N没有在湿润体边缘聚集。2)冬小麦收获后,0—100 cm土壤剖面NO-3-N累积量随施氮量的增加而逐渐增加,且施氮量超过N 189kg/hm2后,土壤剖面NO-3-N累积量的增加幅度加大,0—40 cm土层的NO-3-N增加量显著高于其他土层,N0、N1、N2和N3处理0—40 cm土层NO-3-N累积量所占比例分别为66%、72%、72%和71%。3)随着施氮量的增加,冬小麦吸氮量和籽粒产量先增加后下降,而0—100 cm土层氮素残留量、表观损失量不断增加,滴灌施肥条件下氮素表观损失量较低,N1、N2和N3的表观损失率分别为20%、17%和16%。【结论】滴灌施肥措施下,合理的灌溉量可以调节滴灌施肥后硝态氮主要向下运移至作物根区范围,集中在作物根系最密集的0—40 cm范围内,肥液浓度对硝态氮运移深度影响不大。施入适宜量氮肥有利于提高滴头下方湿润体内水平方向上NO-3-N分布的均匀度,从而促进作物对氮素的吸收。施氮量为189 kg/hm2的N2处理获得了最高的籽粒产量和氮肥利用效率,播前和收获后根区土壤NO-3-N累积量基本达到平衡,是试验筛选出的最佳滴灌施氮模式。  相似文献   

14.
  【目的】  研究生物炭性质与氮肥用量对河套灌区春玉米田温室气体排放和产量的影响,为河套灌区高效利用生物炭固碳减排提供理论支撑。  【方法】  试验采用室内培养与田间试验相结合的方法,供试材料为秸秆生物炭和竹炭。田间试验设常规施氮300 kg/hm2对照(N)、常规氮量配施秸秆炭(SB+N)、常规氮量配施竹炭(BB+N)、减氮50%配施秸秆炭(SB+50%N)、减氮50%配施竹炭(BB+50%N)。采用静态暗箱–气象色谱法测定春玉米田温室气体排放量,并测定玉米产量。室内培养试验中分别制备热解温度为200℃、400℃和600℃的秸秆炭(S)和竹炭(B)加入土壤中,平衡3天后施入N 300 kg/hm2开始恒温恒湿培养,共培养14天。监测了不同培养时间土壤中N2O、CO2及CH4气体的排放通量。  【结果】  与N处理相比,SB+N、BB+N、SB+50%N和BB+50%N处理0—5 cm深土壤温度分别提高了0.50℃、1.84℃、0.35℃和1.37°C,0—10 cm深土壤温度分别提高了0.43℃、1.83℃、0.39℃和1.11°C;0—10 cm土壤含水率分别提高13.70%、8.90%、12.33%和8.90%。与N处理相比,在春玉米整个生育期内SB+N、BB+N、SB+50%N和BB+50%N处理的土壤N2O累积排放量分别减少了21.91%、23.16%、25.98%和28.17% (P<0.05);SB+N和BB+N处理的CO2累积排放量分别提高了7.96%和9.94% (P<0.05),而SB+50%N和BB+50%N处理的分别降低了11.54%和10.74% (P<0.05);整个春玉米生育期各生物炭处理的CH4累积排放量为负值,显著低于N处理(P<0.05);SB+N、BB+N、SB+50%N和BB+50%N处理土壤的全球增温潜势(GWP)分别降低了23.26%、23.98%、27.00%和29.14%,温室气体排放强度(GHGI)分别降低了27.24%、28.97%、32.57%和34.68% (P<0.05)。生物炭添加能够提高玉米产量,SB+N、BB+N、SB+50%N和BB+50%处理较N处理分别增加5.47%、7.01%、8.26%和8.47% (P<0.05)。培养试验发现生物炭能够减少土壤N2O和CO2的排放。N2O和CO2的排放通量随生物炭热解温度升高而减少,在相同热解温度下,竹炭的减排效果优于秸秆炭。各处理下土壤CH4的排放均表现为碳汇,其中600°C制备的竹炭对CH4的吸收量最高。  【结论】  施用生物炭能够改善土壤温度和土壤含水率,并显著降低N2O和CH4累积排放量,但常规施氮量下施用生物炭会提高CO2累积排放量。施用生物炭能够显著提高春玉米的产量并降低春玉米田GWP和GHGI。培养试验进一步说明了竹炭的减排效果优于秸秆炭,高热解温度的生物炭减排效果优于低热解温度生物炭,综合考虑田间与室内培养试验的结果、环境效益和经济效益,减氮50%配施竹炭的处理是河套灌区春玉米田提高产量并减少温室气体排放较为合适的措施。  相似文献   

15.
水洗生物炭配施化肥对水稻产量及养分吸收的影响   总被引:3,自引:2,他引:1  
【目的】生物炭对水稻产量和养分吸收有良好的作用,本文研究生物炭水洗与否对其效果的影响,为生物炭的高效利用提供支持。【方法】采用盆栽试验,以竹炭和经去离子水冲洗后的竹炭为材料,在不施化肥和配施化肥两种条件下,研究了竹炭和水洗竹炭对水稻土壤理化性质、水稻秸秆和籽粒产量及N、P、K养分吸收的影响。【结果】竹炭经水洗后p H和K含量显著降低,C、N、P、S、Ca、Na和Mg含量,比表面积(BET),总孔容以及平均颗粒大小均没有显著变化。与不施肥对照相比,竹炭和水洗竹炭单施处理均显著提高土壤p H、有机碳、速效钾,且两种处理之间土壤速效钾差异显著;单施竹炭和水洗竹炭分别显著提高水稻秸秆产量12.7%和15.6%,水洗竹炭处理还显著提高水稻籽粒产量15.7%,水洗与不水洗之间没有显著差异;与化肥对照相比,竹炭和水洗竹炭配施化肥均显著提高土壤全氮,水洗竹炭配施化肥还显著提高土壤速效磷;竹炭和水洗竹炭处理分别显著提高水稻秸秆产量18.7%和33.1%,提高水稻籽粒产量16.7%和18.4%。在水稻养分吸收方面,竹炭和水洗竹炭单施显著提高秸秆氮素和钾素的吸收,水洗竹炭单施还显著提高籽粒氮素的吸收,但二者之间差异不显著;与化肥配合施用,竹炭和水洗竹炭均显著提高水稻秸秆和籽粒氮素和钾素的吸收,水洗竹炭显著提高籽粒磷素吸收,且水洗竹炭促进水稻秸秆和籽粒中氮素吸收的效果优于竹炭,但竹炭促进秸秆钾素吸收效果显著优于水洗竹炭,这可能与经水洗后竹炭钾素含量显著降低有关。【结论】竹炭和水洗竹炭单独施用和与肥料配施均可显著提高水稻的产量和对养分的吸收。二者相比,水洗提高了竹炭增加水稻氮素利用率和产量的效果,但降低了其补钾能力。从环保、减氮增效以及节约水资源角度考虑,实际生产中应慎重考虑是否对生物炭进行水洗。  相似文献   

16.
  【目的】  生物质炭施用于农田土壤中能够改善土壤肥力,并提高作物生产力,而该效应受到土壤条件和生物质炭条件的限制。针对不同土壤条件探究适宜的生物质炭利用方式,对促进农业生产具有重要意义。  【方法】  采用盆栽试验,以壤质和粘质两种质地的潮土为研究对象,分别施用玉米秸秆炭(MBC)和小麦秸秆炭(WBC)两种生物质炭,并以不施用生物质炭的处理为对照(CK)。测定各处理玉米苗期生长、生理抗性和养分吸收差异,并分析各处理根际土壤理化性质和胞外酶等活性。  【结果】  1)与CK相比,壤质潮土中,WBC处理下玉米地上部生物量显著增加了43.7%,总根长显著增加34.3%,而MBC处理没有显著影响。粘质潮土中,WBC和MBC对玉米生物量和根系构型均影响较小。2) WBC和MBC在壤质和粘质潮土中显著降低了苗期玉米叶片中MDA含量,降低幅度在32.7%~55.3%,且两种生物质炭之间没有显著差异;粘质潮土中,MBC处理显著提高了玉米叶片超氧化物歧化酶(SOD)活性,壤质潮土中,WBC和MBC处理对SOD活性均没有显著影响。3)壤质潮土中,生物质炭对苗期玉米地上部氮含量没有显著影响,而对作物全磷和全钾含量有显著促进作用,WBC处理的地上部全磷和全钾含量分别比对照显著提高23.5%和28.7%,且显著高于MBC处理。在粘质潮土中,WBC和MBC处理对地上部全氮和全磷含量均没有显著影响,而MBC处理提高了全钾含量。4)在壤质和粘质潮土中施用生物质炭均改善了根际土壤理化性质。与对照相比,壤质潮土中MBC处理的土壤速效磷含量显著增加了25.4%;粘质潮土中WBC和MBC处理速效磷含量均显著增加了15.03%,并且显著提高了阳离子交换量(CEC)。生物质炭处理提高了根际土壤胞外酶活性,在粘质潮土中WBC和MBC处理的胞外酶活性没有显著差异,而在壤质潮土中WBC处理的酶活性高于MBC处理。  【结论】  施用生物质炭能够调控根际土壤酶活性,提高有效磷含量,改善玉米根系构型,提高苗期玉米养分吸收并增加生物量。生物质炭的施用效果在壤质潮土中比粘质潮土中更好,小麦秸秆炭效应优于玉米秸秆炭。  相似文献   

17.
生物炭和秸秆对华北农田表层土壤矿质氮和pH值的影响   总被引:3,自引:0,他引:3  
基于2014-2015年华北农田定位试验,设CK(单施氮磷钾肥)、C1(生物炭4.5t×hm-2×a-1+氮磷钾肥)、C2(生物炭9.0t×hm-2×a-1+氮磷钾肥)和SR(秸秆还田+氮磷钾肥)4个处理,对施用生物炭和秸秆还田对表层土壤矿质氮(NO3--N、NH4+-N)含量以及土壤pH值的影响进行研究。结果表明,不同处理土壤矿质氮的动态变化趋势基本一致,施用生物炭和秸秆还田均可显著提高土壤NO3--N含量(P<0.05),但对土壤NH4+-N含量影响不大。与秸秆还田相比,高量施用生物炭有利于增加土壤NO3--N含量。各处理土壤中矿质氮主要以NO3--N为主,NH4+-N含量均保持在一个较低水平。将冬小麦整个生育期内各处理土壤NO3--N、NH4+-N含量与夏玉米的相比,前者显著高于后者。在整个冬小麦-玉米轮作周期内,高量施用生物炭显著提高了土壤pH值,且各处理土壤NO3--N与土壤pH值呈显著负相关(P<0.05),土壤NH4+-N含量与土壤pH值相关性不显著;而各处理土壤NO3--N、NH4+-N含量与土壤含水量均呈显著正相关(P<0.05)。可见,添加生物炭对减少氮素的转化和流失具有较大潜力。  相似文献   

18.
【目的】NO-3-N阈值是氮营养状况的评价标准,是蔬菜苗期养分精准管理的重要依据,受品种、施肥、温度、光照等因素的影响。因此,研究不同品种、施肥和外界环境条件下番茄(Lycopersicon esculentum Mill.)幼苗的组织NO-3-N含量的变化程度,以明确番茄幼苗组织NO-3-N阈值,为快速准确诊断幼苗养分状况提供依据。【方法】首先采用穴盘育苗试验,以番茄17个主栽品种为试材,采用水杨酸-硫酸比色法测定了不同组织NO-3-N含量。在该试验基础上,选其中两个品种(‘佳红4号’和‘中杂105号’)继续进行穴盘育苗试验。设施N(26、210、840mg/L),P(4、31、248 mg/L),K(29、234、1875 mg/L),温度(32℃/22℃、28℃/18℃、20℃/10℃),光照(不遮荫、50%遮荫),灌水时间(灌水后2 h取样、灌水后10 h取样、灌水后24 h取样)6因素多水平试验,测定处理后番茄幼苗不同组织中的NO-3-N含量。【结果】番茄幼苗同一品种不同组织NO-3-N含量变化范围为0.79 4.42 g/L,同一组织不同品种间NO-3-N含量变化范围为2.84 4.42 g/L,均达到差异极显著水平;与正常对照相比,氮盈余供应可使组织NO-3-N含量提高1.86倍,而亏缺供应使组织NO-3-N含量降低了97.3%;磷、钾亏缺供应、低温、弱光条件下番茄幼苗组织NO-3-N含量呈降低趋势,最大降低幅度达49.6%,磷、钾盈余供应、高温、灌水时间则因组织NO-3-N含量表现出不同的变化趋势。【结论】番茄幼苗组织NO-3-N含量在多元因素的影响下波动变化。以番茄17个品种不同组织NO-3-N含量为基础值,以环境条件作用最大增幅和最大减幅进行校正,获得番茄幼苗组织NO-3-N含量阈值,即下胚轴1.75 2.72 g/L、茎2.07 4.04 g/L、第1叶位叶柄2.18 4.83 g/L、第1叶位叶片0.62 1.52 g/L、第2叶位叶柄2.31 5.10 g/L、第2叶位叶片0.73 1.50 g/L、第3叶位叶柄2.79 4.09g/L、第3叶位叶片0.40 1.53 g/L、第4叶位叶柄2.44 4.20 g/L、第4叶位叶片0.40 2.13 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号