首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five Canadian oat genotypes were grown at six environments in Manitoba to assess the effects of genotype, environment, and genotype‐by‐environment interaction on oat starch properties and end‐product quality. Genotypic variation was significant for total starch, amylose content, starch swelling volume (SSV), Rapid Visco Analyser (RVA) pasting viscosities, differential scanning calorimetry (DSC) thermal properties, and starch gel texture as well as the quality of flakes and cooked oatmeal made by laboratory‐scale methodologies. Environment was the dominant factor contributing to the total variation of starch content, RVA pasting viscosities, SSV, and DSC thermal properties. Most measurements of starch gel and oatmeal texture were not affected by growing environment. Cross‐over analysis revealed that changes in the ranking of genotypes across environments occurred for starch RVA hot paste, breakdown and shear thinning viscosities, work of gel compression, flake hydration capacity, and the proportion of large flakes, indicating that breeding for these traits would require multiple testing sites. Trends were observed between oatmeal texture and several flake and starch gel properties, warranting further study. Results of this study indicated that there is a potential to breed Canadian oat cultivars with improved functional end‐product quality for use in the milling and food manufacturing industries.  相似文献   

2.
To determine the effect of amylose content on the starch properties, the amylose content, pasting properties, swelling power, enzymatic digestibility, and thermal properties of partial and perfect waxy types along with their wild‐type parent were analyzed. As expected, amylose content decreases differently in response to the loss of each Wx gene, showing the least response to Wx‐A1a. Most of the characteristics, except the thermal properties of the amylose‐lipid complex in differential scanning calorimetry (DSC), differed significantly among the tested types. Furthermore, the breakdown, setback, and pasting temperatures from the Rapid Visco Analyser (RVA) and the enzymatic digestibility, swelling power, peak temperature, and enthalpy of starch gelatinization from DSC showed a correlation with the amylose content. The relationships between the peak viscosity from the RVA and the onset temperature of starch gelatinization determined by DSC with amylose content of the tested materials were not clear. Waxy starch, which has no amylose, showed a contrasting behavior in starch gelatinization compared with nonwaxy starches. Among the nonwaxy starches, lower setback, lower pasting temperature, higher enzyme digestibility, higher peak temperature, higher enthalpy of starch gelatinization, and higher swelling were generally associated with low amylose starches.  相似文献   

3.
Mung bean starch gels (8% solids) were prepared after annealing at 45–60°C for 1–24 hr, and the relationship between the physical properties of gels and the swelling power (SP) and solubility of starch was investigated. The SP and solubility decreased with increasing annealing temperature and time, mostly in the first 6 hr. The solubles were mainly composed of amylose. Gel hardness at a 5 mm depth of annealed starch was larger than that of native starch, and gel hardness increased as SP decreased (r = ‐0.94). Upon continued compression, the yield force of gel showed a different function. Above SP of ≈12.5, the yield force of annealed starch gels decreased, but at <12.5 the yield force increased with increasing SP. Both granular rigidity and extent of packing appeared to determine the yield force. Although annealing increased the gel hardness, α‐amylase digestibility of gel was not affected. Pasting analysis in the Rapid Visco Analyser (RVA) revealed that annealing increased pasting temperature. A pasting peak was found only in 45 and 50°C annealed starches. Overall paste viscosities of the starches annealed at >55°C were lower than that of the control starch. Final viscosities in RVA were correlated with the yield force of gel (r = 0.99).  相似文献   

4.
Sweetpotato starch is high yielding but has very limited uses. It is possible to expand its application by blending it with other starches to obtain novel properties. In this study, functional properties of the blends of native sweetpotato starch with native, acid‐thinned, and hydroxypropylated wheat starch were studied at different ratios (75:25, 50:50, 25:75). The swelling factor, extent of amylose leaching, pasting, and gel textural properties of the blends were nonadditive of their individual components, and could be mathematically modeled by quadratic equations in relation to the ratios. Two peaks during pasting were observed for some starch mixtures studied by Rapid ViscoAnalyser (RVA). The gelatinization and retrogradation enthalpies (ΔH) of the blends were additive of their individual components and could be modeled by linear equations. All starch mixtures exhibited two peaks during differential scanning calorimetry (DSC) scan for gelatinization, but a single peak for retrograded starches. This study may provide basis for formulation of mixtures using starch from diverse sources to develop more natural starch systems with a range of physicochemical properties.  相似文献   

5.
Seven early indica rice starches with different amylose contents were modified by octenyl succinic anhydride (OSA) in aqueous suspension systems to evaluate the effect of amylose contents on starch esterification. The crystalline structure and pasting properties of starches were investigated using X-ray diffraction and a Rapid Visco Analyzer (RVA). The results indicated that the amylose content had a positive impact on the OSA modification. As the amylose content increased from 0 to 39.6%, the degree of substitution increased from 0.024 to 0.030 and the reaction efficiency increased from 62.8 to 77.5%. X-ray diffraction scans confirmed that the amylose was mainly present in the amorphous domain of the granule and was highly substituted after the OSA treatment. The RVA profiles demonstrated that the OSA starches had higher viscosities than their native counterparts. Moreover, negative correlations were observed between the amylose content and the major RVA parameters (e.g., peak viscosity, hot paste viscosity, cool paste viscosity, and breakdown viscosity).  相似文献   

6.
Physicochemical properties of starches from eight coix (Coix lachrymajobi L.) accessions were investigated. There was considerable variation in most measured traits, generally corresponding to the separation into waxy and normal amylose types. The amylose contents of five normal coix ranged from 15.9 to 25.8%, and those of three waxy coix were 0.7–1.1%. Swelling power of waxy coix starches varied between 28.6 and 41.0 g/g, generally higher than waxy maize. Normal coix starches had significantly higher gelatinization peak temperature (Tp) than the normal maize, 71.9–75.5°C. The Tp of waxy coix starches was 71.1–71.4°C, similar to waxy maize. Rapid Visco-Analyser (RVA) pasting profiles of normal coix showed little variation and closely matched the normal maize starch profile. Pasting profiles of waxy coix showed more variation and had lower peak viscosities than waxy maize starch. Waxy coix starches formed very weak gels, while the gel hardness of normal coix starches was 11.4–31.1 g. Amylose content was the main factor controlling differences in starch properties of the coix starches.  相似文献   

7.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

8.
Flours from five spelt cultivars grown over three years were evaluated as to their breadbaking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions, and pasting properties. Milled flour showed highly variable protein content and was higher than hard winter wheat, with short dough‐mix times indicating weak gluten. High protein cultivars gave good crumb scores, some of which surpassed the HRW baking control. Loaf volume was correlated to protein and all spelt cultivars were at least 9–51% lower than the HRW control. Isolated starch properties revealed an increase in amylose in the spelt starches of 2–21% over the hard red winter wheat (HRW) control. Negative correlations were observed for the large A‐type granules to bread crumb score, amylose level, and final pasting viscosity for cultivars grown in year 1999 and to pasting temperature in 1998 samples. Positive correlations were found for the small B‐ and C‐type granules relative to crumb score, loaf volume, amylose, and RVA final pasting viscosity for cultivars grown in 1999, and to RVA pasting temperature for samples grown in 1998. The environmental impact on spelt properties seemed to have a greater effect than genetic control.  相似文献   

9.
Pasting profiles of selected starches were compared by using a Micro Visco‐Amylo‐Graph (MVA) and a Rapid Visco Analyser (RVA). Effects of cooking (heating/cooling) rate and stirring speed on starch pasting properties were examined. The pasting viscosity of a starch suspension (8%, w/w, dsb) was measured at a fast (6°C/min) and slow (1.5°C/min) cooking rate while being stirred at either 75 rpm or 160 rpm. The pasting temperatures (PT) of all starches were higher when measured at the fast cooking rate than those at the slow cooking rate, except for wheat measured by using the RVA. PT was also higher when measured at the slow stirring speed (75 rpm) than at the fast stirring speed (160 rpm) in both RVA and MVA. When stirring speed increased from 75 rpm to 160 rpm, peak viscosity of all starch pastes except potato decreased measured by using the RVA, but increased by using the MVA. In general, amylograms of these starches obtained by using the MVA showed less breakdown, but greater setback viscosity than did that obtained by using the RVA. Differences in starch pasting properties between MVA and RVA, measured at the same cooking and stirring rates, were attributed mainly to the difference in spindle structure.  相似文献   

10.
Pasting and thermal properties of starch from corn steeped in the presence of lactic acid and at different steeping times (8, 16, 24, 32, and 40 hr) were investigated. Corn kernels were steeped at 52°C with 0.2% (w/v) SO2 and with and without 0.5% (v/v) lactic acid. The isolated starch obtained by corn wet‐milling was characterized by determining starch recoveries, retrogradation, and melting transition properties of the lipid‐amylose complex by differential scanning calorimetry (DSC), and pasting properties by the Rapid Visco Analyser (RVA). Damaged granules and the starch granule size were determined by using microscopic techniques. Starches from corn steeped in the presence of lactic acid (LAS) were compared with control starch (CS) steeped without lactic acid. Greater starch recoveries were obtained for LAS samples than for CS samples, and practically no damaged starch was present in the former preparations. The presence of lactic acid affected the RVA profiles and steeping time affected the viscosities of the starch suspensions. In general, the RVA parameters of LAS suspensions were lower than those of CS suspensions. No great modification of the thermal properties was observed; only a slight decrease in amylopectin retrogradation and in the melting enthalpy of the amylose‐lipid complex was observed. Hydrolysis of the starch during steeping seems the most probable explanation to the starch modifications produced by lactic acid addition.  相似文献   

11.
12.
Eight U.S. long‐grain rice cultivars were studied for chemical compositions, physicochemical properties, and leaching characteristics in relation to hardness and stickiness of rice flour paste and cooked rice. There were differences in the chemical composition of rice kernels among the eight rice cultivars, including crude protein (6.6–9.3%), crude fat (0.18–0.51%), and apparent amylose content by iodine colorimetry (19.6–27.0%). Differences were also observed in gelatinization temperatures and enthalpies, pasting temperatures and viscosities, leached/insoluble amylose, soluble solids, and hardness and stickiness of rice flour pastes and cooked rice kernels. The quantity and molecular size distribution of the leached starch molecules varied greatly among the samples. Protein and crude lipid contents negatively correlated with hardness of rice flour paste and cooked rice, but positively correlated with stickiness. Apparent amylose content correlated with gel properties but not cooked rice texture, whereas the ratio of A and short B chains to long B chains of amylopectin correlated significantly with cooked rice texture.  相似文献   

13.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

14.
The effect of amylose-lipid (AM-L) complexes consisting of amylose populations with different peak degrees of polymerization (DP) and complexed with glyceryl monostearate (GMS) or docosanoic acid (C22) on the pasting properties of wheat and rice starches was evaluated with a rapid visco analyzer (RVA). AM-L complexes were formed by both (i) addition of lipids to amylose fractions with peak DP 20, 60, 400, or 950 at 60 degrees C or (ii) potato phosphorylase-catalyzed amylose synthesis in the presence of lipids. All AM-L complexes affected pasting properties in line with their dissociation characteristics. AM-L complexes therefore have potential as "controlled lipid release agents" with effects markedly different from those observable with emulsifier addition in starch pasting. More in particular, short chain AM-L complexes resulted in a starch pasting behavior comparable to that of cross-linked starch, as evidenced by reduced granule swelling, good viscosity stability in conditions of high temperature and shear, and a stable cold paste viscosity.  相似文献   

15.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

16.
The starch from eight ethyl methanesulfonate (EMS) treated M4 families of the corn (Zea mays L.) inbred line B73 was analyzed using differential scanning calorimetry (DSC), a Rapid Visco Analyser (RVA), a texture analyzer (TA), and scanning electron microscopy (SEM) coupled with image analysis. The eight families were chosen from 144 families previously selected for having starch with unusual DSC parameters. Apparent amylose contents of the starch from the eight families generally were lower than that of the control. According to DSC, starches from mutagenized families tended to have lower onset temperature (T0) of gelatinization, enthalpy (ΔH) of gelatinization, and peak height index (PHI), but broader gelatinization range (R) than the B73 control. Their values for ΔH and percentage of retrograzdation (%R) were clustered around that of the control. Pasting properties from the RVA of the starches from the M4 families also were clustered around those of the control B73 starch, except for the setback values which were lower than B73 for M4 starches. Gel firmness values, as measured by TA, of all the M4 starches were generally lower than that of the B73 starch at storage treatments of one day at 25°C or seven days at 4°C. The stickiness of the gels of the M4 starches tended to be greater than that of B73 after seven days of storage at 4°C. These observations were consistent with the lower apparent amylose values for the M4 starches. SEM and image analysis data revealed no differences among the treatments in granule size and shape. Possibly, EMS treatment altered the genes, affecting internal structure of the starch granules. Starch from the mutagenized families likely had lower bonding forces among molecules and fewer long chains in the amylopectin molecules than did B73.  相似文献   

17.
The differences in pasting properties involving gelatinization and retrogradation of rice starches from IR24 and Sinandomeng cultivars during heating‐cooling processes were investigated using a Rapid Visco Analyser (RVA)and a dynamic rheometer. The results were discussed in relation to the molecular structure, actual amylose content (AC), and concentration of the starches. Generally, both starches possessed a comparable AC (≈11 wt%), amylose average chain length (CL), iodine absorption properties, and dynamic rheological parameters on heating to 95°C at 10 wt% and on cooling to 10°C at higher concentrations. In contrast to Sinandomeng, IR24 amylose had a greater proportion of high molecular weight species and number‐average degree of polymerization (DPn). IR24 amylopectin possessed a lower DPn and greater CL, exterior CL (ECL), and interior CL (ICL). Comparing the results of RVA analysis and dynamic rheology, the gelatinization properties and higher retrogradation tendencies of IR24 starch can be related to the structural properties and depend on starch concentration. In addition, the exponent n of starch concentration for storage moduli at 25°C (G25Cn) increased linearly with increasing AC.  相似文献   

18.
This study describes the effect of starch properties of Japanese wheat flours on the quality of white salted noodles (WSN). Starch was isolated from 24 flours of 17 Japanese cultivars and amylose content was determined along with pasting properties by Rapid Visco Analyser (RVA), thermal properties by differential scanning calorimetry (DSC), and the distribution of amylopectin chain length by high‐performance anion exchange chromatography (HPAEC). Twenty flours were used to prepare WSN. As expected, 5–6% lower amylose content was associated with good WSN quality (higher scores in softness, elasticity, and smoothness). RVA analysis indicated that the pasting temperature had the greatest influence on WSN quality, while breakdown and setback showed slight effects on WSN quality. DSC results showed that lower endothermal enthalpy (ΔH) in the amylose‐lipid complex was associated with good WSN quality. Chainlength distribution of amylopectin by HPAEC was not an important factor in relation to WSN quality.  相似文献   

19.
Pasting characteristics of maize starch heat‐treated with six different water‐to‐ethanol ratios (%wt base 0:100, 10:90, 20:80, 30:70, 40:60, 50:50) were investigated; treated starches were called EW 0, 10, 20, 30, 40, and 50, respectively. Endotherms in DSC analysis shifted to a higher temperature as the water content in water‐ethanol mixture increased. The removed amount of fatty acids was much higher in treatments for EW 10, 20, and 30. The RVA peak viscosity of EW 10 and 20 were highest among the treated starches and setbacks were more than twice that of untreated starch. The characteristic change in the RVA viscogram corresponded to the amount of leached amylose from the granule. EW 30 displays similar properties as conventional heat‐moisture‐treated starch, but maintained a higher viscosity of ≈300 RVU throughout the heating process. In treatment with water‐ethanol mixtures, heat‐moisture treatment and defatting effects generated new types of modified starches. EW 40 and 50 had no clear pasting peak on RVA, and showed a viscosity at low temperature similar to granular cold water gelling.  相似文献   

20.
Physicochemistry and structural studies of two types of japonica rice, low amylose Calmochi-101 (CM101) and intermediate amylose M-202 (M202), were conducted to determine similarities and differences between the rices perhaps attributable to amylose content differences. The rheological behavior of the gelation and pasting processes of flours and starches was determined with high accuracy and precision using a controlled stress rheometer. Fat and protein, although minor constituents of milled rice, were shown to have significant effects on the physicochemical and pasting properties of starches and flours. Removal of protein and lipids with aqueous alkaline or detergent solutions caused lower pasting temperatures and higher overall viscosity in both starches, compared with their respective flours. There was less viscosity difference between M202 flour and its starch when isolated by enzymatic hydrolysis of protein. The protease did not reduce internally bound lipids, suggesting that fats help to determine pasting properties of rice flours and their respective starches. Structural integrity differences in individual granules of waxy and nonwaxy rice flours, starches, and whole raw, soaked, and cooked milled grain were revealed by fracture analysis and scanning electron microscopy. Calmochi 101 and M202 did not differ in weight-averaged molar mass (Mw) and root-mean-square radii (Rz) between flours and starches, as determined by high-performance size exclusion chromatography (HPSEC) and multiple-angle laser light scattering (MALLS) (Park, I.; Ibanez, A. M.; Shoemaker, C. F. Starch 2007, 59, 69-77).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号